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ABSTRACT

The authors in this study, firstly, identified the rough convergence and presented the set 
of rough limit points of a function defined on discrete countable amenable semigroups 
(DCASG) with some characteristics such as convexity, closedness and boundedness. Then, 
they introduced rough Cauchy sequence and also, examined the relations between rough Cau-
chy sequences and rough convergence of functions defined on discrete countable amenable 
semigroups.
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INTRODUCTION

In semigroups, which have an important place in alge-
bra and number theory, the types of convergence (classical 
convergence, statistical convergence, ideal convergence, 
rough convergence, etc.) that form the basis of summability 
theory have not been sufficiently studied and are still not 
sufficiently addressed by scientists today. The concept of 
rough convergence, which was started to be studied for the 
first time in the 2000s in summability theory, has been han-
dled only in normed spaces and not much work has been 
done on this subject. One of the most important criticisms 
against the scientists working in the theory of summability 
in mathematics in recent years is that this theory has almost 
never been studied except for metric spaces, normed spaces 
and topological spaces. In this context, the concept of rough 
convergence in amenable semigroups, which we intend to 
study in this article, has not been studied in summability 

theory before, and we think that the study of this concept 
will bring an innovation that will bring a vision to the field 
and eliminate the important deficiencies in the literature 
mentioned above.

The first studies on the concept of amenable semigroup 
(or simply ASG) were carried out by Day [1]. After taht, a 
few mathematicians [2-4] studied the concepts of conver-
gence types in ASG. In [5] Douglas expanded the concept 
of arithmetic mean to ASG and obtained a characterization 
for almost convergence in ASG. Also in [6], Nuray and 
Rhoades gave the concepts of convergence and statistical 
convergence in ASG. And recently, some mathematicians 
studied on the new concepts in ASG (see, [7-10]).

Phu [11] introduced, firstly, the concepts of rough con-
vergence and rough Cauchy sequence in finite-dimensional 
normed spaces and he examined some characteristics of 
LIMrx such as convexity, closedness and boundedness. Phu 
[12,13] studied on rough convergence and some newly 
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characteristics of this concept. In recently a few mathema-
ticians [14,15] examined the rough convergence and rough 
statistical convergence types in different normed spaces.

The rough convergence of bounded but not conver-
gent sequences differs from the convergence of sequences. 
In addition, this concept has not been studied before in 
amenable semigroups. In this sense, it differs from stud-
ies in any metric space or normed space. The target of this 
article is to identify the rough convergence and present the 
set of rough limit points of a function defined on discrete 
countable amenable semigroups with some characteristics 
such as convexity, closedness and boundedness. Next, we 
aim to introduce the rough Cauchy sequence and also to 
examine the relationships between rough Cauchy sequences 
and rough convergence in DCASG.

Firstly, let us recall the some important basic definitions 
and concepts such as amenable semigroups, rough conver-
gence and rough Cauchy sequence that we will use in this 
study. (see, [1-6,11-13,16]).

After that, in this study let G be a DCASG with iden-
tity in which both left and right cancelation laws hold, and  
w(G) denotes the space of all real valued functions on G.

If we let G as a countable amenable group, so there exists 
a sequence {Sn} of finite subsets of G such that

i. ,
ii. ,
iii.  for all g ∈ G.

If a sequence consisting of finite subsets of G satisfies 
(i)-(iii), this sequence is called a Folner sequence (FS).

The sequence
Sn = {0,1,2,... n-1}

is a familiar FS leading to the classical Cesàro summa-
bility method.

Now, firstly, we give definitions of convergence and 
Cauchy sequence of function defined on DCASG.

If for every ε > 0 there exists a  such that 

for all m > k0 and g ∈ G\Sm, then the function f ∈ w(G) 
is convergent to t for any FS {Sn} of G.

If for every ε > 0 there exists a  such that 

for all  m > k0 and g, h ∈ G\Sm, then the function f ∈ 
w(G) is Cauchy sequence for any FS {Sn} of G.

 Now, for sequences of real numbers, we will note the 
definitions and properties of rough convergence with basic 
characteristics, which is an important topic of our study.

Let r ∈ ℝ and r ≥ 0. And also, with the norm ||.||, let ℝn 
(the real n-dimensional space). Suppose that a sequence x 
= (xn)  in ℝn.

The sequence (xn) is rough convergent (r-convergent) 
to ξ, on condition that

This convergence is indicated by

.
For the sequence x = (xn) , the rough limit set is showed 

by 

If we let
LIMrx ≠ ∅,

then the sequence x = (xn) is rough convergent and r is 
named the convergence degree of (xn). For r = 0, the rough 
convergence coincides with the usual convergence.

Now we will give the definition of rough Cauchy 
sequence in normed space, which is an important concept 
in our study.

For ℘ ≥ 0, if 

then the sequence (xn) is rough Cauchy sequence. Here 
℘ is roughness Cauchy degree of (xn). Shortly (xn) is called 
a ℘-Cauchy sequence. Also, ℘ is a Cauchy degree of (xn).

Lemma 1 [11] Let x = (xn)  be r-convergent, that is,

LIMrx ≠ ∅.

Then, for every ℘ ≥ 2r, (xn) is a ℘-Cauchy sequence. For 
the Cauchy degree, this bound cannot be generally reduced.

MAIN RESULTS

In summability theory, the relation between con-
vergence and boundedness of a sequence is important. 
Regarding the convergence of bounded sequences, the 
concept of rough convergence and its properties have been 
studied in recent years. In this sense, firstly, we give defini-
tion of convergence in rough sense and LIMr f of function 
defined on DCASG. 

Definition 1 For all g ∈ G\Sm, if 

  (1)

or equivalently on condition that

  (2)

for all g ∈ G\Sm, then the function f ∈ w(G) is rough 
convergent (r-convergent) to t for any FS {Sn} of G. This 
convergence is indicated by

With r as roughness degree, this convergence is the 
rough convergence. For r = 0, the rough convergence coin-
cides with the usual convergence. However, our main area 
of interest is situation r > 0. For this situation there are 
various reasons. For example, since an orginally conver-
gent function h ∈ w(G) (with h(g) → t) usually cannot be 
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determined (i.e., measured or calculated) fully, one has to 
do with an approximated function f ∈ w(G) satisfying 

for all g ∈ G\Sm, with r > 0 an upper bound of approxi-
mation error. Hence, f ∈ w(G) is no longer classical conver-
gent, but for all g ∈ G\Sm, 

implies that is r-convergent for any FS {Sn} of G in the 
sense of (1).

If (1) is valid, then t is an r-limit point of the function f 
∈ w(G), (for r > 0) usually no longer unique. Thus, we must 
think the so-named rough limit set (r-limit set) of the func-
tion f ∈ w(G) indicated by 

  (3)

For r = 0, if 
LIMr  f ≠ ∅,

then the function f ∈ w(G) is rough convergent for any 
FS {Sn} for G and r is named the convergence degree of f ∈ 
w(G).

First, let us translate some of the characteristics of clas-
sical convergence into rough convergence. The fact that a 
convergent sequence has unique limit is well known. With 
roughness degree r > 0, this property is not conserved for 
rough convergence but only has the following analogy.

Theorem 1 For any FS {Sn} of G, diam(LIMr f) ≤ 2r for 
a function f ∈ w(G). Generally, diam(LIMr f) has no smaller 
bound. 

Proof. 
We must show that 

  (4)

for f ∈ w(G). On the contrary, suppose that 

then, there exist
s, t ∈ LIMr f

satisfying 

For an arbitrary

,

from (1) and (3), there is an kε ∈ ℕ such that for m ≥ kε,

and

for all g ∈ G\Sm. This implies 

which conflicts with 

Therefore, (4) has to be true. For any FS {Sn} of G, let a 
convergent function f ∈ w(G) with

limf(g) = s.
Then, for 

it follows from 

for , (1) and (3) that 

Since 

this generally indicates that the upper bound 2r of the 
diameter of an rough limit set of f ∈ w(G) cannot no longer 
be reduced. 

Definition 2 For M > 0 and all g ∈ G, if 

then the function f ∈ w(G) is bounded for any FS {Sn} of G.
Now the following theorem will give the relation 

between the boundedness of a function f ∈ w(G) and LIMr f.
Theorem 2 The function f ∈ w(G) is bounded for any FS 

{Sn} of G iff
LIMr f ≠ ∅ for r ≥ 0. 

Proof. 
Let

,

then LIMp f contains the origin of G. On the contrary, 
suppose that

LIMr f ≠ ∅

for r ≥ 0, hence some ball with any radius greater than 
r contain all but finite elements f(g). Hence, f ∈ w(G) is 
bounded for any FS {Sn} of G. 

Now, some interesting geometrical and topological 
properties related to the concept of rough convergence will 
be given.

Theorem 3 For a function f ∈ w(G), LIMr f is closed (for 
all r ≥ 0). 

Proof. 
Let h ∈ w(G) be an arbitrary function in LIMr f which 

converges to some point s for any FS {Sn} of G. For each ε > 
0, by definition, there are an  such that for all g, k ∈ G\Sm 
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and

whenever . Consequently, if  

That means  s ∈ LIMr f, too. Hence, LIMr f is closed. 
Theorem 4 For the function f ∈ w(G) let

.

Then, 

Proof. 
From definition, for each ε > 0, r0, r1 > 0 there exists an 

kε such that for all m > kε implies 

and

for any FS {Sn} of G and all g ∈ G\Sm, which yields also 

Hence, we have 

Theorem 5 For any FS {Sn} of G, let a function f ∈ w(G). 
LIMr f is convex. 

Proof. 
In particular, if we let r = r0 = r1, then Theorem 4 yields 

immediately that LIMr f is convex. 
Theorem 6 For any FS {Sn} of G, if

 and ,

then
i.    and

ii.   
Proof. 
i. For any FS {Sn} of G, let

 and .

From definition 

and 

for all g ∈ G\Sm and all h ∈ G\Sk. Let

.

For every m > p, we have

 
and so 

for all g ∈ G\Sm.

ii. Proof is clear for c = 0. Suppose c ≠ 0. Since 

for each ε > 0 ∃kε ∈ ℕ such that for every m ≥ kε, we have 

for all g ∈ G\Sm. According to this, for all m ≥ kε we can 
write 

and so 

for all g ∈ G\Sm. 
Finally, by giving the definition of Cauchy sequence in 

rough sense with some properties, the relation between the 
rough convergence and Cauchy sequence in rough sense 
will be analysed.

Definition 3 For ℘ > 0 and all g, h ∈ G\Sm, if 

is hold then the function f ∈ w(G) for any FS {Sn} of G is 
rough Cauchy sequence with roughness degree ℘. Here, ℘ is 
named Cauchy degree for f ∈ w(G). 

Proposition 1 
i. Monotonicity: Suppose ℘' > ℘. For any FS {Sn} of G, 

if ℘ is a Cauchy degree of a given function f ∈ w(G) 
so ℘' is a Cauchy degree of f ∈ w(G), too.

ii. Boundedness: The function f ∈ w(G), for any FS {Sn} 
of G, is bounded iff there exists a ℘ ≥ 0 such that f ∈ 
w(G) is a ℘-Cauchy. 

Theorem 7 For any FS {Sn} of G, the function f ∈ w(G) 
is rough convergent (i.e., LIMr f ≠ ∅) iff for every ℘ ≥ 2r, f ∈ 
w(G) is a ℘-Cauchy sequence for any FS {Sn} of G. For the 
Cauchy degree, this bound cannot be generally reduced. 

Proof. 
For any FS {Sn} of G, let t be any point in LIMr f. Then, 

for all ε > 0 there exists an kε ∈ ℕ such that for all m ≥ kε 
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and

for all g, h ∈ G\Sm. Therefore, for all m ≥ kε we have

for all g, h ∈ G\Sm. Hence for ℘ = 2r, f ∈ w(G) is a 
℘-Cauchy sequence for any FS {Sn} of G. By Proposition 1, 
every ℘ > 2r is also a Cauchy degree of f ∈ w(G). 

Let f ∈ w(G) be a Cauchy sequence in rough sense for 
any FS {Sn} of G. Since f ∈ w(G) be a Cauchy sequence in 
rough sense, then for ℘ > 0, f is bounded and as a result f 
is r-convergent for any FS {Sn} of G. Clearly for the func-
tion f, generally this bound 2r can not be reduced (see 
Lemma 1).

CONCLUSION

We defined the rough convergence and the set of rough 
limit points of a sequence of functions defined on discrete 
countable amenable semigroups with some properties 
such as boundedness, closedness and convexity. Then, we 
introduced rough Cauchy sequence and also, examined 
the relations between rough Cauchy sequences and rough 
convergence of functions defined on discrete countable 
amenable semigroups. These concepts can also be studied 
for statistical convergence and ideal convergence of func-
tions defined on discrete countable amenable semigroups 
in the future. Also, these convergence types of of func-
tions defined on discrete countable amenable semigroups 
be studied for double sequences.
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