
Sigma Journal of Engineering and Natural Sciences, Vol. 42, No. 3, pp. XX-XX, June, 2024  
Yildiz Technical University Press, Istanbul, Turkey                                                                                                                   
 

 
This paper was recommended for publication in revised form by Regional Editor Ahmet Selim Dalkılıç 
1 Department of Statistics, Faculty of Science, Gazi University, Ankara, Turkey 
2 Department of Management Information Systems, Faculty of Economics and Administrative Sciences, Aksaray University, Aksaray, 
Turkey 
*E-mail address: emrekocak@gazi.edu.tr  
OrcMd Md: https://orcMd.org/0000-0001-6686-9671  Emre Koçak, 0000-0002-6417-8946 Volkan Soner Özsoy,  
0000-0002-2888-9580 H. Hasan Örkcü 
Manuscript Received 21 September 2022, Accepted 29 November 2022 
 

 
 

Modeling of wind speed using differential evolution: Istanbul case 
 

Emre KOÇAK 1,*, Volkan Soner ÖZSOY 2, H. Hasan ÖRKCÜ 1 
 

 
ABSTRACT  

Over the years, increasing energy demands with the growth of the population and the development of 
technology have caused more fossil fuel consumption. Besides, environmental pollution and climate change, which 
are vital importance for humanity, are encountered. In order to avoid these dangerous situations, people have started 
to turn to clean and renewable energy sources such as wind energy. Due to the rapid development of such situations, it 
is very important to obtain information on the determination of the regions where wind energy facility will be installed 
and the characteristics of the wind speed. Wind power estimation can be made through various statistical distributions 
used to explain the characteristics of wind speed data. Rayleigh, Weibull, Nakagami, Gamma, Logistic, Loglogistic, 
Lognormal and Burr Type XII distributions, which are frequently used in the wind energy literature, are discussed in 
this study and the performances of the specified distributions are compared through the data sets obtained from the 
stations in Istanbul from Marmara region. One of the most preferred methods in estimation problems is the maximum 
likelihood method, and a differential evolution algorithm is proposed for ML estimation of the parameters of the 
distributions examined in the study. In addition, various model selection criteria are also utilized to determine the 
distribution that best fits the wind speed data. 
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INTRODUCTION  

Wind energy, one of the most substantial renewable energy sources, is developing rapidly. According to 
preliminary wind power statistics published by the World Wind Energy Association (WWEA), the total capacity of all 
wind farms worldwide reached 744 gigawatts, which is sufficient to generate 7% of the world’s electricity demand [1]. 
To increase this percentage, it is very important to have information such as determining the regions where wind energy 
will be used maximum and estimating wind speeds and characteristics. The accurate modeling of the wind regime 
based on its statistical properties such as humidity, temperature, solar radiation, pressure, and wind speed is very 
important for exploiting the existing potential in the region [2].  

Statistical distributions are used to reveal the characteristics of the wind speed data used to determine the wind 
energy potential of a region. Wind power estimation can be made with the parameters of these distributions. Therefore, 
it is very important to choose an appropriate distribution and to make an accurate parameter estimation in order to 
accurately determine the wind energy potential of a region [3]. There are different distributions that are frequently used 
in the wind energy literature; thus, it is not possible to cite all of them here. The most important of these is undoubtedly 
the Weibull Distribution, due to its flexible and easily computable mathematical form [4–7]. Rayleigh Distribution, a 
special case of the Weibull distribution, is also widely used in this literature [8–14]. Furthermore, the wind speed data 
are modelled by using other different statistical distributions to find the characteristics of the data. In the related 
literature, the most popular distributions to model the wind speed data are Nakagami, Gamma, Logistic, Loglogistic, 
Lognormal, and Burr Type XII distributions [8,12,14–20]. 

Although there are many studies in the literature that make wind speed modeling using these distributions, 
this study focuses on Turkey’s wind energy potential. There are several studies that have been conducted with this aim 
in Turkey. Dursun and Alboyaci [21] analyzed wind energy characteristics and potential of four different locations in 
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Bandırma, Gonen, Ayvalık, and Dursunbey from Balıkesir region. Ucar and Balo [22] explored the potential for wind 
energy of 12 locations in the south regions of Turkey. Ozerdem and Turkeli [23] investigated the wind speed 
characteristics of Izmir located on Turkey’s Aegean coast. Ilkilic and Nursoy [24] examined the potential of wind 
energy in Turkey and its development in wind energy systems. To do this, they investigated the wind speed 
characteristics of several locations in Turkey. Arslanet al. [25] analyzed wind speed data collected from the Bilecik, 
Bursa, Eskişehir and Sakarya provinces of Turkey located in the Marmara and central Anatolia regions of Turkey. 
According to the data by the Turkish National Committee of the World Energy Council, the highest mean wind speed 
is 3.29 (m/s) in the Marmara region while the lowest mean wind speed is 2.12 (m/s) in the East Anatolian region [26]. 
In addition, there is a major potential of Marmara regions because the wind speed is above 7 (m/s) based on Turkish 
Wind Potential Atlas in Turkey [27]. However, in none of the previous studies, data from the Marmara region, one of 
Turkey's most energy-consuming and wind energy potential regions, was used for the whole of Istanbul. In this study, 
data were obtained from stations positioned to cover all regions of Istanbul. Therefore, this study will contribute to the 
literature as the first study using such a comprehensive data set. In addition, another purpose of this research is to 
contribute to the existing literature by performing an in-depth analysis of a wind resource by investigating different 
statistical distributions using the differential evolution algorithm. 

The remainder of the paper is organized as follows. Section 2 includes a brief description of the estimation 
method and evaluation criteria. In Section 3, descriptions of some distributions are briefly provided. Section 4 consists 
of the results of the analysis and discussion are presented. The paper is ended with some concluding remarks. 
 
MODELING METHODOLOGY 

Modeling of wind data consists of four steps. The first step is the determination of appropriate statistical 
distributions. The second step is the selection of the appropriate estimation method to make an accurate parameter 
estimation to accurately determine the wind energy potential of a region. The third step is to determine the best 
optimization algorithm to accurately obtain parameter estimates. The last step is the evaluation of the obtained 
parameters with objective evaluation criteria. 

 
THE SUITABLE DISTRIBUTIONS FOR WIND SPEED 

Statistical distributions play a significant part in modeling wind speed appropriately; therefore, many 
distributions have been used in the literature. However, wind speed may show different distributions according to 
location and time. Considering the distributions used in the literature, summary about the distributions used in this 
study is given Table 1. In this table, f(v) represents the probability of wind speed v (m/s). Moreover, 𝜎, 𝜇, 𝑐 and 𝑘 are 
scale, location, 1st shape and 2nd shape parameters, respectively. And exp(⋅) is the exponential function.  
 
MAXIMUM LIKELIHOOD ESTIMATION METHOD 
 There are many estimation methods such as the maximum likelihood estimation (MLE), the maximum 
product spacing (MPS), and the least-squares (LS) methods in the literature. There are many studies in the literature 
on their comparison [28,29]. Considering the related literature, ML, which is one of the most important estimation 
methods, was preferred in this study. Therefore, other estimation methods were ignored. In this subsection, a brief 
description of ML for estimating unknown parameters of the distributions is given. 
Let 𝑥!, 𝑥", .		.		.		 , 𝑥#		be a random sample of size 𝑛 drawn at random, from a probability density function (pdf), 𝑓$(𝑥; 𝜃), 
of unknown parameters, the likelihood function is as follows 𝐿 = ∏ 𝑓$!(𝑥%; 𝜃)

#
%&! , where 𝜃 is a vector of size 𝑚 

representing the unknown parameters, i.e. 𝜃 = (𝜃!, . . . , 𝜃'). In this study, the aim was to find a vector, say θ, that 
maximizes the so-called likelihood function. To maximize L, we may equivalently use its logarithm, say ln L. This 
maximization problem can be difficult for some distributions. Therefore, heuristic methods are needed to solve such 
problems. 
 
 
 

Table 1. The names, parameter numbers and probability density functions of the distributions 
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DIFFERENTIAL EVOLUTION ALGORITHM 

There are many studies in the literature comparing heuristic methods [30–32]. However, there are limited 
studies on the comparison of different heuristics in the parameter estimation problem. A study compared 4 different 
heuristic optimization methods, Genetic Algorithms (GA), Differential Evolution (DE), Particle Swarm Optimization 
(PSO), and Simulated Annealing (SA) to estimate the parameters of seven different distributions [33]. DE algorithm 
was preferred in this study since DE has a better performance than other heuristics in terms of bias values of parameter 
estimations. 

DE algorithm, first introduced by Storn and Price [34], is a population-based algorithm. DE algorithm has 
become one of the most popular heuristic methods thanks to its strong global search capability and fast convergence 
speed. While The DE algorithm uses three operators, crossover, mutation, and selection, it also has important 
parameters, population size (P), crossover rate (𝐶:), and mutation factor (F). With the help of these parameters, it 
exhibits a remarkable performance in terms of accuracy, computation speed and robustness while optimizing different 
objective functions [35]. The pseudocode of the DE algorithm by Özsoy et al. [33] is given in Table 2.  
 

Table 2. Pseudocode of DE algorithm 
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Initialize the DE parameters F (Mutation factor), 𝐶: (Crossover rate), P (Population size) 
Initialize the population, 𝑥̅; 
Calculate cost of initial population, 𝑓(𝑥̅;) 
do 
     for i=1:P 
          Select random individuals 𝑟!, 𝑟", 𝑟<, 𝑟! ≠ 𝑟" ≠ 𝑟< ≠ 𝑖 ∈ [0, 𝑃] 
          Generate random parameter index, 𝑗:=#> ∈ [0, 𝐷] 
          for j=1:D 
               if	(𝑟𝑎𝑛𝑑[0,1] ≤ 𝐶: 	⋁ 𝑗 = 𝑗:=#>) 
                    Calculate 𝑢?,% = 𝑥?,:$ + 𝐹U𝑥?,:% − 𝑥?,:"W 
                    Bring 𝑢?,% into parameter bound 𝑥%,'%# < 𝑢?,% < 𝑥%,'=* 
               else 
                    Set 𝑢?,% = 𝑥?,% 
               end 
          end 
     end 
     for i=1:P 
          Calculate cost of trial vector, 𝑓(𝑢Y%) 
          Calculate cost of rival vector, 𝑓(𝑥̅%) 
          if 𝑓(𝑢Y%) ≥ 𝑓(𝑥̅%) 
               Replace 𝑥̅% with 𝑢Y% 
               Update cost vector 
          end 
     end 
while (the termination criteria are met) 

 
MODEL EVALUATION CRITERIA 

There are some comparison criteria, such as root mean square error (RMSE), coefficient of determination 
(R"), Akaike Information Criterion (AIC), Bayesian information criterion (BIC) and Kolmogorov–Smirnov (KS) test 
to determine the probability distribution that best fits the wind speed data. The formulas for the criteria discussed in 
this study are given in Table 3. 
 In Table 3, 𝐹\%, is the estimated cdf for the iAB ordered observation, 𝐹\ = (1 𝑛⁄ ) ∑ 𝐹\%#

%&! ,  𝑛 is the sample size, 
and 𝑝 is the number of estimated parameters. High R" values and, low values of RMSE, AIC, BIC and KS indicate 
that the distribution or model performs better. 
 
ANALYSIS AND RESULTS 
WIND SPEED DATA 
 In this study, the city of Istanbul is chosen as the location because it has a very rough terrain and is a city built 
on the two extremes that serve as a bridge between the continents of Europe and Asia, and at the point where they are 
closest to each other. Istanbul is one of the highest potential wind energy locations in Turkey. Figure 1 shows the relief 
map of the city of Istanbul [36]. Wind speed data are collected seasonally and annually from the 2020 open data portal 
of the Istanbul metropolitan municipality, which consists of 79 different observation stations. Wind speed data were 
collected between January 2020 and January 2021. 
 
 

Table 3. The formulas of criteria for model evaluation 
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Akaike Information Criterion  𝐴𝐼𝐶 = −2 ln 𝐿 + 2𝑝 

Bayesian information criterion 𝐵𝐼𝐶 = −2 ln 𝐿 + 𝑝 ln 𝑛 

Kolmogorov–Smirnov  𝐾𝑆 = max
!C%C#

r𝐹\% −
𝑖

𝑛 + 1r 

 

 
 

Figure 1. The relief map of the city of Istanbul 
 

Table 4 demonstrates descriptive statistics of the wind speed data for Istanbul including number of 
observations, mean, variance, skewness, kurtosis, minimum and maximum in terms of seasonally and annually. 
According to descriptive statistics, it is seen that while spring has the highest average wind speed, autumn has the 
lowest speed. The wind speeds for summer are more homogeneous; therefore, it has the smallest variance in terms of 
the dispersion of the wind speeds. Table 4 also shows that wind speeds for spring has the biggest skewness value while 
for winter it has the biggest kurtosis value among other seasons. 

 
Table 4. Descriptive statistics of wind speed data (m/s) 
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 n Mean Variance Skewness Kurtosis Maximum 

Autumn 147954 2.6371 4.1896 1.6937 7.2321 22.3340 

Winter 134119 3.0606 5.5372 1.8369 8.3250 23.7450 

Spring 110927 3.0748 5.8304 1.8774 8.2572 24.5000 

Summer 132235 2.7689 3.5978 1.4686 6.3359 16.1567 

Annual 525235 2.8709 4.7672 1.8024 8.1957 24.5000 
 
RESULTS 

First and foremost, the ML estimates of the interest parameters for the recorded wind speed datasets in İstanbul 
were obtained by the differential evolution algorithm, and the modeling performances of the Rayleigh, Weibull, 
Nakagami, Gamma, Logistic, Loglogistic, Lognormal and Burr Type XII distributions were compared. Estimated 
values of parameters obtained by DE algorithm are presented seasonally and annually in Table 5. 
 

Table 5. Parameter estimates of wind speed distributions 
 

Distributions Parameters Autumn Winter Spring Summer Annual 
Rayleigh 𝜎 2.3605 2.7299 2.7645 2.3732 2.5504 

Weibull 𝜎 2.8656 3.3556 3.3590 3.0723 3.1453 
𝑐 1.3255 1.3736 1.3459 1.5142 1.3764 

Nakagami 𝜎 11.1441 14.9044 15.2850 11.2644 13.0091 
𝑐 0.5384 0.5731 0.5550 0.6621 0.5727 

Gamma 𝜎 1.6638 1.7408 1.8135 1.3714 1.6543 
𝑐 1.5850 1.7582 1.6955 2.0191 1.7354 

Logistic 𝜎 1.0545 1.1974 1.2153 1.0044 1.1154 
𝜇 2.3639 2.7399 2.7389 2.5468 2.5818 

Loglogistic 𝜎 0.5032 0.4697 0.4790 0.4359 0.4740 
𝜇 0.7131 0.8711 0.8682 0.8183 0.8130 

Lognormal 𝜎 1.0175 0.9135 0.9349 0.8590 0.9386 
𝜇 0.6222 0.8080 0.8003 0.7508 0.7396 

Burr 
Type XII 

𝜎 11.3089 6.8551 6.9065 8.0512 7.6553 
𝑐 1.4371 1.6165 1.5878 1.6896 1.5750 
𝑘 7.9197 3.8872 3.8542 5.8163 4.7781 

 
In order to determine the modeling performance for the wind speed data of the examined distributions, the 

model evaluation criteria were used, the formulas of which were given above, and the results of the criteria are given 
in Table 6. It is obvious from Table 6 that Burr Type XII distribution gives convincing results seasonally and annually 
in terms of all model evaluation criteria. For the autumn season, the Gamma distribution shows a better performance 
in terms of RMSE and R" criteria, while the Weibull distribution shows a better performance in terms of AIC, BIC, 
and KS criteria among the distributions other than the Burr distribution. According to RMSE and R" criteria, 
Loglogistic distribution demonstrates a higher performance compared to the distributions outside the Burr distribution 
for winter and spring seasons. However, the best performance belongs to the Gamma distribution in terms of other 
comparison criteria. Considering the summer season, the best distribution after Burr distribution is Gamma distribution 
according to RMSE, R" and KS criteria, and Weibull distribution according to AIC and BIC criteria. When the data is 
investigated annually, Gamma distribution is found to be the best distribution in terms of all the criteria, except the 
Burr distribution. Except for the AIC and BIC criteria in winter and summer seasons, the Rayleigh distribution has the 
worst performance in other times and criteria. 
 

Table 6. Model evalaution criteria values for the wind speed distributions 
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Distributions Criteria Autumn Winter Spring Summer Annual 

Rayleigh 

RMSE 0.11438 0.11288 0.11808 0.07738 0.10778 
R2 0.87048 0.87078 0.85778 0.93738 0.88178 
AIC 620097.12068 590254.75257 495506.14778 523040.90376 2240516.61118 
BIC 620107.02528 590264.55907 495515.76438 523050.69606 2240527.78278 
KS 0.16908 0.16818 0.17258 0.11868 0.15988 

Weibull 

RMSE 0.01894 0.02244 0.02304 0.01724 0.02074 
R2 0.99534 0.99344 0.99294 0.99624 0.99434 
AIC 565535.11172 548179.70663 456327.72053 502131.93002 2079278.24273 
BIC 565554.92112 548199.31963 456346.95383 502151.51462 2079300.58593 
KS 0.03192 0.03364 0.03504 0.02903 0.03284 

Nakagami 

RMSE 0.03455 0.04056 0.04195 0.02835 0.03705 
R2 0.98395 0.97785 0.97595 0.98955 0.98145 
AIC 570901.91804 555311.55045 462662.71385 505439.17394 2103318.13844 
BIC 570921.72744 555331.16335 462681.94715 505458.75864 2103340.48164 
KS 0.05695 0.06626 0.06976 0.04465 0.06005 

Gamma 

RMSE 0.01702 0.01383 0.01543 0.01222 0.01462 
R2 0.99622 0.99763 0.99693 0.99812 0.99722 
AIC 566244.40513 546620.83112 455131.87882 502430.11793 2076891.10762 
BIC 566264.21443 546640.44412 455151.11212 502449.70253 2076913.45082 
KS 0.03273 0.02362 0.02322 0.02402 0.02662 

Logistic 

RMSE 0.04446 0.04577 0.04507 0.03856 0.04336 
R2 0.97516 0.97357 0.97406 0.98196 0.97636 
AIC 613465.22007 590935.61368 492957.72237 532811.13277 2237954.30667 
BIC 613485.02937 590955.22668 492976.95557 532830.71747 2237976.64987 
KS 0.09617 0.09217 0.09507 0.07427 0.08997 

Loglogistic 

RMSE 0.01783 0.01242 0.01442 0.01543 0.01503 
R2 0.99603 0.99812 0.99742 0.99713 0.99723 
AIC 579299.01025 553524.00014 460954.15984 511598.09505 2110707.48475 
BIC 579318.81965 553543.61304 460973.39304 511617.67965 2110729.82795 
KS 0.03774 0.02833 0.02663 0.03594 0.03223 

Lognormal 

RMSE 0.05457 0.04025 0.04326 0.04527 0.04677 
R2 0.95417 0.97676 0.97307 0.97007 0.96757 
AIC 609134.73616 573097.29546 477413.59676 533645.20018 2200982.03006 
BIC 609154.54546 573116.90836 477432.82996 533664.78488 2201004.37326 
KS 0.08766 0.06505 0.06955 0.07156 0.07476 

Burr Type XII 

RMSE 0.01261 0.00841 0.00861 0.00821 0.00931 
R2 0.99801 0.99911 0.99911 0.99921 0.99891 
AIC 564649.18391 545301.93981 453897.57801 500697.94411 2070949.01331 
BIC 564678.89791 545331.35931 453926.42791 500727.32111 2070982.52811 
KS 0.02421 0.01601 0.01511 0.01671 0.01821 
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 See the histograms given in Figure 2-6 for the seasonal and annual wind speed data obtained in Istanbul 
respectively and the corresponding estimated all distribution curves. 
 

 
 

Figure 2. The histograms and fitted densities for the autumn wind speed data 
 

 
 

Figure 3. The histograms and fitted densities for the winter wind speed data 
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Figure 4. The histograms and fitted densities for the spring wind speed data 
 

 
 

Figure 5. The histograms and fitted densities for the summer wind speed data 
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Figure 6. The histograms and fitted densities for the annual wind speed data 
 
CONCLUSION 

Determining the appropriate wind speed distribution is extremely important for the assessment of wind energy 
potential. Although many distributions have been used in the literature to determine the wind distribution, wind speed 
may show different distributions according to place and time. In this study, eight different distributions, namely 
Rayleigh, Weibull, Nakagami, Gamma, Logistic, Loglogistic, Lognormal and Burr Type XII were used to determine 
the distribution of seasonal and annual wind speeds in the province of Istanbul. To the best of our knowledge, a data 
of this size has been used for the first time in determining the wind speed distribution of Istanbul. 
Considering the wind speeds obtained from 79 different observation stations operating in the province of Istanbul in 
this study, it can be seen that the distribution that best models seasonal and annual wind speed is the Burr Type XII 
distribution. In contrast, the Rayleigh distribution has the worst performance for modeling wind speed in most cases. 
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