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ABSTRACT

We study superlattices in non-uniform electric field to obtain mid infrared laser. We exploit 
the transfer matrix method and the transmission coefficient to find the suitable parameters 
that lead to resonant energy levels that are appropriate for generating three and four-level 
laser. In particular, we consider superlattice of GaAs/Al0.45Ga0.55 As consisting of four barriers, 
and we apply a graduated electric field. Our calculations predict that under the effect of the 
electric field equal to 10KV/cm and its graduation step equals to 1.26 KV/cm with the condi-
tion of the transition resonant with LO phonon, the obtained electronic transitions are shown 
to have wavelengths of 23.49 µm and 32.15 µm. We found that the variation of the electric field 
has an influence on the energy profile of the electron in the superlattice.
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INTRODUCTION

The first realization of the laser in 1960 [1], there were 
much theoretical and experimental advances in physics 
and many other fields of science and technology. The first 
laser was a solid state laser, and later in the 1960s and 1970s 
lasers based on semiconductors were successfully obtained 
[2–7]. Quantum cascade lasers (QCLs), which are semicon-
ductor laser based on heterostructures of many layers, were 
proposed by RF. Kazarinov and RA. Suris in 1971 [8] and 
it was first realized by Faist et al. in 1994 [9]. Since then, 
there were much theoretical and experimental effort to 
improve the performance and efficiency of the QCLs such 

as operating temperatures, lasing power and wavelength, 
threshold current density . . . . The modeling and optimi-
zation of QCLs depend mainly on the ability of controlling 
and tuning the quantized electronic energy levels of the 
superlattice. The key element in finding these energy lev-
els is solving the Schrodinger equation for an electron in 
the conduction band of the superlattice, and for this, there 
are many methods such as Runge-kutta methods, finite ele-
ments methods, shooting method, Monte Carlo methods, 
argument principle method, multi-step potential, spectral 
methods, immersed interface method, . . . [10–24]. In some 
instances, the transfer matrix method is used with the pre-
vious methods to find the transmission coefficient that 
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quantifies the tunneling of the electrons across the different 
barriers of the superlattice. In the past few years there had 
been much interest in studying superlattices, where varying 
either the properties of the superlattice or the external elec-
tro- magnetic fields is considered [25–37]. In this paper, we 
use the transfer matrix method to calculate the transmission 
coefficient of electronic transport in a superlattice made of 
alternation of layers of two different materials, and use it 
to extract information about the resonant energy levels as 
described in [38]. This method is based on the analytical 
solution of the Schrodinger equation where Airy functions 
[39, 40] appear due to the presence of external electric field. 
This later is considered constant in each layer of the super-
lattice but not necessarily equal in different layers. In par-
ticular, we consider a gradually changing electric field in 
successive layers, then we look for the suitable parameters 
to have resonant tunneling. We should mention here that 
resonant tunneling is important to obtain QCLs [41]. Also 
in this work, we take into consideration the non-radiative 
transition regarding the longitudinal optical (LO) phonon 
[9]. In particular, we consider GaAs/AlGaAs superlattice 
and we search for the suitable electric fields in each layer 
that give non radiative transition resonant with LO phonon 
that is equal to 36 meV [33]. In this regard the motivation of 
our present work is to explore the effect of electric field and 
their step to find suitable values corresponding to energy 
separation between first and ground states is on resonant 
with LO phonon, we also mention here that this condition 
is very important in order to obtain quantum cascade lasers. 
We should mention here that similar works to ours were 
done, but instead of varying the electric fields in different 
layers, the variation of superlattice material concentration 
[42, 43] and layer thickness [44] were considered.

THEORY

We consider the superlattice shown in Figure 1-a. We 
apply a non-uniform electric field F (x) on the superlattice 
such that the field is constant in every region and zero in 
first and last regions: 

   
(1)

 

and therefore the potential energy becomes as shown in 
Figure 1-b. The application of the electric field results in a 
band bending ∆Ej (with j = 1. . . 2N − 1 and 2N is the num-
ber of regions in the structure) given by :

   (2) 

where e is the electron’s electric charge, Fj is the intensity 
of the electric field in the jth region, xj is the position of the 
interface between regions j and j + 1, and dj is the thickness 
of the jth layer. 

 The energy of resonance in the superlattice is deter-
mined by solving the one dimensional time independent 
Schrodinger equation. The Schrodinger equation for one 
electron in layer j (j = 0, . . ., 2N) is given by.

  
(3)

where x is the growth axis of the layers in the superlat-
tice, h¯ is the reduced Planck’s constant, E is the electron’s 
energy, ψj (x) is the wave function in layer j, m*(x) is the 
effective mass of the electron in region j which is equal to: 

  (4)

where mw and mb are the effective masses in the well and 
barrier layers respectively, and Vj (x) is the potential energy 
of the electron as shown in Figure 1-b and it is equal to:

  (5)

where ∆Ei is defined in Eq. (2), and Uj is given by:

   (6)

where ∆Ec is the conduction band edge offset. The solu-
tion of Eq. (3) is

  
(7)

where Ai and Bi are Airy functions of first and second 
kind respectively [39], Aj and Bj are complex constants that 

Figure 1. Potential energy structure of the superlat-
tice. a) Unbiased superlattice. b) Biased superlattice: 
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represent the amplitudes of the wave function, k0, k2N and zj 
are defined as follows:

  
(8)

 

  
(9)

 

  
(10)

 

The coefficients Aj and Bj are determined from the 
continuity conditions of the wave function in the bound-
ary of each layer [45, 46]. Therefore, one finds the relation 
between the coefficients of layer j and layer j + 1 as follows:

  (11) 

This later equation leads to the expression relating the 
amplitudes of the first region (j = 0) and last region (j = 2N).

  (12) 

where the 2 × 2 complex matrix M is the transfer matrix 
[47, 48] which contains all the physical information about 
the structure shown in Figure 1, and it is equal to:

  (13)

The energy levels of the electron in the superlattice that 
give resonant tunneling [47–49] coincide with energies that 
give maximum tunneling [38] (see Figure 2). This later is 
quantified by the transmission coefficient T (E) which is 
given by the following expression [14]:

   (14)

where M11 is the matrix element of first row and first 
column of the transfer matrix M.

RESULTS AND DISCUSSION 

In this study, we consider superlattice structure of four 
barriers (2N = 8) produced by many alternating layers of 

GaAs and AlxGa1−xAs. This structure was considered in the 
literature such as [11, 38, 48, 50]. We put this structure in 
an electric field F (x) as defined in Eq. (1) with the electric 
field in each layer Fj (j = 1, . . ., 7) is chosen to be equal to:

  (15) 

where F1 is the electric field in region 1, and ∆F is the 
graduation step of the applied electric field.

As said in the previous section, the energy levels of the 
electron in the superlattice are the peaks of the transmission 
coefficient when plotted against electron energy. In Figure 
2 the variation of the transmission coefficient as function of 
the electron energy is shown for electric field intensity F1 = 
100 kV/cm. The energy levels of the electron in the consid-
ered structure are the peaks of the transmission coefficient 
[38] and are given in Table 1.

We are interested in obtaining laser from the considered 
superlattice structure of Figure 1-b. It was shown in [33] 

Table 1. The resonance energy levels of the electron in the superlattice

Resonance energy levels (meV) ∆F = 0 ∆F = 2 kV ∆F = −2 kV Results of [38]
E1 -67.00 -68.40 -65.65 -66.8
E2 -28.85 -57.45 -10.30 -28.2
E3 -10.90 -17.15 31.35 -10.2
E4 30.40 29.30 176.70 31

Figure 2. Energy dependence of the transmission coeffi-
cient for different values of the electric field. Thickness of 
layers are d1 = 3.5 nm, d2 = 11 nm, d3 =3.5 nm, d4 = 2.82 nm, 
d5 = 3.5 nm, d6 = 2.2 nm and d7 = 3.5 nm. Effective mass 
of the electron in well and barrier regions are mw = 0.067 
me and mb =0.1043 me respectively, with me is the electron 
mass. Conduction band offset ∆Ec = 0.477 eV. Electric field 
graduation step ∆F = ±2 kV/cm.
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that in order to obtain the laser, the transition from the first 
excited state to the ground state must be resonant with the 
longitudinal optical phonon. For GaAs, we must have:

  (16) 

The idea is to find a suitable graduation step ∆F that sat-
isfies condition (16). For this, we fixed F at 10 kV/cm then 
change ∆F and we calculate the energy difference E2 − E1. 

The results are plotted in Figure 3. It is clear that increas-
ing the step ∆F leads to smoothly and inversely decreas-
ing energy separation between ground and first excited 
energy levels that means that when the step increases leads 
the ground and first excited levels to getting closer each 
other, consequently the step has a considerable affect in 
properties of the structure, according to the Figure 3, we 
see that condition (16) is satisfied for ∆F =1.26 kV/cm. In 
this regard in Figure 4. we represent the transmission coef-
ficient log(T(E)) which is illustrated as a function of vari-
ous values of the tunneling energy with electric field equals 
to F =10 kV/cm and ∆F =1.26 kV/cm, then we extract the 
energy levels from the peaks as explained before. The found 
energy levels give the transitions shown in Figure 5. The 
obtained wave lengths 23.49µm and 32.15 µm are in the 
range of mid-infrared laser [51]. This range of wavelength 
has many applications in fields such as bio-chemical detec-
tion, remote sensing, astronomy, communication, biology, 
nondestructive materials evaluation and medicine [52]. 

CONCLUSION 

We studied the effects of changing the electric field in 
every layer of the super- lattice (Figure 1-b) on the wave-
length of the laser resulting from different electronic energy 
transitions. In particular, we considered a superlattice based 
on GaAs/Al0.45Ga0.55As with base electric field F1 = 10 kV/cm 
and graduation step ∆F = 1.26 kV/cm. We found that the step 
graduation ∆F has a significant effect on resonance energy. 
The requirement that difference of energy between the 
ground and first exiting levels must be compatible with the 
optical phonon for the considered semiconductor material. 
These parameters enable us to obtain electronic transitions 
of wavelengths 23.49 µm and 32.15 µm respectively. This 
is very important condition in the design of optoelectronic 
devices based on resonant tunneling, e.g. quantum cascade 
lasers. Other values for the wavelength can be obtained by 
tuning system configuration such as electric field profile and 
the heterostructure geometry and material properties. Being 

Figure 3. Variation of the energy of the intersubband tran-
sition E2 − E1 as function of the graduation step of the elec-
tric field.

 

Figure 4. Transmission coefficient as function of electron 
energy for electric field F1 = 10 kV/cm and field graduation 
step ∆F = 1.26 kV/cm. Thickness of layers are d1 = 3.5 nm, 
d2 = 11 nm, d3 = 3.5 nm, d4 = 2.82 nm, d5 =3.5 nm, d6 = 2.2 
nm and d7 = 3.5 nm. Effective mass of the electron in well 
and barrier regions are mw = 0.067 me and mb = 0.1043 me 
respectively, with me is the electron mass. Conduction band 
offset ∆Ec = 0.477 eV.

Figure 5. Schematic of intersubband transitions for F1 = 10 
kV/cm and ∆F =1.26 kV/cm.
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able to tune the wavelength is very important and useful in 
many potential technological applications. 
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