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ABSTRACT  
Linear-dependent variables are typically modeled through the Spearman correlation, a classical statistical 

technique. In reality, the dependence between the data cannot always be linear. The copula approach has often been a 
popular tool for modeling dependent data in these cases. Archimedean copulas, which can model mostly symmetrical 
data, are also among the copula families used for this purpose. Recently, asymmetric copula models have been 
developed to model unsymmetrical-dependent variables. The dependency measure is calculated using directional 
dependency coefficients instead of the Spearman correlation when the data is asymmetrical. Appropriate asymmetric 
model selection is made with the help of these measurements. 

In the study, first, dependency parameters corresponding to different Spearman coefficients were obtained for 
Archimedean copula families, and asymmetric copulas were derived from them. Then, simulation data were obtained 
for these parameter values to determine the effect of asymmetry on data modeling, and directional dependency 
measures were found. In addition, the study methodology was applied to automobile bodily injury claims data, which 
is a real dataset with an asymmetric structure. Here, we used two different asymmetric models: the Khoudraji copula 
KC models, which are created by multiplying independent and Archimedean copulas, and the LCC models, which are 
linear-convex combinations of Archimedean copulas. Finally, the appropriate model was selected according to the 
directional dependency coefficients, and the results were interpreted. 

 
Keywords: Asymmetric Copula; Archimedean Copula; Directional Dependence; Automobile Bodily Injury 
Claims Data 

 
INTRODUCTION  

Determining the dependency structure of variables is important in many areas of research, including statistics, 
finance, engineering, and actuaries. In deciding this dependence structure, the Spearman correlation, which is one of 
the standard statistical methods, is used. This method can model variables with a normal distribution, i.e., linear 
dependent variables. However, the dependency coefficient may often differ in the real data's lower and upper tail 
regions. It may also be affected by whether the data are symmetrical or asymmetrical. For situations where the 
correlation becomes complex, known statistical models are insufficient. Analytical methods have recently been 
developed for this purpose. In this sense, copulas, first proposed by Sklar [1], are popular methods used to model 
dependent variables. 

Copulas are preferred because they allow for more realistic data modeling and are capable of generating joint 
distributions for statistical modeling of dependent variables without restrictions on the marginal distributions of each 
variable. Nelsen [2], Salvadori and De Michele [3], Genest and Favre [4], Joe [5], Durante and Sempi [6], and Hong 
et al. [7] showed statistical behavior of copulas as dependent variables. 

Moreover, there are studies on the use of copulas in fields such as hydrology [8-10], earthquakes [11], finance 
[12-15], wind [16], ocean [17, 18], climate science [19], and bioinformatics [20, 21]. 
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On the other hand, most parametric copula models, such as Archimedean copulas, can only be applied to data 
with symmetric dependence. Some authors have highlighted this shortcoming of existing copula approaches in their 
studies, such as Genest and Favre [4], Kim et al. [20], and Sungur [22,23]. Indeed, most data have an asymmetric 
dependence structure. In such data, ignoring asymmetry affects the identification of the dependence structure and 
subsequent calculations. Some authors such as [24-28] have recently contributed to the development of asymmetric 
copula construction to eliminate this deficiency. These include various techniques used in multivariate data modeling 
to capture asymmetric dependence. 

Our study focuses on the asymmetric Khoudraji copula (KC) and linear convex combination (LCC) copula 
families, which can be easily generated using Archimedean copulas. Khoudraji copulas were first developed by 
Khoudraji [29] and consist of Archimedean copula families and independent (product) copula families. Subsequently, 
authors such as Nelsen [2], Rodríguez-Lallena and Ubeda-Flores [24], Klement and Mesiar [25], Liebscher [30], 
Durante [31], Quessy and Kortbi [32], Siburg et al. [33], and Bezak et al. [34] developed asymmetric copulas. In 
addition, Zhang et al. [35] examined several asymmetric copula functions capable of modeling both linear and 
nonlinear asymmetric dependence structures using Khoudraji copulas between ocean variables. Moreover, Zhang et 
al. [36] demonstrated the advantages of asymmetric copulas with Khoudraji copulas and compared them with 
traditional copula approaches for modeling site soil data. Besides, Lin et al. [37], Bai et al. [38], and Huang and Dong 
[39] compared the performance of symmetric copula, Khourdaji copula, and traditional conditional modeling methods 
on bivariate wave data. LCC copulas are also constructed from Archimedean copulas and their linear convex 
combinations. Authors such as Ma and Zhang [18], Siburg [33], and Wu [40] have investigated the asymmetric 
properties of these asymmetric families. Recently, some authors ([12], [15], [41]) have also shown that asymmetric 
copulas provide more realistic and accurate results when modeling asymmetric multivariate data. 

While model selection with classical models considers well-known selection criteria such as AIC, KS Cramer-
von Mises, and MSE, model selection with asymmetric models uses directional dependence measures calculated based 
on conditional copula functions. Model selection with directional dependence of copulas is a statistical approach that 
involves choosing the most appropriate copula function to describe the dependency structure between two or more 
random variables. The importance of this study is the selection of the most appropriate model with the directional 
dependency method, which considers the direction of the relationship, among the asymmetric models created with 
Khoudraji copulas. The advantage of this method is that it allows more accurate and flexible modeling of the 
dependency structures of asymmetric data. 

This study analyzed data on "automobile bodily injury claims" from CASdataset [42]. Frees and Wang [43] 
modeled these data using the classical copula approach. However, since the data are both dependent and asymmetric, 
it is necessary to work with asymmetric-dependent models. To this end, unlike the previous study, we apply the 
asymmetric copula approach to this dataset and determine appropriate models according to directional dependence 
measures. Thus, this modeling improves the risk assessment and decision-making process by providing valuable 
information and tools for insurers, researchers, and other stakeholders in the auto insurance industry. 

The remainder of this article is organized as follows. The first section introduces copulas and asymmetric 
copula models. The Archimedean copulas used in this study and the Khoudraji asymmetric copula models derived 
from them are given. The parameter values corresponding to Spearman correlations were found. The symmetric and 
asymmetric measurements were analyzed, and the results obtained by simulation for these parameters are presented in 
tables and graphs. In the next section, one-parameter and two-parameter KCC and LCC models are applied to 
"Automobile Bodily Injury Claims" data, and model selection is performed according to directional dependence 
measures. The results are discussed in the last section. 

 
COPULA THEORY AND MEASURES OF ASYMMETRY  
Definition of the Copula 
A copula is a mathematical function that describes the dependence structure between multiple variables, regardless of 
their marginal distributions. The idea behind copulas is to separate the modeling of the dependencies between variables 
from the modeling of the marginal distributions of individual variables. This allows for more flexibility in modeling 
complex dependencies, especially when the underlying data do not follow a normal distribution. Copulas have been 
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widely used in various fields, such as finance, economics, and actuarial science, to model multivariate data and estimate 
the risk of various financial instruments.  
The Sklar theorem, first introduced by economist Sklar [1], plays an important role in copula theory, which is a 
powerful tool for modeling the dependencies between variables in multivariate data. It is defined as 

Sklar's Theorem: Let H be an n-dimensional distribution function with marginal distributions 𝐹!,…,𝐹". An n-
dimensional copula C for all 𝑥	 ∈ 	𝑅" is given by 

 
𝐻(𝑥!, … , 𝑥") = 𝐶(𝐹!(𝑥!), … , 𝐹"(𝑥"))																																																						(1)		

	
   If 𝐹!,…,𝐹" are continuous, then C is unique. Conversely, if 𝐹!,…,𝐹"  are marginal distribution functions and 
C is a copula, a function 𝐻(𝑥!, … , 𝑥") with marginal distributions 𝐹!,…,𝐹"  is defined by Eq. (1).  

The theorem states that any multivariate distribution function can be represented as the copula of its marginal 
distribution functions and a uniformly distributed random variable on the unit hypercube. This result allows for flexible 
modeling of the dependence structure between different variables and has important applications in fields such as 
finance, insurance, and actuarial science. 

A unique bivariate copula 𝐶: [0, 1]# → [0, 1] is defined as 𝐶(𝑢, 𝑣) = 𝐹$%(𝐹$&!
	(𝑢), 𝐹%&!(𝑣)), where 𝐹$&!

	(𝑢) 
and 𝐹%&!(𝑣) are the inverse distribution functions of 𝑋 and 𝑌, respectively.  
 
Asymmetric Copula Models 

Different types of copulas have been proposed in the literature, such as Archimedean copulas, elliptical 
copulas, extreme-value copulas, vine copulas, and empirical copulas. Many commonly used copula families, such as 
the Gaussian, Clayton, Gumbel, and Frank copulas, have the property of exchangeability, which means that the copula 
function is symmetric with respect to its arguments. This means that 𝐶(𝑢, 𝑣) 	= 	𝐶(𝑣, 𝑢) for all 𝑢, 𝑣	 ∈ 	 [0,1]. This 
property is desirable because it allows a simpler and more intuitive interpretation of the dependence structure. 
However, this can be a limitation if the data have asymmetric dependence. 

To eliminate this deficiency, recently, asymmetric copulas have been constructed in various ways. One simple 
way to construct an asymmetric copula is by using the rotation method. In this method, using a rotation matrix R, the 
standard copula is transformed into a new copula with a different dependency structure. The rotation is then defined 
as 𝐶((𝑢, 𝑣) 	= 	𝐶(𝑅 ∗ (𝑢, 𝑣)) where 𝐶( is the rotated copula and 𝑅 ∗ (𝑢, 𝑣) is the rotation of the standard coordinates.  

Ma and Zhang [18], and Zhang et al. [35] have described and implemented other methods of creating an 
asymmetric copula. This study focuses on Khoudraji copulas (KC), developed by multiplying copulas, and LCC 
copulas constructed using their linear convex combinations. KC and LCC copulas have been widely used in different 
fields and applications, particularly in finance, in modeling dependency structures in various types of data. They have 
also been used in bioinformatics, environmental sciences, and engineering to model the dependence between variables. 
These studies fit the empirical data better than some traditional copulas when the data exhibit asymmetric dependence. 

Our study uses these models to analyze automobile bodily injury claim data and determine the best-fit copula 
models. We choose appropriate models to analyze automobile bodily injury claim data and make inferences. 

In the following section, we introduce the mathematical form of the KC and LCC models.  
 
Khoudraji copula (KC) model: 

Khoudraji copulas are a class of asymmetrical copulas first introduced by Khoudraji [29]. Later, Liebscher 
[30] defined its general form.  They may model both positive and negative dependency, and a wide variety of 
dependency constructs can be captured by varying their parameters. 

The mathematical model of a Khoudraji copula function 𝐶),+:𝐼# → 𝐼 is defined as 
 

 𝐶),+(𝑢, 𝑣) = 𝐶!9𝑢), , 𝑣+
,:𝐶#9𝑢) , 𝑣+:																																																							(2) 

 
where  𝜙 = (𝛼, 𝛽, 𝜃), 𝛼, 𝛽	𝜖(0,1), 𝛼	 ≠ 	1/2, 𝛽	 ≠ 	1/2, 𝛼 + 𝛼D = 1, 𝛽 + �̅� = 1.	 
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In Eq. (1), if 𝐶! is independent copula 𝐶(𝑢, 𝑣) = 𝑢𝑣, and 𝐶# is a symmetrical Archimedean copula family 
with a dependency parameter 𝜃, 𝐶),+ is called a Khoudraji copula. For 𝛽	 = 	1	– 	𝛼, one parameter Khoudraji copula 
families (KC1-model),  

 
 𝐶-.!(𝑢, 𝑣) = 𝑢!&)𝑣)𝐶(𝑢) , 𝑣!&))																																																										(3) 

 
and for 𝛼	 ≠ 	𝛽,  two-parameter Khoudraji copula families (KC2-model) 
 

 𝐶-.#(𝑢, 𝑣) = 𝑢!&)𝑣!&+𝐶9𝑢) , 𝑣+:																																																									(4) 
 
 are expressed as in Eqs. (3) and (4), respectively.         
                                                                                                                                           
Linear convex combination (LCC) model:  

It is possible to create asymmetrical copulas using linear and convex combinations of the copulas. However, 
the resulting pattern remains a symmetrical copula when direct linear-convex combinations are produced with 
symmetric copula functions. Using the method in Wu [40], basic copulas can be modified to include asymmetrical 
features. This method involves deriving a new asymmetric copula by modifying the basic copulas using a weighting 
function that allows for asymmetry. A new asymmetric copula can be derived using this methodology as follows: 
 

𝐶	J/(𝑢!, … , 𝑢") = 𝐶(𝑢!, … , 𝑢/&!, 1, 𝑢/0!, … , 𝑢") − 𝐶(𝑢!, … , 𝑢/&!, 1 − 𝑢/ , 𝑢/0!, … , 𝑢")															(5) 
 

where 𝐶(∙) is the n-dimensional base copula.  
An LCC copula can be constructed to capture the asymmetric characteristics of a multivariate variable based 

on Eq. (6) as follows: 
 𝐶1..(𝑢!, … , 𝑢") = ∑ 𝑝/𝐶	J/(𝑢!, … , 𝑢")

"
/23 																																																												(6)                   

 
where  0	 ≤ 	𝑝/ 	≤ 	1			and∑ 𝑝/ = 1"

/23 . Thus, an asymmetric copula can be constructed by linear convex 
combinations of 𝐶	J/(∙). There are many copula families that can be specified for base copula C. For instance, a bivariate 
copula 𝐶(𝑢, 𝑣) according to Eq. (5) can be written as follows: 
 

𝐶(𝑢, 𝑣) = 𝑢 + 𝑣 − 1 + 𝐶3(1 − 𝑢, 1 − 𝑣) 
𝐶	J!(𝑢, 𝑣) = 𝑣 − 𝐶(1 − 𝑢, 𝑣) = 𝑢 − 𝐶3(𝑢, 1 − 𝑣) 
𝐶	J#(𝑢, 𝑣) = 𝑢 − 𝐶(𝑢, 1 − 𝑣) = 𝑣 − 𝐶3(1 − 𝑢, 𝑣) 

 
Thus, the constructed one-parameter (LCC1-model) and two-parameter (LCC2-model) asymmetric copulas by 

linear combination can be given in Eqs. (7) and (8), respectively. 
 

 𝐶1..!(𝑢, 𝑣) = 𝑝3𝐶(𝑢, 𝑣; 𝜃!) + 𝑝!𝐶	J!(𝑢, 𝑣; 𝜃#)																																																									(7)                  
 𝐶1..#(𝑢, 𝑣) = 𝑝3𝐶(𝑢, 𝑣) + 𝑝!𝐶	J!(𝑢, 𝑣) + 𝑝#𝐶	J#(𝑢, 𝑣)																																												(8)                   

         
Directional Dependence Measures 

Directional dependence refers to the ability to measure the degree and direction of dependence between two 
or more variables. When the coefficient of association between variables is linear, it can be measured by the Spearman 
correlation, whereas when it is nonlinear, it can be measured by the Spearman coefficient based on the copula, 
expressed as follows: 

 
 𝜌. = 12∬ 𝐶(𝑢, 𝑣)𝑑𝑢𝑑𝑣!

3 − 3																																																																		(9)                   



Sigma Journal of Engineering and Natural Sciences, Technical Note, Vol. 42, No. 4, pp. XX-XX, August, 
2024 

  
 97 
 

Therefore, 𝜌.# can be used to calculate the ratio of variables explaining each other. However, when there is 
asymmetricity in the data structure, the directional dependence coefficients determined according to regression-based 
copula functions will not be the same relative to each other. Therefore, this situation will cause the ratio of the explained 
variance to be different. 

Accordingly, when dependence is symmetric, the regression functions for 𝑈 and 𝑉 have the same linear form, 
and the same model can be used to predict both 𝑈 and 𝑉. However, when the dependence is asymmetric, the regression 
functions for 𝑈 and 𝑉 will not be the same, and different models will be needed to estimate the regression functions 
for 𝑈 and 𝑉 separately. Detailed information on directional dependence can be found in Sungur [22, 23], Jung et al. 
[44], and Kim and Kim [45]. 

The directional dependence coefficients using the copula regression functions (in the directions of 𝑈 to V 
(𝑈 → 𝑉) and 𝑉 to U (𝑉 → 𝑈))  can be obtained by an approximate calculation method as follows:  

 

 𝜌]4→6
(#) = !#

9
∑ ^�̃�6|4(𝑢;)a

#
9
;2! − 3																																																																	(10)                   

 
and  

 𝜌]6→4
(#) = !#

9
∑ ^�̃�4|6(𝑣;)a

#
9
;2! − 3																																																																	(11)                   

 
where, 

�̃�6|4(𝑢) = 1 − !
9
∑ 𝐶<(𝑣;)9
;2!  and 𝐶<(𝑣) ≡ 𝑃(𝑉 ≤ 𝑣|𝑈 = 𝑢) = =.(<,>,?)

=<
, 

 
�̃�4|6(𝑣) = 1 − !

9
∑ 𝐶>(𝑢;)9
;2!  and 𝐶>(𝑢) ≡ 𝑃(𝑈 ≤ 𝑢|𝑉 = 𝑣) = =.(<,>,?)

=>
, 

 
Φ is the parameter set. �̃�6|4(𝑢) and �̃�4|6(𝑣) are approximately calculated copula regression functions over the pseudo- 
observations, (𝑢;, 𝑣;) ∈ (0,1)# for the size of the pseudo-observation, S. 
 
Simulation Study of Archimedean and Khoudraji Copula Models 

A simulation study was conducted to examine the symmetrical and asymmetrical dependency structures. 
Archimedean copulas for symmetrical models and Khoudraji copulas for asymmetrical models are considered. First, 
dependency parameter values corresponding to various correlation values were obtained for the mentioned models 
(Table 1), and parameter estimates of 1000 data pairs produced with these parameters were made (Table 2). 
Additionally, the asymmetry test was applied to these simulated data using Cramer-von Misses statistics. As shown in 
Table 3, simulated data from symmetric models are symmetric (p-values > 0.05), while simulated data from asymmetric 
models are asymmetric (p-values < 0.05).  

Table 1.  Parameter values of symmetric and asymmetric copulas for various correlations 

𝝆 Clayton 
𝜽 

KC1-Clayton 
	𝜶     𝜽 

Frank 
𝜽 

KC1-Frank 
𝜶        𝜽 

Gumbel 
𝜽 

KC1-Gumbel   
      	𝜶         𝜽 

0.1 0.143 0.122     2.8 0.603 0.333     1.9 1.072    0.274    1.2 
0.2 0.311 0.287     2.7 1.224 0.459     3.7 1.156 0.160    3.0 
0.3 0.511 0.352     5.6 1.883 0.511     6.9 1.257     0.246    6.099 
0.4 0.759       0.492    14.5 2.610 0.507    19.7 1.382  0.611    9.599 

 
𝝆 Clayton KC2-Clayton Frank KC2-Frank Gumbel KC2-Gumbel 

 𝜽	 𝜶	 𝜷	 𝜽	 𝜽 𝜶						 𝜷 𝜽 𝜽 𝜶						 𝜷 𝜽 
0.2 0.311 0.4 0.6 1.9 1.224 0.4 0.7 3.4 1.156 0.2 0.4 3.8 
0.4 0.759 0.6 0.9 2 2.610 0.9 0.9 3.1 1.382 0.6 0.9 1.7 
0.6 1.505 0.8 0.9 2.9 4.466 0.7 0.9 8.5 1.755 0.7 0.8 3.1 
0.8 3.185 0.9 0.9 7.1 7.902 0.9 0.9 13.8 2.581 0.9 0.9 4.1 
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Table 2. Parameter estimation results for data pairs generated by simulation (𝑁 = 1000) 
𝝆 Clayton KC1-Clayton  Frank KC1-Frank  Gumbel KC1-Gumbel 

 𝜽 𝜶 𝜽 𝝆& 𝜽 𝜶 𝜽 𝝆& 𝜽 𝜶 𝜽 𝝆& 
0.1 0.1397 0.1053 4.7777 0.0907 0.5827 0.8922   6.9387 0.0913 0.7191 0.1407 1.2546 0.0935 
0.2 0.3356 0.2147 4.3232 0.2007 1.2279 0.3412    4.5981 0.2001 1.1743 0.1728 3.0878 0.2033 
0.3 0.4927 0.3915 6.9374 0.2993 1.8870 0.5441 6.9271 0.2970 1.2605 0.2368 5.7554 0.3024 
0.4 0.7326 0.4964 13.0285 0.4052 2.7652 0.5165  20.6832 0.3935 1.4015 0.6148 9.5974 0.4033 

 
𝝆 Clayton KC2-Clayton  Frank KC2-Frank  Gumbel KC2-Gumbel  

 𝜽' 𝜶	&  𝜷' 𝜽' 𝝆& 𝜽' 𝜶	&  𝜷' 𝜽' 𝝆& 𝜽' 𝜶	&  𝜷' 𝜽' 𝝆& 
0.2 0.3387 0.3354 0.9999 1.6262 0.2044 1.2498 0.4036 0.9965 2.7880 0.2050 1.1670 0.2385 0.4178 3.3837 0.2074 
0.4 0.7554 0.5809 0.9924 1.8154 0.3957 2.4613 0.7612 0.8330 3.9251 0.4183 1.3966 0.5867 0.8345 1.8024 0.3970 
0.6 1.5020 0.7857 0.8652 2.9955 0.5936 4.5125 0.7183 0.9114 8.2398 0.6039 1.7922 0.7433 0.8660 2.6038 0.6050 
0.8 3.1726 0.8895 0.8963 7.0759 0.7897 7.9359 0.9098 0.8739 14.5948 0.7998 2.5988 0.9206 0.8845 4.0058 0.7934 

 

Table 3. Asymmetry test results of simulated data from symmetric and asymmetric models: 
Cramer-von Misses statistics and p-values 

Symmetric  Archimedean models Asymmetric    KC1 models 
𝝆 Clayton Frank Gumbel 𝝆 KC1-Clayton KC1-Frank KC1-Gumbel 

0.1 
0.024344 
(0.6888) 

0.02432 
(0.7218) 

0.048299 
(0.1154) 

0.1 
0.077899 
(0.02647) 

0.092821 
(0.008492) 

0.089669 
(0.004496) 

0.2 
0.020519 
(0.7947) 

0.013828 
(0.9805) 

0.018285 
(0.8866) 

0.2 
0.07341 

(0.02348) 
0.080107 
(0.01449) 

0.42153 
(0.0004995) 

0.3 
0.030133 
(0.3921) 

0.018385 
(0.8536) 

0.016769 
(0.9066) 

0.3 
0.092927  

(0.005495) 
0.05489 

(0.04745) 
0.54746 

(0.0004995) 

0.4 
0.023138 
(0.6119) 

0.031925 
(0.3322) 

0.035001 
(0.2143) 

0.4 
0.063067 
(0.02048) 

0.076384 
(0.00649) 

0.31175 
(0.0004995) 

Symmetric Archimedean models Asymmetric KC2 models 
𝝆 Clayton Frank Gumbel 𝝆 KC2-Clayton KC2-Frank KC2-Gumbel 

0.2 
0.0237 

(0.7008) 
0.0230 

(0.7068) 
0.0462 

(0.1234) 
0.2 

0.0866 
(0.0085) 

0.0739 
(0.0245) 

0.0787 
(0.0145) 

0.4 
0.0170 

(0.8417) 
0.0255 
(0.504) 

0.0305 
(0.3072) 

0.4 
0.1329 

(0.0015) 
0.0816 

(0.0025) 
0.0815 

(0.0035) 

0.6 
0.0174 

(0.6838) 
0.0234 

(0.4241) 
0.0101 

(0.9945) 
0.6 

0.0648 
(0.0025) 

0.0805 
(0.0015) 

0.0663 
(0.0015) 

0.8 
0.0097 

(0.9276) 
0.0214 

(0.1993) 
0.0153 
(0.515) 

0.8 
0.0372 

(0.0195) 
0.0339 

(0.0245) 
0.0338 

(0.0335) 
 
Contour plots showing symmetrical and asymmetrical dependency structures are visually presented in Figure 

1 for 𝜌 = 0.4. These graphs show that the ones drawn for the Archimedean copulas are symmetrical, and those drawn 
for the KC1 and KC2 models are irregular and asymmetrical. 
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Figure 1. Contour plots for the Archimedean copula (red), KC1 (blue), and KC2 (green) models (ρ=0.4 and N=1000) 
 

The 𝜌.#, 𝜌<→>
(#)  and  𝜌>→<	

(#) values for the asymmetric KC1 and KC2 models of the data pairs produced in different 
correlations were calculated using equations (9), (10), and (11) and are presented in Table 4. In this table, 𝜌9	  and 𝜌9#  
show the Spearman correlation values and coefficients of determination of the produced data, respectively. Here, it can 
be seen that the directional dependence values from 𝑉 to 𝑈 and from 𝑈 to 𝑉 are different from the values of 𝜌.#. This 
indicates that 𝜌<→>

(#)  and  𝜌>→<	
(#) values should be used instead of 𝜌.# because the dependency structures of the KC models 

are asymmetrical. Moreover, Jung et al. [44] showed that the directional dependence coefficients are theoretically 
different from 𝜌.# asymmetric models for some parameters of the generalized FGM copula family. 

                 Table 4. Directional dependence coefficients of the asymmetric KC1 and KC2 models  

KC1-Clayton 
𝝆 𝝆𝑺 𝝆𝑺𝟐 𝝆𝑪 𝝆𝑪𝟐 𝝆𝒖→𝒗

(𝟐)  𝝆𝒗→𝒖
(𝟐)  

0.1 0.0907 0.0082 0.1066 0.0114 0.0357 0.0161 
0.2 0.2007 0.0400 0.1951 0.0380 0.0584 0.0241 
0.3 0.2993 0.0896 0.3343 0.1117 0.1742 0.1449 
0.4 0.4052 0.1642 0.3954 0.1563 0.1430 0.1244 

KC1-Frank 
𝝆 𝝆𝑺 𝝆𝑺𝟐 𝝆𝑪 𝝆𝑪𝟐 𝝆𝒖→𝒗

(𝟐)  𝝆𝒗→𝒖
(𝟐)  

0.1 0.0913 0.0083 0.1082 0.1170 0.0225 0.0376 
0.2 0.2001 0.0400 0.2111 0.0445 0.0634 0.0100 
0.3 0.2970 0.0882 0.2981 0.0889 0.0775 0.0867 
0.4 0.3935 0.1548 0.4018 0.1614 0.0614 0.1058 

KC1-Gumbel 
𝝆 𝝆𝑺 𝝆𝑺𝟐 𝝆𝑪 𝝆𝑪𝟐 𝝆𝒖→𝒗

(𝟐)  𝝆𝒗→𝒖
(𝟐)  

0.1 0.0935 0.0087 0.0813 0.0066 0.0240 0.0259 

0.2 0.2033 0.0413 0.2135 0.0456 0.0211 0.1393 
0.3 0.3024 0.0914 0.2909 0.0846 0.0614 0.0895 
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0.4 0.4033 0.1626 0.3984 0.1587 0.1845 0.1938 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
DATA ANALYSIS 

The data contained 174 automobile bodily injury claims collected between 1993 and 1998 in Massachusetts 
and studied by Frees and Wang [43]. The data can be found in the CASdatasets package [42] of the R program under 
the name ‘usmassBI2’. Descriptive statistics of the data are given in Table 5, and a scatterplot of the data is presented 
in Figure 2. Here, AC represents the average claims per unit of exposure ($), and PPSM represents the population per 
square mile of the town. 
 

Table 5. Descriptive statistics of automobile bodily injury claim data  
 Mean Median Min Max St. D  Skewness  Kurtosis 

AC 137.32          136.49        42.74 248.75 35.18 0.1708 0.2445 
PPSM 801.74  593.67   119.56   4636.74   815.41 3.3309 12.4009 

 

 
Figure 2. Scatterplot of automobile bodily injury claim data 

To choose the most appropriate candidate models that can fit the data, an exchangeability test was performed 
on the data. The results given in Table 6 show that the data did not fit the copula families. The dependency structure 
of the data is asymmetric because the p-value (=0.01499) is smaller than 0.05. The test of goodness of fit for 
symmetrical Archimedean copula families also supported this result. 

KC2-Clayton 
𝜌 𝝆𝑺 𝝆𝑺𝟐 𝝆𝑪 𝝆𝑪𝟐 𝝆𝒖→𝒗

(𝟐)  𝝆𝒗→𝒖
(𝟐)  

0.2 0.2044 0.0418 0.2232 0.0498 0.0335 0.0155 
0.4 0.3957 0.1566 0.3987 0.1589 0.1964 0.0837 
0.6 0.5936 0.3524 0.5783 0.3344 0.4404 0.5771 
0.8 0.7897 0.6236 0.7905 0.6249 0.7191 0.8515 

KC2-Frank 
𝜌 𝝆𝑺 𝝆𝑺𝟐 𝝆𝑪 𝝆𝑪𝟐 𝝆𝒖→𝒗

(𝟐)  𝝆𝒗→𝒖
(𝟐)  

0.2 0.2050 0.0420 0.2120 0.0450 0.0357 0.0708 
0.4 0.4183 0.1750 0.4044 0.1636 0.1365 0.0957 
0.6 0.6039 0.3647 0.6097 0.3718 0.3584 0.4006 
0.8 0.7998 0.6397 0.7965 0.6344 0.5570 0.6732 

KC2-Gumbel 
𝜌 𝝆𝑺 𝝆𝑺𝟐 𝝆𝑪 𝝆𝑪𝟐 𝝆𝒖→𝒗

(𝟐)  𝝆𝒗→𝒖
(𝟐)  

0.2 0.2074 0.0430 0.2250 0.0506 0.0538 0.0874 

0.4 0.3970 0.1576 0.4053 0.1643 0.1897 0.0816 
0.6 0.6050 0.3660 0.6126 0.3753 0.5773 0.4822 
0.8 0.7934 0.6295 0.8007 0.6411 0.5764 0.6408 
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Table 6. Parameter estimation summary of symmetric copula families for automobile bodily 
injury claim data (𝑆": Cramer-von Mises test statistics) 

 
Copula Family Parameter 𝑳𝑳 𝑺𝒏 𝒑-value 

Clayton 0.74011 20.53453 0.080170 0.00150 
Frank 2.98366 18.34867 0.051319 0.00649 
Gumbel 1.42846 20.28379 0.045947 0.02747 

 
Thus, we can choose candidate copula models from among asymmetric copulas. For this purpose, we use the 

asymmetric KC and LCC models defined by equations (3-4) and (7-8), respectively. We determine the best-fitting 
model with the AIC value given by 

 
𝐴𝐼𝐶 = −2𝐿𝐿 + 	2𝑝 

 
where 𝑝 is the number of parameters and 𝐿𝐿 is the maximized log-likelihood. The model selection process according 
to the directional dependency is as follows: First, the model with the smallest AIC value is considered. The model 
selection is then continued with the directional dependency measures with the smallest and largest values of 𝜌<→>

(#)  and 
𝜌>→<
(#) . Finally, the two selected asymmetric models were tested with GOF (Sn-Cramer-von Mises) and the one with the 

lowest AIC value was selected as the best-fit model. 
The parameter estimations, log-likelihood, and the values of Sn, p, and AIC for the asymmetric KC and LCC 

models were calculated and are shown in Tables 7 and 8. Here, the maximum pseudo-likelihood (MPL) method is used 
to obtain parameter estimates. 
 

Table7. Estimated parameters, LL, Sn, p, and AIC values of KC models for automobile bodily   
injury claim data. 

 
 
 
 
 
 
 
 
 
 
Table 8. Estimated parameters, LL, and AIC values of LCC models for automobile bodily injury claim data 

 
KC models are considered first because the AIC values of the KC models are approximately the same among 

themselves, and they are insignificant compared to the LCC models. The GOF test was performed on selected KC 
models, and it is seen in Table 7 that all models fit the data (p >0.05). 

 The model selection process is then continued according to the directional dependence coefficients. Models 
with the highest and lowest 𝜌<→>

(#)  and 𝜌>→<
(#)  values are determined, and it is seen in Table 9 that they correspond to the 

Model 𝜽$ 𝜶	'  𝜷$ 𝑳𝑳 𝑺𝒏 p value AIC 
KC*+ 25.9738 0.2853 0.7147 32.5540 0.02829 0.2486 -61.1081 

KC*, 33.9303 0.2828 0.7173 32.3130 0.03527 0.1286 -60.6260 

KC*- 2.98295 0.3188 0.6812 26.1288 0.02479 0.3114 -48.2575 

KC.+ 19.1733 0.3341 0.8289 33.5462 0.02829 0.2543 -61.0924 

KC., 30.4350 0.3164 0.8013 32.7218 0.03190 0.1400 -59.4436 

KC.- 2.2574 0.4511 0.9987 29.3557 0.02479 0.3171 -52.7114 

Model 𝜽$𝟏 𝜽$𝟐 𝜽$0 𝒑'𝟏 𝒑'𝟐 𝒑'𝟑 𝑳𝑳 AIC 
LCC*+ 2.9103 3.2858 - 0.2800 0.7200 - -165.8824 377.6481 
LCC*2 4.1575 5.1835 - 0.1476 0.8524 - -178.8822 363.7643 
LCC*- 2.0266 2.9032 - 0.3216 0.6784 - -160.7671 327.5343 

LCC.+ 2.3716 2.9671 3.2964 0.2889 0.2628 0.4483 -167.8495 345.6991 
LCC.2 4.6796 5.3969 5.3969 0.1571 0.0291 0.8138 -170.3059 350.6118 
LCC.- 1.7356 2.6574 3.0947 0.2919 0.4277 0.2804 -171.6882 353.3764 
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KC!A and KC#A models, respectively. Since more than one copula fits the data, KC#A  the model with the smallest AIC 
value (= −52.7114	from Table 7) is selected as the best-fit model.  
 

Table 9. Directional dependence coefficients of asymmetric 
copula models for automobile bodily injury claim data 	

(𝝆𝒔	 = 𝟎. 𝟒𝟐𝟗𝟑, 𝝆𝒔𝟐 = 𝟎. 𝟏𝟖𝟒𝟑) 
Models 𝝆𝑪 𝝆𝑪𝟐 𝝆𝒖→𝒗

(𝟐)  𝝆𝒗→𝒖
(𝟐)  

KC*+ 0.33027 0.10908 0.11718 0.13188 

KC*, 0.32924 0.10840 0.11550 0.13131 

KC*- 0.32404 0.10500 0.10619 0.12085 

KC.+ 0.38979 0.15194 0.16472 0.18070 
KC., 0.37266 0.13888 0.14915 0.16970 

KC.- 0.43560 0.18975 0.19208 0.21725 

 
A comparison scatterplot between the original data and the simulated data from KC#A the model is made to 

further check the suitability. For this purpose, their scatterplots are shown in Figure 3. It can be seen from the 
scatterplots that the simulated data and the original data fit each other very well. 
 
 

 
Figure 3. Comparison of the scatterplot between the original data and simulated data 

Additionally, the values of  𝜌9#, 𝜌.#,  and 𝜌<→>
(#)  the automobile bodily injury claim data in Tables 7 and 9 can 

be interpreted as follows for the best model chosen (KC#A). AC was considered the dependent variable in the data, and 
PPSM was the independent variable. When the relationship between them was accepted as linear, the coefficient of 
determination was found to be 0.1843 (𝜌9#) based on the known Spearman correlation. In other words, the explanation 
rate of AC with PPSM was 18.43%. When the dependency structure of these variables is modeled with copulas, this 
explanation rate is 18.975% (𝜌.#). When modeled with asymmetric copulas, the disclosure rate according to the 
directional dependency measures was found to be 21.725% (𝜌B→<

(#) ). These results show that the explanation ratio found 
according to the standard Spearman coefficient without considering dependence and asymmetricity is lower.  Thus, the 
decision-maker will calculate a lower premium than it should be in the case of premium pricing, ignoring the 
asymmetric model for automobile claim data with an asymmetric dependency. 

As a result, the advantage of the model selection method based on directional dependence is that it gives a 
decision-maker who wants to make actuarial calculations, such as premium pricing in the insurance field, the 
opportunity to make a more accurate calculation by considering the directional dependence coefficient. 
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CONCLUSION 
Real data are not always symmetrical. In such cases, it is necessary to use asymmetric models for modeling. 

Using these asymmetric models, obtaining the desired probabilities and statistical inferences will provide more 
accurate results. For our data, the first asymmetric tests were performed, and it was found that the dataset was 
asymmetric. Then, using Clayton Frank and Gumbel copulas, asymmetric models KC1, KC2, LCC1, and LCC2 were 
created. We used directional dependency coefficients to determine the model that best fits the dataset from among 
asymmetric models. According to the directional dependency coefficients and AIC, we concluded that the best model 
that fits our dataset is KC2-Gumbel. This modeling can have important practical implications for the insurance 
industry, because it can provide more accurate estimates of risk factors and inform risk management and policy 
decisions. This is particularly important given the increasing importance of data-driven decision-making in the 
insurance industry and the need to accurately model risk factors to effectively manage risk. In addition, the use of 
Khoudraji copulas can be applied to other areas of insurance and risk management, where asymmetrically dependent 
data are common, such as modeling the joint distribution of insurance claims across different lines of business. 
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