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ABSTRACT

The purpose of this research is to improve the dynamic-mechanical properties of the polypro-
pylene filled by artichoke stem (AS) particles and wollastonite (W) in different weight frac-
tions. The effect of weight ratios of fillers in polypropylene was mathematically modeled using 
the data obtained as a result of the experimental work. In the modeling phase, multiple nonlin-
ear neuro-regression analysis was used. In this context, proposed linear and nonlinear models 
have been examined by performing R2

training, R2
adjusted, R2

testing, and boundedness check. The 
models that satisfy these four criteria were selected as the objective functions for the optimiza-
tion phase. Finally, Modified Differential Evolution Algorithm was used to obtain maximum 
storage modulus and loss modulus by adjusting weight percent ratio of artichoke stem particle 
and wollastonite. The experimental results and the modeling optimization results showed that 
when the polypropylene-artichoke stem particle-wollastonite hybrid polymer composite was 
used instead of other non-hybrid polymer composite, the storage modulus and the loss mod-
ulus improved by approximately 40%.
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INTRODUCTION

The utilization of natural fibers as filler/reinforcement 
material in polymers is increasing day by day due to the 
advantages of being renewable resources, having low den-
sity, non-toxic properties, and being available at low prices. 
Natural fibers are an alternative to synthetic fibers in con-
struction structures, the automotive industry, and daily use 
materials in applications that do not require high strength. 
In addition to these advantages, the usage of natural fiber 

fillers is limited because of their insufficient thermal prop-
erties. In order to improve the thermal properties of natu-
ral fiber-filled polymer composites, it is aimed to produce 
hybrid polymer composites by reinforcing polymer with 
mineral fillers. Hybrid composites can be obtained by com-
bining two or more filler types with the same structure. By 
combining the properties of two materials, a more suitable 
composite material can be produced at the desired level. The 
use of hybrid polymer composites is aimed to provide many 
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features that are important in engineering design, such as 
reducing material weight and production cost, increasing 
strength and thermal properties of materials, and providing 
easy recycling of materials.

In recent years, the relevant studies have increased for 
the useful recycling of materials that can be found easily 
in nature and evaluated as waste. One of the main pur-
poses of these studies is to reduce the effects of the damage 
caused by these wastes to the environment. Polymer matrix 
composites are reinforced with organic and inorganic fill-
ers such as sugarcane bagasse, cotton stalk, wheat straw, 
sandalwood, poplar sawdust, wood flour/talc, artichoke 
stem/wollastonite to reduce production costs and mini-
mize possible harm to the environment [1–5]. Lee et. al. [4] 
prepared wood flour and talc-filled polylactic acid (PLA) 
composites. As they report, loading wood flour and wood 
flour/talc mixture into raw PLA results in a small decrease 
in the composites’ glass transition and crystalline tempera-
tures. Also, wood flour, talc, and silane in the compos-
ites cause a successively larger decrease in the composite 
crystallinity. The addition of talc and silane to PLA/wood 
flour composites improved the tensile modulus. Sever and 
Yilmaz [5] combined artichoke particles with wollastonite 
filler to improve the thermal performance in polypropylene 
(PP) based polymer composites. 3%, 5%, and 7% weight 
wollastonite were added to the artichoke–PP matrix com-
pared with artichoke–PP composites containing 10 wt% 
artichoke particles. The test results can be summarized as 
follows; the storage modulus of artichoke–PP composites 
increased with increasing artichoke content. The hybrid 
composites had a higher storage modulus than composites 
containing 10 wt% artichoke particles. The hybrid compos-
ite containing 7 wt% of artichoke particles and 3 wt% wol-
lastonite showed the highest storage modulus value. The 
initial decomposition temperature of the hybrid compos-
ite containing 3 wt% of artichoke and 7 wt% wollastonite 
had the highest value among all composites. Goyanes et 
al. [6] investigated the dynamic-mechanical properties of 
epoxy composites filled with quartz powder. They report 
that the glass transition temperature increased with filler 
content and the dynamic-mechanic modulus also increased 
with quartz powder percentages. The data obtained from 
experimental works are supported by statistical analysis, 
mathematical modeling, and optimization studies [7, 8]. 
Although there have been many studies on the design, 
modeling, and optimization of synthetic fiber-reinforced 
polymer composites [9, 10, 13], there are limited studies 
regarding natural fiber-reinforced polymer composites [11, 
12, 14–16]. In recent years, the usage of flax, jute, kenaf 
fibers stands out regarding modeling and optimization of 
natural composites in the literature. In this regard, Savran 
and Aydin [11] handled the maximization of natural fre-
quency problems for carbon-glass epoxy and carbon-flax 
epoxy hybrid composites. Then they discussed the usabil-
ity of natural flax fiber instead of glass fiber in natural 
frequency problems. The robustness and reliability of the 

results were tested using three different optimization meth-
ods: Modified Differential Evolution Algorithm (MDEA), 
Simulated Annealing, and Nelder Mead. They have reached 
that the usage of flax fiber in the hybrid structure instead 
of glass fiber provides 8.5% natural frequency increment 
and 21–24% cost reduction. Megahed et al. [17] studied 
the cost-weight-frequency problem. The minimum weight 
and cost of non-hybrid and hybrid composites are consid-
ered objective under the lower frequency limit constraint. 
Carbon, glass, and flax fibers were utilized as reinforcement 
and epoxy as matrices in non-hybrid and hybrid struc-
tures. The effect of the hybridization on the weight and 
cost performance of the beam was investigated under fre-
quency constraint using Particle Swarm Algorithm. Results 
denoted that hybridization of carbon and flax fibers was the 
best design compared with hybrid carbon-glass structure 
and non-hybrid epoxy-based carbon, glass, flax structures 
regarding lightweight, low cost, and higher fundamental 
frequencies. Öndürücü et al. [18] investigated the critical 
buckling loads of jute and glass fiber composite subject-
ing to seawater experimentally. They found that natural 
fiber-reinforced composites exposed to seawater have lower 
buckling strength than kept in room conditions. Chaudhuri 
et al. [19] investigated the effect of biodegradation in 
both soil and pure microbial culture media on the tensile 
strength behavior of HDPE/jute composites using a central 
composite design. Jute fiber loading and treatment time 
were considered as independent factors. The optimal con-
ditions for the biodegradation of the HDPE/jute compos-
ites were evaluated Response Surface method. According to 
results, two-factor interaction (2FI) and linear models were 
found appropriate to define mathematically the experimen-
tal results related to tensile strength behavior of HDPE/jute 
composite. Optimum design parameters were determined 
as % 30 and 6 months for fiber loading and treatment time, 
respectively. Rao et al. [20] considered modeling and opti-
mization of keratin-based hair fiber composite in terms 
of Young’s modulus and Poisson’s ratios. They preferred 
response surface methodology to form an empirical model 
regarding Young’s modulus and Poisson’s ratios. ANOVA 
was applied to test the importance of independent design 
variables and interactions of these. Optimum levels for 
design variables fiber length and fiber weight fraction were 
determined utilizing the grey Taguchi method. The results 
indicated that Young’s modulus and Poisson’s ratios opti-
mized by the Grey Taguchi method were gained as 4.13 GPa 
and 0.22, respectively. Corresponding factor levels related 
to optimum results were %20 and 30 mm for fiber weight 
ratio and fiber length, respectively. Yaghoobi and Fereidoan 
[21] utilized Box–Behnken and Response Surface method 
to model and optimize tensile strength and modulus val-
ues of Polypropylene–Kenaf fiber bio-composite. The 
second-order polynomial model was consistent with exper-
imentally observed data regarding strength and modulus 
properties. While the studies related to natural composites 
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are widespread in the literature, agricultural waste and min-
eral-filled hybrid composites are limited. 

The present paper examined the production of AS and 
W-filled PP hybrid and non-hybrid composite materials. 
The storage and loss modules of the composite materials 
were obtained by dynamic-mechanical analyses. Multiple 
nonlinear neuro-regression method was used in the mod-
eling of the experimental results. In order to express the 
physical process most accurately, essential mathemati-
cal functions consisting of polynomial and trigonometric 
expressions, Bessel special functions and hybrid functions 
containing these three mathematical expressions were used. 
The models that most accurately describe the physical pro-
cess were chosen as the objective function for the optimi-
zation phase. Based on Modified Differential Evolution 
Algorithm (MDEA), the maximum values that the storage 
modulus and loss modulus can take under different bound-
ary conditions are tried to be determined.

The originality of this study can be summarized as (i) 
the present paper has been considered both experiment and 
modeling-optimization process simultaneously. Thus, both 
mathematical models that accurately describe the experi-
mental results were presented. It was allowed to improve 
the storage and loss modulus of the materials through the 
optimization process, (ii) modeling of the experimental 
results, polynomial, trigonometric, special functions, and 
hybrid models consisting of their combinations were used. 
The proposed models were compared with each other con-
sidering the success criteria, (iii) in the literature, polyno-
mial models are frequently preferred during the modeling 
phase and R2 is used alone as a success criterion in evalu-
ating the model. However, it has been shown that polyno-
mial models and the R2 success criterion are not sufficient 
to accurately describe experimental or simulation results 
in this study, (iv) in the modeling process, a new method 
called neuro-regression has been proposed, which includes 
a combination of the Artificial Neural Network (ANN) 
approach and regression together. Thus, the present study 
fills a gap in the literature regarding the modeling and 
optimization of agricultural waste–mineral-filled polymer 
hybrid composites.

MATERIALS AND METHODS

Experimental Procedures
In this research, cellulosic-based artichoke stem par-

ticles (AS), mineral-based wollastonite (W), and hybrid 
AS-W particles were used to improve the dynamic-me-
chanical properties of polypropylene (PP) (Table 1). The 
PP-copolymer (PP, LG Chem M 1500, Korea) used in 
this study has a melt flow index of 16 g/10 minutes (230 
°C/2.16 kg) and a density of 0.9 g/cm3. Artichoke stems 
were supplied from the products left as agricultural waste 
from an artichoke plant field in İzmir, Turkey. To make 
artichoke stems suitable for composite production, stems 

were broken into small pieces then ground with a laborato-
ry-type grinder. Then, artichoke stem particles were passed 
through 60 and 140 mesh sieves (Retsch RS200, Germany). 
Particle sizes in the range of 100 μm-250 μm were used to 
produce composites. Wollastonite mineral (Tremin 939-
300 needle-shaped, untreated, density=2.85 g/cm3 and 
Mohs hardness=4.5) was obtained from Kaolin Industrial 
Minerals, İstanbul. 

The production of hybrid and non-hybrid polymer 
composites was produced using a laboratory-scale high-
speed thermokinetic mixer and a laboratory-type heat-
ed-cooled hydraulic press (Gülnar Machine, Turkey). These 
materials’ dynamic-mechanical properties (storage modu-
lus and loss modulus) were obtained using a dynamic-me-
chanic analyzer (DMA Q800, TA Instruments Inc., USA). 
Analyses were performed using a single-point holder at a 
temperature range of 40-140°C. The heating rate was deter-
mined as 3°C/min, and analyses were performed.

Modeling
Regression analysis is one of the statistical methods 

used to describe the mathematical relationship between 
dependent (output) and independent (input) variables in 
a problem. With regression analysis, mathematical mod-
els that most accurately express the results of experimen-
tal or simulation studies are tried to be put forward. The 
most important criterion used as a statistical evaluation 
criterion of model success is R2, called the “determination 
coefficient”. This parameter, which shows how consistent 
the actual values obtained from experiments or simula-
tions and the values predicted by the mathematical model, 
take values between 0 and 1. The R2 parameter is close to 1 
indicates that the proposed mathematical model correctly 
describes the physical process regarding experimental or 
simulation results. Mathematical models with an R2 value 
of 0.85-1 statistically are considered successful.

In the present study, a hybrid method that takes advan-
tage of regression and artificial neural networks has been 
used in the modeling phase. In this approach, all data is 
divided into 80% for training and 20% for testing. The 
training process aims to minimize the error between the 
experimental and predicted values by adjusting the regres-
sion models and their coefficients. The model’s prediction 
ability is measured in the testing phase by asking input 
parameter values that it has never seen before. The perfor-
mance of the models is measured according to the values 
received by R2 during the training and testing phase. Here, 
R2 is expressed as:

  (1)

  
(2)
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where 

  (3)

  (4)

Where, yi, fi, , n and k are expressed as observed val-
ues, predicted values by the model, mean of observed val-
ues, total sample size and number of independent variables, 
respectively. SSE and SST are named as sum of square error 
and sum of square total error.

The model, which is successful at these stages, is finally 
subjected to a boundedness check, and it is evaluated how 
realistic the results are. The model that passes all the tests is 
chosen as the objective function in optimization. Modified 
Differential Evolution Algorithm (MDEA), one of the sto-
chastic methods, was used in the optimization phase. This 
algorithm is robust, population-based, fast, and very suc-
cessful in finding the global optimum. While some of the 
experimental data used in the study were taken from the 
study by Sever and Yılmaz [5], some of them were produced 
within the scope of this study. Separated data for training 
and testing purposes are given in Table 1.

Optimization
Optimization is a process based on obtaining the best 

designs by maximizing or minimizing the value of the 
parameter chosen as the objective function, under speci-
fied constraints arising from the inherent of the problem 

or included by the expert regarding the studying issue. 
Generally, optimization algorithms are divided into two 
groups as deterministic and stochastic, according to the 
method they follow in the solution phase. In cases where 
the objective function consists of simple mathematical 
expressions and can be differentiated, the solution can be 
reached by using deterministic methods. However, engi-
neering problems inherently contain high nonlinearities, 
limiting the use of deterministic methods.

The solution of such problems with deterministic 
methods may involve difficulties both in modeling and in 
the solution process related to the nature of the problem. 
Depending on the design variables and data types, the dif-
ficulty of the problems may increase. On the other hand, 
stochastic methods do not need derivative information and 
can show high performance even under challenging prob-
lems where the design parameters can take values under 
certain constraints. Therefore it is much more common to 
use than deterministic methods. 

Modified Differential Evolution Algorithm (MDEA) is 
one of the population-based stochastic optimization tech-
niques based on genetic algorithms in terms of operation 
and options, which can give effective results in problems 
involving both discrete and continuous data.

“The DE algorithm in Mathematica contains a popu-
lation of m points, {θ1, θ2,…, θf,…, θm}. The amount 
of m should be higher than the total design vari-
ables. The iteration process starts with a generation 
of a new population randomly from the points. The 
real scaling factor rsf defines θrsf = θw+rsf.(θu-θv), ith 

Table 1. Training and testing data used for modeling and optimization

  Experiment
Number

Material Weight ratio of Artichoke (%) 
“x1”

Weight ratio of Wollastonite (%) 
“x2”

Training 1 PP [4] 0 0
2 PP-20AS [4] 20 0
3 PP-30AS [4] 30 0
4 PP-10W 0 10
5 PP-30W 0 30
6 PP-7W-3AS [4] 3 7
7 PP-5W-5AS [4] 5 5
8 PP-10W-10AS 10 10
9 PP-14W-6AS 6 14
10 PP-6W-14AS 14 6
11 PP-15W-15AS 15 15
12 PP-21W-9AS 9 21

  13 PP-9W-21AS 21 9
Testing 14 PP-10AS [4] 10 0

15 PP-20W 0 20
16 PP-3W-7AS [4] 7 3
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iteration points can be acquired from the earlier pop-
ulation. Next, in order, a new θ is set by recruiting 
the jth coordinate from θrsf with probability P. It can 
be adjusted by the preference “CrossProbability”. In 
that phase, if the constraint f (θi) > f (θnew) is valid, 
then θi is held instead of θ recent in the population. 
The final iteration process decided when the difference 
between two lastly generated points compared and if 
the newest points have lower tolerances provided by 
the parameters.”[22].

The procedure followed in the manufacturing, model-
ing and optimization stages is given in Figure 1.

RESULTS AND DISCUSSION

In this study, experimentally obtained storage modu-
lus and loss modulus behavior were modeled by multiple 
neuro-regression analyses. The optimization studies were 
carried out to maximize the storage and loss modulus by 
using models that passed the determined success criteria. 
In the considered optimization problems, the weight ratios 
of wollastonite mineral and artichoke stem particles were 
chosen as input parameters, while storage and loss moduli 
were chosen as output parameters.

Figure 2 shows the storage and loss modulus values 
obtained from experimental work. It is seen an increasing 
trend when compared to raw PP material. Notwithstanding, 
the PP-21W-9AS hybrid structure showed the best result 
with 1942.09 MPa value in storage modulus and 103.05 MPa 
value in loss modulus. The PP-21W-9AS hybrid composite 

structure was determined to increase the modulus values by 
approximately 40% compared to the raw PP material.

Modeling and Optimization Results for Storage Modulus
The proposed mathematical models to determine rela-

tionship between weight ratio of materials and storage 
modulus are given in Table 2.

The values of the parameters used in evaluating the suc-
cess of regression models are given in Table 3. The criterion 
for the model to express the data well is that the values of 
the “R2

training” and “R2
adjusted” parameters are as close to 1 as 

possible. When the results are evaluated, only in terms of 
R2

training and R2
adjusted, it is seen that all models except the 

linear model have values in the range of 0.9-1 and are in 
well fit with the experimental data. However, considering 
only these two success criteria leads to error because these 
two parameters only give information about how well the 
model expresses the data. In the “Testing” stage, the model 
is asked to predict the values of the outputs correspond-
ing to the inputs it has never encountered before. At this 
stage, when the results given in Table 3 are examined, it is 
seen that only the hybrid model gives acceptable results. 
However, fulfilling the testing criteria does not mean that 
the model is applicable. 

Another success criterion, the “boundedness check” of 
the model, should also be done. In this step, it is checked 
whether the maximum and minimum results of the model 
under defined input parameters constraints are realistic. 
The only model satisfying these four criteria mentioned 
above is the Poly-trigonometric multiple nonlinear model 

Figure 1. Flowchart of design, modeling and optimization processes.
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(a)

(b)

Figure 2. (a) Storage modulus (E’) and (b) Loss Modulus (E’’) values from dynamic-mechanical analyses (DMA).

Table 2. Multiple regression models type related to storage modulus

Name Models
Multiple Linear (ML)

Third order multiple nonlinear (TON)

Fourth order multiple nonlinear (FON)

Second order trigonometric multiple nonlinear 
(SOTN)

 
Poli trigonometric multiple nonlinear (PTN)
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(PTN), which consists of polynomial and trigonometric 
expressions. For this reason, this model was chosen as the 
objective function in the optimization phase.

Figure 3 shows the experimental results of the storage 
modulus and the proposed hybrid model (PTN) to express 
them mathematically. The red points show the experimen-
tal results, and the yellow one represents the model surface 
in terms of the percent weight ratios of artichoke (x1) and 
wollastonite (x2) parameters. When Figure 3 is examined, 
it is seen that the model is well fit with the experimental 
results. The graphical result here confirms the success of 
the mathematical model with high R2 values previously 
given in Table 3.

The graph given in Figure 4.a shows the difference 
between the values predicted by the PTN model, which 
successfully met all the success criteria and the observed 
values obtained as a result of the experiments. In cases 
where the observed and predicted values are the same, the 
points on the graph are expected to be on the line. As the 
distance of the points to the line increases, the error rate 
between the observed and predicted values increases. The 
train adjusted and test R2 coefficients of the PTN model in 
Table 3 are in the range of 0.9-1, and the distribution of the 

points in Figure 4.a is very close to the line. In this case, we 
can deduce that the error rates are low and acceptable.

Figure 4.b shows the ratio of the error resulting from the 
difference between the estimated by the PTN model and 
actual values obtained by the experiment to the standard 
error of this error value for each output value. The point 
scattering ranges from +3 to -3, indicating that the errors 
are statistically acceptable. The storage modulus, one of the 
output parameters within the scope of the study, provides 
the success criterion related to the distribution of errors.

Table 4 shows the obtained maximum storage modu-
lus when the design parameters are considered under con-
tinuous and integer constraints as two different scenarios. 
When the results were examined, it was seen that these 
two different scenarios did not make a significant differ-
ence in the storage modulus values. While the maximum 
storage modulus was found to be 2245.84 MPa, the input 
parameters x1 and x2 took the values of 2.80% and 27.20%, 
respectively.

Experimental results showed that a maximum stor-
age modulus of 1942.09 MPa is obtained by using hybrid 
PP-21W-9AS material containing 21% wollastonite and 9% 
artichoke stem particles. As a result of the optimization, 
this value was 2244.57 MPa with 13% improvement.

Figure 3. 3D plot representation of comparison between experimental and PTN model results on storage modulus.

Table 3. Fitting performance and boundedness of neuro-regression models for storage modulus

Model R2
training R2

adjusted R2
testing Max. value

(MPa)
Min. value
(MPa)

ML 0.41 0.29 -0.83 1712.33 1146.55
TON 0.92 0.91 -16.49 1948.11 204.40
FON 1 1 -57.02 2111.64 -1144.05
SOTN 1 1 -78447 97868 -49386.5
PTN 0.94 0.93  0.95 2244.57 1000.82
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(a) (b)

Figure 4. (a) Plots of predicted versus observed values (b) standardized residuals.

Table 4. Optimization results for storage modulus

Objective Objective function Constraints Storage Modulus (MPa) Suggested design
Max. Storage Modulus PTN 0 ≤ x1 ≤ 30, 0 ≤ x2 ≤30,

0 ≤ x1+x2 ≤30,
{x1, x2}∊ Integers

2244.57 x1=3, x2=27

PTN 0 ≤ x1 ≤ 30, 0 ≤ x2 ≤30,
0 ≤ x1+x2 ≤30,

2245.84 x1=2.80, x2=27.20

Table 5. Multiple regression models type related to loss modulus

Name Models
Multiple Linear
(ML)
Fourth order multiple nonlinear
(FON)

Second order trigonometric multiple 
nonlinear
(SOTN)

Special function based multiple 
nonlinear
(SFN)

Poli trigonometric multiple nonlinear
(PTN)
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Modeling and Optimization Results for Loss Modulus
The proposed mathematical models to define phenom-

ena regarding the loss module are given in Table 5.
The values of the success parameters used in the eval-

uation of the regression models are given in Table 6. It is 
clearly seen that the two models that meet all success crite-
ria are SFN and PTN. 

In Table 5, Spherical Bessel function of the first kind, 
denoted , is defined by

  (5)

where  is a Bessel function of the first kind and, in 
general, z and v are complex numbers

In Figure 5, experimental results and proposed hybrid 
models (a. SFN and b. PTN) to express them mathemat-
ically are shown as red points and yellow surface, respec-
tively, on the same graph. Both models showed well fit with 
experimental results.

Other models were eliminated because (i) the linear 
model could not satisfy the testing criterion, (ii) the 2nd-de-
gree trigonometric model could not fulfill the boundedness 
check criteria, and (iii) the 4th-degree polynomial model 

could not satisfy both testing and boundedness check cri-
teria. Hybrid models (SFN, PTN) fulfilling the success cri-
teria were chosen as objective functions for optimization.

Figure 6 shows the relationship between the values pre-
dicted by the SFN and PTN models, which successfully 
meet all the evaluation criteria and the observed values 
with the experiments. Here, the values predicted by both 
SFN and PTN models are very close to the observed val-
ues, and the error rates of the predicted values are within 
acceptable limits. The graphical results, given in Figure 6, 
support the coefficient of determination (R2) results given 
in Table 6.

The loss modulus optimization results obtained by using 
the Modified Differential Evolution Algorithm (MDEA) 
are given in Table 7. Within the scope of the problem, two 
different objective functions and two different scenarios are 
considered. Here, the maximum value of the loss modulus 
is investigated in case design parameters get values in dis-
crete and continuous intervals.

When SFN was chosen as the objective function, the 
maximum loss modulus value and corresponding input 
parameters were 123.58 MPa, x1=29%, and x2=1%, respec-
tively. In the case where PTN was the objective function, 
the maximum loss modulus value and corresponding input 

  
(a) SFN (b) PTN

Figure 5. 3D plot representation of comparison between experimental and proposed models (a. SFN, b. PTN) results on 
loss modulus.

Table 6. Fitting performance and boundedness of neuro-regression models for loss modulus

Model R2
training R2

adjusted R2
testing Max.Value (MPa) Min.Value (MPa)

ML 0.62 0.54 -2.29 90.26 54.64
FON 1 1 -111.15 121.48 -57.67
SOTN 0.82 0.78 0.90 165.39 -1.76
SFN 0.97 0.96 0.95 123.58 51.52
PTN 0.91 0.90 0.93 129.20 20.63
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parameters were 129.63 MPa, x1=1.90%, and x2=23.23%. 
Selecting input parameters from discrete or continuous 
intervals for both hybrid models did not significantly affect 
the results. It should be noted that the present paper was 
aimed only to improve the dynamic-mechanical properties 
of polypropylene. However, many other parameters affect 
the performance of the material during the application 
stage, such as raw material cost, material supply, environ-
mental factors, and production processes. Considering 

these parameters, hybrid structures with different filling 
weight fractions can be obtained.

CONCLUSION

Within the scope of this study, it was aimed to improve 
the dynamic-mechanical properties of the polypropylene 
filled by artichoke stem particles and wollastonite in dif-
ferent weight ratios. Using the data obtained as a result of 

    
(a) (b)

    
(c) (d)

Figure 6. Plots of predicted versus observed values and standardized residuals for (a, b) SFN model, (c, d) PTN model.

Objective Objective function Constraints Loss Modulus (MPa) Suggested design
Max. Loss Modulus SFN 0 ≤ x1 ≤ 30, 0 ≤ x2 ≤30,

0 ≤ x1+x2 ≤30,
{x1, x2}∊ Integers

123.58 x1=29, x2=1

SFN 0 ≤ x1 ≤ 30, 0 ≤ x2 ≤30,
0 ≤ x1+x2 ≤30

123.58 x1=29, x2=1

PTN 0 ≤ x1 ≤ 30, 0 ≤ x2 ≤30,
0 ≤ x1+x2 ≤30,
{x1, x2}∊ Integers

129.20 x1=2, x2=23

PTN 0 ≤ x1 ≤ 30, 0 ≤ x2 ≤30,
0 ≤ x1+x2 ≤30

129.63 x1=1.90, x2=23.23



Sigma J Eng Nat Sci, Vol. 41, No. 6, pp. 1243−1254, December, 2023 1253

the experimental study, the effect of the usage of artichoke 
stem particles and wollastonite in polypropylene in different 
weight ratios on the storage modulus and loss modulus was 
modeled mathematically. When the models were examined, 
it was seen that the models containing expressions consisting 
of polynomial, trigonometric and special functions (Bessel) 
exhibited good consistency with the experimental results, 
while linear or nonlinear models consisting of only polyno-
mial expressions could not meet all success criteria.

One of the essential points to be considered here is that 
only the R2 value was not used to evaluate model success. If 
only this criterion were to be considered, all models except 
linear models could be admitted as successful. It should be 
noted that R2 is only a parameter that shows the consistency 
between the model and the experimental results. In order to 
obtain a model that defines the experimental process with 
high accuracy, all four test criteria specified in this study 
must be fulfilled. In this regard, SFN and PTN mathemat-
ical models, which satisfy all criteria successfully, are uti-
lized as an objective function in optimization problems to 
maximize storage and loss moduli. The maximum storage 
modulus has been found as 2245.84 MPa, and the corre-
sponding input parameters are x1=2.80 and x2=27.20, while 
the maximum loss modulus value has been found as 129.63 
MPa and corresponding input parameters are x1=1.90%, 
x2=23.23%. Both the experimental results and the mod-
eling-optimization results have shown that the hybrid 
structure consisting of polypropylene-artichoke stem parti-
cles-wollastonite minerals improves the dynamic-mechani-
cal properties of the material by approximately 40% when it 
is used instead of raw polypropylene material.
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