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ABSTRACT

The railgun is an electromagnetic device that converts electrical energy to mechanical energy 
for accelerating the projectiles to hyper velocities, which is the main reason that railguns are 
becoming an increasingly popular topic of interest among the military, defense industry and 
scientific communities. Output force is used for evaluating the performance and the effec-
tiveness of a railgun which is highly depended on the Railgun geometric design parameters. 
When a new railgun is designed, drawing the geometry, simulation and analysis stages take a 
long time; this study has aimed to provide an Artificial Intelligence based surrogate model for 
a railgun design to prevent time consuming at these stages and to make design optimization 
process computationally efficient. For this reason, in this paper three different rail geometries 
have been combined and simulated with three different armature types by using Ansys Max-
well which is based on 3-D Finite Element Method. Within the scope of this study; first of 
all, one of the best rail and armature pair was selected according to the efficiency. Secondly, a 
dataset with inputs and outputs was created by changing the geometric variables of the select-
ed pair. Thirdly, using this dataset; six different surrogate models were trained, tuned and test-
ed. Railgun’s output force was predicted with minimum symmetric mean absolute percentage 
error (SMAPE) of 1.89% at the end of tests. Finally, Particle Swarm Optimization (PSO) was 
carried out with the surrogate model that gave the best result for modelling of a railgun design 
with 8.0 kNewton required output force. These optimization results were compared with the 
Ansys simulation outputs and found to be hand to hand. Thus, herein, a computationally ef-
ficient method for design optimization of railgun designs has been achieved using surrogate 
based modelling techniques.
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INTRODUCTION

The railgun consists of two parallel conductors called 
rails which connected each other by a non-ferromag-
netic material called armature that is also carriers of the 

projectiles. While the current flows through the paral-
lel rails, it creates a magnetic field according to the well-
known right-hand rule in such a way that magnetic field 
lines are perpendicular to the rails and the armature. This 
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magnetic field lines and current passing through armature 
produces a force, called Lorentz force which accelerates the 
armature along the rails [1]. A simple diagram of a railgun 
and Lorentz force are shown in Figure 1 below.

In order to design the most effective railgun, we need 
to analyze railgun key parameters such as magnetic flux 
density between the rails, maximum current density over 
the rail cross section, repulsive force acting on the rails, 
and inductance gradient of the rail. These parameters affect 
output force of the railgun, that’s why it needs to be under-
stood that how these key parameters react under different 
boundary conditions and variation in dimensions [2].

The analysis of these parameters during the firing is dif-
ficult and costly. Therefore, regarding simulations should 
be done before the production.

In recent years, many studies had been carried out for 
creating surrogate models using AI algorithms with high 
computationally efficiency to be used in design optimization 
or design with high performance and accuracy requirements 
[4,5]. Some worth mentioning published works in literature 
on field of surrogate based modelling of high frequency 
electromagnetic devices can be named as: modelling of 
microwave transistors [6-10], reflection phase characteristic 
prediction of reflect array antennas unit elements [11-14], for 
synthesis and analysis of microstrip lines [15,16], for model-
ling a microstrip patch designs [17-19], dielectric properties 
prediction of the vegetation [20], investigation the effects of 
aperture dimension ratio on electrical shielding effectiveness 

[21] and prediction of the radiated emission from heatsink’s 
and heatsink optimization [22]. 

Herein, three different rail geometries have been sim-
ulated with three different armature types using ANSYS 
Maxwell which is based on 3-D Finite Element Method to 
determine effective railgun geometries. After one of the 
best geometries was determined, geometrical parameters 
such as rail length, separation between the rails, rail radius, 
armature height and armature length were changed on this 
railgun’s model and this railgun’s performance was observed 
and measured on the simulation environment. Then based 
on the obtained simulated data, an Artificial Intelligence 
(AI) based surrogate model for railgun design to prevent 
time consuming and to make design optimization process 
computationally efficient is taken into the consideration. 
AI based surrogate model predicted railgun’s output force 
with SMAPE of 1.89% and in milliseconds. Moreover, in 
the surrogate model, there is no need for drawing to see 
the output, it is sufficient to give only the model inputs. In 
ANSYS Maxwell software calculation time almost takes five 
minutes excluding railgun drawing (used computer prop-
erties: 16 Gb RAM, Intel Core i7 processor). Considering 
that hundreds of parameters are changed while making a 
design, it is seen that the surrogate model saves a lot of time. 
As an example design optimization study case, one of the 
commonly used meta-heuristic optimization algorithms 
Particle Swarm Optimization (PSO) had been used for data 
driven surrogate model assisted optimization process. Thus, 

Figure 1. Railgun diagram [3].
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by using AI based computational efficient surrogate mod-
elling and Meta-Heuristic optimization algorithms; a fast, 
reliable, accurate and computational efficient optimization 
process has been achieved. In the next section, analysis of 
the proposed railgun design has been presented. In section 
3, AI based surrogate modelling techniques for modelling 
of the proposed railgun design has been studied. In section 
4, a study case for design optimization of railgun using AI 
based surrogate model has been presented, and finally the 
work ends with a brief conclusion in section 5.

ANALYSIS OF DIFFERENT RAILGUN 
GEOMETRIES

Related Equations
Maxwell’s equations with the Ampere law in differential 

form when the displacement current is neglected [23]; 

   (1)

Where H is magnetic field intensity and J is impressed 
current density. In some case the equality  must be replace 
by  where  is eddy current. Non-existence of mag-
netic charges in differential form that is shown in following 
equation [24];

  (2)

Using equation 2, can be written B is curl A;

   (3)

Where  and µ are magnetic flux density and permea-
bility respectively, the induced eddycurrent is given by [25];

  (4)

  (5)

Where σ and  are conductivity and electrical field 
respectively. The differential equation for the magnetic vec-
tor potential  in transient case is;

   (6)

The interaction between the magnetic field density pro-
duced by the rail’s current in the place of the armature and the 
passing current of the armature causes its acceleration along 
the rails. This force is obtained from the Lorentz law [26];

  (7)

Inductance gradient is defined as the ratio of magnetic 
energy per length to current square. Then we can write [27];

  (8)

where L, I and F are the inductance gradient, injected 
current and the applied force to the armature respectively. 

Inductance gradient is a function of railgun dimensions 
and the rail material, also a useful parameter that used to 
show the efficiency of the railgun. Therefore, there are many 
studies on the effects of rail and armature geometry [28], 
[29], [30] and materials [25] on the inductance gradient.

SIMULATION MODEL PARAMETERS

Geometry And Material
Square, triangular and half-cylindrical rails were 

selected as different rail geometries. C type, rectangular and 
hollow types of armature geometries were selected as differ-
ent armature geometries. Inner side of the rails are preferred 
flat shape because of its advantages such as high inductance 
gradient, easy cleaning, easy maintenance, easy removing 
and loading, lower cost and uniform field distribution [29]. 
The rail pairs have been shown in Figure 2 below.

      
 (a) (b) (c)

Figure 2. Rail geometries: (a) rectangular, (b) triangular, (c) half-cylindrical rail
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There are different options of possible armature designs, 
but the most common and most studied designs are the 
so-called C-type armatures and brush armatures [31,32]. 
For this reason C-type armature was chosen firstly for anal-
ysis. Secondly, a rectangular armature with the same volume 
as the C-type was designed to examine the volume effect. 
Lastly, a hollow-type armature which is between C-type 
and rectangular geometry as a similarity was designed to 
examine the surface area effect. The armature geometries 
have been shown in Figure 3 below.

There is a direct relationship between the performance, 
service life, reliability, the cost and the material of railgun. 
According to high Roche quality factor of materials; rail 
material is widely selected the copper alloy or composites, 
armature material is selected aluminum with the lower 
density [33]. Therefore, in this study material has been cho-
sen copper for rail and aluminum for the armature. 

In order to analyze effects of railgun geometry on the 
output force, all simulation parameters have been taken 
equal except geometrical variations.

Each rail has 100 cm length, 6 cm height and equal rail 
cross section (14.13 cm2) which is adjusted according to the 
half cylindrical rail radius (r = 3 cm). Each rail type has 
the same volume of 1413 cm3. According to these design 
parameters; the surface areas of the cylindrical, rectangular 
and triangular rails were 1570 cm2, 1700 cm2 and 1745 cm2 
respectively.

Railgun calibrations were designed equally; rail separa-
tions were fixed to 10 cm and each armature’s width was 

fixed to 10 cm for creating a conduction path between rails. 
Armature height was taken 6 cm that is equal to the rail 
height.

C type armature and rectangular armature types were 
designed with equal volumes (300 cm3), as hollow and rect-
angular types have equal surface area (280 cm2) to observe 
whether surface area and volume has an effect on the out-
put force. The detailed armature design properties were 
given below in Table 1.

Input Current and Distributions
Divinilbenzene Skin effect causes gaps on the material, 

these gaps may result in high-voltage discharge and abla-
tion on the surface of rails and armature [34]. Uniformity 
of the current distribution reduces the harmful effect of 
the skin effect effectively. Material and thickness of the 
railgun effect the current distribution and uniformity 
on the rails. Creating railgun material using thin layers 
increases the uniformity, reduces the harmful effects [35]. 
Based on advances in uniformity studies and since we 
want to examine only the effect of geometry variations 
on the output force, input current was adjusted 100 kA as 
a constant value along the rails. Because of the constant 
input current, output force and inductance gradient have 
the same effect on evaluating the railgun’s performance. 
(Eq. 9). Current density graph of Half-cylindrical rail - C 
type armature pair has been given in Figure 4 in below for 
an example.

       

 (a) (b) (c)

Figure 3. Armature geometries: (a) C-type, (b) rectangular, (c) hollow type armatures.

Table 1. Armature Properties [cm]

Armature Type Rail Intersection Height Surface Area Volume 
C type 5 6 348.5 300
Rectangular 5 6 280 300
Hollow 5 6 280 255
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Simulation Results
Ansys Maxwell software provides 2D and 3D low fre-

quency electric field simulation for analysis of electromag-
netic and electromechanical devices. 

Three rail geometries have been simulated three dif-
ferent armature types, totally nine different cases were 
observed. Armatures were moved parametrically along 
the rails and calculations have been carried out by using 
ANSYS software that based on 3-D Finite Element Method 
(FEM). FEM is a numerical technique that divides the mod-
eled geometry to the finite elements and solves the problem 
partially. In analysis, surface approximation based mesh 
structure was selected for Half-cylindrical rail and length 
based mesh structure was selected for other armature and 
rail geometries. Same amount of mesh cells was used for the 
same geometry in different simulations.

The inductance gradient has been calculated for each 
scenario, armature dependent graphics for each rail has 
been shown in Figure 5.

It is seen from Figure 5 that inductance gradient values 
directly dependent the rail-armature geometry. The output 
force of the triangular rail geometry is stable and does not 
fluctuate along the rail. The average of inductance gradient 
values along the rails are shown in Table 2.

Due to the skin effect, current tends to flow on the outer 
surfaces of the conductors during the early launch period. 
And in the following launch period, current is concentrated 
on the outer surface by the velocity skin effect (VSE) [31]. 
Since all rails’ inner surfaces where the current flows [34] to 
the armature are the same, the armature with a large surface 
area is expected to provide better inductance gradient. 

As seen in Table 2, C type armature has the highest 
inductance gradient for all cases. When the inductance gra-
dient is evaluated in terms of surface area; C-type armature 
with high surface area has given better inductance gradient 
in all situations. Rectangular and hollow type armatures 
with same surface area as each other but with a lower surface 
area than C type armature have given the same inductance 
gradient with each other but lower than C type armature. 

Between the C-type and rectangular type armatures 
with the same volume but different surface areas; C type 
with a high surface area has given higher inductance gra-
dient. Besides, between the rectangular and hollow type 
armatures with the same surface area but different volumes; 
they have given almost same inductance gradient. 

Also, it is seen that from Table 2, the same armature type 
gives different inductance gradient values in combination 
with different rail types, so we can say that not only the 
armature geometry, but also the rail geometry has effect on 
the inductance gradient.

AI Based Surrogate Modelling Techniques for the Output 
Force Prediction

Half-cylindrical rail - C type armature pair was selected 
for AI based surrogate modelling. This pair’s geometric 
variables are shown in Figure 6. This model was analyzed 
with the geometric values that are given in the Table 3. 
According to the variables in the Table 3, 486 combinations 
were created. Therefore, 486 independent simulations were 
carried out. Simulation results were saved to create train 
and test dataset for the surrogate models.

Artificial Intelligence based surrogate model is a con-
cept that allows the machine to learn from data and experi-
ences with using algorithms. These models gain the ability 
to prediction and classify by examining and learning the 
previous cases [36]. That’s why surrogate models can pre-
dict or classify new cases with very high accuracy and easily. 

The output force predictions of railguns whose dimen-
sions are not within the trained models’ dimension range 
will not be correct. For example, accurate predictions will 
not be obtained for rail lengths of more than 200 cm, less 
than 100 cm or armature height of more than 11 cm, less 
than 1 cm. Therefore, the output force predictions of the 
model will be within the limits of the trained data. If the 
user wants predictions in a wider or tight range, the train 
data should be created in this scope of range as well.

Since each algorithm doesn’t suitable for every prob-
lem and we do not know whether the dataset has linear or 
non-linear attribute, we trained our data with six different 

Figure 4. Current density graph of Half-cylindrical rail - C type armature pair.
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(a)

(b)

(c)

Figure 5. Inductance gradient graphs.

Table 2. Average inductance gradient values (uH/m).

Armature Types Half-cylindrical rail Rectangular rail Triangular rail
C type 0.68 0.67 0.68
Rectangular 0.57 0.65 0.62
Hollow 0.58 0.65 0.63
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techniques to determine the best surrogate model for our 
dataset.

Used techniques are;
• Artificial Neural Network (ANN) 
• Support Vector Regression (SVR)

• Random Forests
• XGBoost
• K Nearest Neighborhood (KNN)
• Multiple Linear Regression (MLR)
Dataset was divided by 0.25 test data and 0.75 train data. 

Some examples of the dataset are given in Table 4. After 
model tuning, surrogate models were trained and tested 
using Keras and Scikit-Learn frameworks on Python 3.7 
environment.

Model tuning parameters and best parameters are given 
in Table 5. When model tuning stage, it is difficult to manu-
ally change the hyper parameters. Therefore, GridSearchCV 
method was used. GridSearchCV is a sklearn’s library 
function. With this method, training was carried out by 
cross-matching with all hyperparameters that is wanted to 
be combine each other. Then the parameters which we get 
the best result were added to the best parameter column in 
the Table 5.

Figure 6. Railgun geometric variables.

 Table 3. Geometric variables and dataset inputs

Input Parameters Values [cm]
Rail Length (Rail_L) 100 - 150 - 200 
Rail Separation (Seperation) 5 -10 -15 
Cylinder Radius (Cyl_Rad) 1 - 3 - 5 
Armature Length (Arm_L) 1 - 3- 5
Armature Height (Arm_H) 1 - 3- 5 - 7 - 9 - 11
Total number of combinations 486

Table 4. Some examples of dataset

Armature 
Height [cm]

Armature 
Length[cm]

Cylinder 
Radius[cm]

Rail Length 
[cm]

Rail Separation 
[cm]

Output Force 
(kNewton)

7 1 5 100 5 2.23
11 5 3 150 15 4.08
9 3 5 200 10 2.84
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In all methods, input data was normalized using the 
minimum and maximum value of input data (as in equa-
tion 9). The normalized data was given as input to model 
for prediction. 

In order to evaluate model accuracy, there are many 
measurement techniques [37]. In this study root mean 
square error (RMSE) (as in equation 10) and symmetric 
mean absolute percentage error (SMAPE) (as in equation 
11) [37] were used for evaluation.

  (9)

  (10)

  (11)

Table 5. Model tuning parameters

Model Used parameters for model tuning with GridSearchCV method Best Parameters
ANN cross validation=5, 

estimator=MLPRegressor,
activation functions =’identity’, ‘logistic’, ‘tanh’, ‘relu’,’elu’, 
 ‘selu’, ‘exponantial’,
epochs=500 with early_stopping= True,
hidden_layer_sizes: 10, 15, 20, 30, (10, 15), (15, 20), (20, 20), (20, 30), (60, 90), 
(100, 20), (10, 15, 20), (15, 20, 30), (20, 20, 20), (50, 50, 50), (30, 90, 120), 
(120, 90, 30), (100, 50, 150), (300, 200, 150), 
dropout: 0.2, 0.3, 0.5, False, 
optimizer: ‘SGD’, ‘RMSprop’, ‘Adagrad’, ‘Adadelta’, ‘Adam’, ‘Ftrl’, ‘Adamax’, ‘Nadam’

Other parameters are used as default depend on the above parameters 

Activation func = ‘relu’,
hidden_layer_size = (300, 200, 
150), 
dropout = False,
optimizer = ‘Adam’ 

SVR cross validation=5, 
estimator= SVR (cache_size=200, coef0=0.0, degree=3, epsilon=0.1, 
gamma=’scale’, kernel=’rbf ’, max_iter=-1, shrinking=True, tol=0.001),
 ‘C’: [0.1, 0.4, 3, 5, 20, 10000, 20000, 100000]

Regularization parameter 
(C) = 10000

Random 
Forests

cross validation=5, 
estimator = RandomForestRegressor (bootstrap=True, ccp_alpha=0.0, 
criterion=’mse’, max_depth=None, max_features=’auto’, max_leaf_nodes=None, 
max_samples=None, min_impurity_decrease=0.0, min_impurity_split=None, 
min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0), 
‘max_depth’: [1, 2, 3, 4, 5, 6, 7, 8, 9], ‘max_features’: [2, 3, 4], ‘n_estimators’: [50, 
100, 200, 500, 1000, 2000]}

max_depth = 8,
max_features =4,
n_estimators = 2000

KNN cross validation=5, 
estimator = KNeighborsRegressor (algorithm=’auto’, leaf_size=30, 
metric=’minkowski’, metric_params=None,  n_neighbors=5, p=2, 
weights=’uniform’),
‘n_neighbors’: [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 
22, 23, 24, 25, 26, 27, 28, 29]

n_neighbors = 2

XGBoost cross validation=5, 
estimator = XGBRegressor (base_score=None, booster=None, 
colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, 
gamma=None, importance_type=’gain’, interaction_constraints=None, 
learning_rate=None, max_delta_step=None, max_depth=None, 
min_child_weight=None, missing=nan, monotone_constraints=None,
reg_lambda=None, scale_pos_weight=None, subsample=None, 
tree_method=None, validate_parameters=None, 
‘colsample_bytree’: [0.4, 0.5, 0.7, 0.9, 1],
‘learning_rate’: [0.001, 0.01, 0.1, 0.2, 0.5],
‘max_depth’: [2, 3, 4, 5, 8],
‘n_estimators’: [100, 200, 500, 1000]

colsample_bytree = 0.7
learning_rate = 0.1,
max_depth = 3,
n_estimators = 1000

MLR Method : Least Squares
LinearRegression (fit_intercept=True)
There are no parameters to tune

Method : Least Squares
LinearRegression 
(fit_intercept=True)
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Where y' normalized input, yj, ŷj are actual and pre-
dicted values and n is the number of input respectively.

Prediction results are shown in Table 6. Since ANN and 
Random Forests models’ outputs change with every model 
fitting, 10 independent fitting were carried out for these 

models and their averages were given with their standard 
deviations. 

Besides, to compare predictions of the best and the 
worst surrogate model, prediction graphs were given in 
Figure 7. Test data (0.25 of entire dataset) was used for tar-
get data in mentioned predictions.

OPTIMIZATION

PSO is one of the widely used traditional optimization 
algorithms, has been used in the Matlab environment for a 
selected cost function. For the last decades, Meta-Heuristic 
Algorithms (MHA) has been extensively used as an efficient 
solution method for finding optimal results in design opti-
mization process of many microwave devices [38-48]. Due 
to their unique heuristic search methods, these algorithms 
can be efficiently used in for solving non-differentiable or 
discontinuous, non-convex, and highly nonlinear problems 
that might not be solved with gradient based algorithms [5].

Figure 7. Prediction graphs.

Table 6. Prediction results

Model SMAPE (%) RMSE
Artificial Neural Network (ANN) average: 1.89

std.dev:0.05
average: 0.126
std.dev:0.001

Multiple Linear Regression 11.44 2.03
Support Vector Regression (SVR) 3.57 0.2
Random Forests average: 2.37

std.dev:0.06
average: 0.175
std.dev:0.003

K Nearest Neighborhood (KNN) 7.21 0.412
XGBoost 1.96 0.1347

Table 7. Optimization results

 Input Optimization with Partical Swarm Optimization(PSO) for 8.0 kNewton Output Force 

Iteration Population Inputs [cm] 
Arm_H Arm_L Cyl_Rad Rail_L Seperation

Optimization 
Result (kN)

Ansys Result 
(kN)

10 30 1 5 1 142 12.7 7.99 7.93
10 50 1 1 1 100 7 7.99 8.06
10 100 1 5 1 100 14.4 7.99 7.98
30 30 1 5 1 200 10.5 8 8.07
30 50 1 5 1 100 14.4 8 7.98
30 100 1 5 1 200 10.5 8 8.07
50 30 1 5 1 200 10.5 8 8.07
50 50 1 5 1 100 14.4 8 7.98
50 100 1 5 1 200 10.5 8 8.07
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The PSO algorithm tries to reach the optimum point by 
minimizing the cost function. Input parameters that cre-
ate the predicted force are continuous in the optimization 
process, it doesn’t have to be discrete as it is seen in Table 7. 
Used cost function is given in equation 12 below.

 (12)
 
In the dataset that we use for this model, railgun’s out-

put force range is between 1.62 kNewton and 9.54 kNew-
ton. For this reason, while performing PSO optimization, 
this range was not exceeded. This optimization is able to 
work in this range, but we just optimized only 8.0 kNewton 
for the sample in the study.

Required inputs for 8.0 kNewton required output force 
were found using PSO algorithm with 30, 50, 100 popu-
lations. Moreover, number of iterations were examined to 
see the convergency of the algorithm. Optimization results 
have been compared with Ansys outputs in Table 7. As 
seen in Table 7; at first, PSO reached 7.99 kNewton with 30 
population and 10 iterations, after this point increasing the 
population size did not change the result but increasing the 
iterations to 30 converged the result to 8.0 kNewton.

CONCLUSION

We simulated and analyzed the three rails geometry and 
the three types of armature to obtain high inductance gra-
dient for achieving higher output force and so higher pro-
jectile velocities. 

Simulation results show that C type armature provides 
best inductance gradient with all type of rails. Although the 
volume of the armature is not effective on the output force, 
it was seen that the surface area of the armature is effective. 
While C type armature with high surface area has given 
better performance in all situations, rectangular and hollow 
type armatures with low surface area has given lower and 
almost same performance as each other. 

Results validate that there is a dependency between the 
effectiveness of railgun and its geometry. After creating a 
dataset, railgun electromagnetic force can be predicted with 
the surrogate model algorithms easily, without the need to 
repeatedly draw and simulate.

Surrogate model prediction results show that Artificial 
Neural Network, XGBoosts and Random Forests methods 
are very successful for our dataset. They achieved railgun 
electromagnetic output force prediction with minimum 
SMAPE of 1.89%, 1.96% and 2.37% respectively.

Also, PSO showed that we can easily determine the rail-
gun geometry inputs to get the desired output force. In this 
way; quick, easy and low-cost analyses can be done before 
production.

Further analysis on the effects of hyper parameters was 
not studied in this work since the proposed method already 
achieved acceptable results. However, in future works for 
design problems with higher non-linearity characteristics 

between inputs and outputs alongside a wider range of vari-
ables, optimization and optimal determination of hyper-pa-
rameters for surrogate model is a must and will be taken 
into the consideration in future works of the authors. 
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