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ABSTRACT

In this paper, we study the generalized concept of q-calculus with respect to another func-
tion. The 𝜓-quantum Riemann-Liouville fractional integral, 𝜓-quantum Riemann-Liouville 
fractional derivative, and 𝜓-quantum Caputo fractional derivative were introduced. The ex-
istence, uniqueness, and Ulam-Hyers stability of the solutions with the mentioned derivatives 
were established. Finally, some examples are considered to demonstrate the results obtained.
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INTRODUCTION

The theory of fractional calculus caught much attention 
in mathematical fields. Indeed, the theory of fractional cal-
culus is another segment of mathematical analysis designed 
to observe real-world phenomena with its dominant 
non-integer order of operation. From a historical perspec-
tive, the first-order derivative, which is the beginning of 
fractional calculus, is developed from the h-calculus, where 
the h-derivative is defined by

Then, taking the limit of ℎ → 0, we will obtain the well-
known classical derivative as follows.

Thus, the integer-order derivative only displays the rate 
of change of one function around the neighborhood of 
the inspected point. In other words, the displayed rate of 
change conforms to the time scale and is a homogeneous 
mixture. But, in reality, the rate of change, which implies 
most natural phenomena, possesses the time-retardation or 
the time-acceleration in itself. Preferably, the rate of change 
in the real world does not fully harmonize with the time 
scale. And the non-local operators, especially the fractio-
nal operators, are more suitable for dealing with this kind 
of problem. Examples of well-known fractional derivatives 
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are given as follows: The first type is the Riemann-Liouville 
derivative given by

and

is called the left Caputo fractional operator of order α.
By these, fractional calculus became powerful tools for 

describing real world phenomena and caught many appli-
cations from various research fields such as engineering, 
viscoelastics, and modeling (see [1–4, 8, 9, 15, 18, 20–22, 
25–27, 29, 30]). Moreover, fractional calculus also caught 
the attention of enormous numbers of mathematical 
researchers. Tremendous mathematicians proposed several 
useful methods to investigate the existence, uniqueness, 
and stability of the solution. Some examples are Banach’s 
fixed point theorem, Krasnoselkii’s fixed point theorem, the 
method of upper and lower solutions, and Ulam-Hyers sta-
bility (see [10, 11, 17, 23, 28]). 

Since time has moved forward, the development of 
mathematical concepts has never stopped. Various math-
ematicians extended the concept of derivatives from their 
curiosity. Such a concept is called global derivative [7]. 
Firstly, the fundamental extension concept of rate of change 
is extended from the standard rate of change, which is in 
the form of

Clearly, if 𝑔(𝑡2) = 𝑡, the global rate of change is reduced 
to the normal one. Then, the global derivative is defined by

For example, set 𝑔(𝑡) = 𝑡𝛽, the global derivative is said 
to be the fractional derivative as

The physical meaning of the fractal derivative is that the 
rate of change is rescaled by the fractal. In this case, the res-
caled rate respects the function 𝑔(𝑡) = 𝑡𝛽. But, such a rate of 
change still fully conforms to the normal time-flow pattern. 
So, the fractal-fractional operators are the illustration of the 
rate of change that respects 𝑡𝛽 But is not homogeneous with 
a time scale. The two definitions of fractal-fractional deriv-
atives, where α ∈ (0, 1), are as follows. The fractal-fractional 

derivative of order α for the function 𝑓(𝑡) in the sense of 
Riemann-Liouville is given by

Also, the fractal-fractional derivative of the Caputo type 
is defined as

Also, the fractal-fractional derivatives are used to visu-
alize the slope in non-euclidean geometry and to display 
more complex physical problems. One of the examples is 
the fractal-fractional derivative, which was used to investi-
gate the fluid flow (see [6, 12]). Also, in the mathematical 
aspect, the fractal-fractional derivatives are more general 
operators for the reason that such operators can be reduced 
to the fractional derivatives when β = 1. Since we already 
have the definition of the rescaled rate of change, which 
does not totally correspond to the time flow. The fractional 
calculus is developed again to explain the rescaled rate of 
change, which is not homogeneous with the rescaled time. 
Such an operator is called a ψ-fractional derivative [14]. 
Determine that ψ(t) is strictly increased, the 𝜓-Riemann-
Lioville fractional derivative of order α for function 𝑓(𝑡) is 
define by 

 

Also, the left 𝜓- Caputo fractional derivative of order α 
is defined by 

The physical explanation of such a derivative is an exten-
sion of the global derivative, where both rates of change and 
normal scale of time-flow are rescaled by 𝜓(𝑡). In particu-
lar, in this derivative, the rate of change with respect to the 
time flow from any 𝜓(𝑡𝑘) to 𝜓(𝑡𝑘 + 1). In addition, if the 
function 𝜓(𝑡) = 𝑡, then 𝜓-fractional derivatives reduces to 
the classical fractional derivatives.

In 1909, Jackson [13] introduced the quantum calculus, 
where 𝑞-derivative is defined as
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And 𝑞 − integral as

The concepts of q-derivative and q-integral are studied 
through fractional approaches by numerous researchers 
(see [5, 16, 24]). However, the studies on fractional q-calcu-
lus are quite vast, especially for the q-derivative and q-inte-
gral with respect to another function.

In this work, we extend the concept of quantum calcu-
lus as well as introduce a novel definition of 𝜓-quantum 
fractional operators. Also, we study the existence and 
Ulam-Hyers stability of a nonlinear q-difference equation 
with a q-derivative with respect to another function. The 
main advantage of these novel operators is that they can be 
reduced to the q-fractional derivatives, the fractional deriv-
atives, and the ψ-fractional derivatives by varying the value 
of q and the function ψ.

Concept of Normal q-Fractional Calculus
This section will introduce the fundamental concept of 

q-calculus. Firstly, for any q ∈ (0, 1), the q-analog structures 
are defined as follows.

and 

where  with

Definition 2.1. [5] Let 𝑝 ∈ ℝ+ , then 𝐿𝑝  [𝑎, 𝑏] is the space 
of the functions on (𝑎, 𝑏] . Thus, 𝐿𝑝  [𝑎, 𝑏] with 

is a Banach space.
If 𝑝 = 1, then the space reduces to 𝐿𝑞(𝑎, 𝑏).
Definition 2.2. [5] Let  such that 

. Thus,  with

is a Banach space and for any 𝑛 = 1 it reduces to 𝐶[𝑎, 𝑏] , for 
𝑞 = 1 as 𝐶𝑛 [𝑎, 𝑏] .

Definition 2.3. [5] Let 𝐴𝐶𝑞[𝑎, 𝑏] , then 𝑓 ∈ 𝐴𝐶𝑞[𝑎, 𝑏] if 
and only if ∋ 𝜔 ∈ ℝ constant and  such that 

Moreover, for 𝑞 = 1, it reduces to 𝐴𝐶[𝑎, 𝑏] .
Definition 2.4. [5] The space  is a space of 

function on [𝑎, 𝑏]  such that . Also, 
for 𝑞 = 1, it reduces to 𝐴𝐶(𝑛 )[𝑎, 𝑏] 

Definition 2.5. [24] Let 0 < 𝑞 < 1 and 𝛼 > 0, then 

is called the q-Riemann-Liouville fractional integral.
Now, if 0 ≤ 𝛼 , 𝛽 and 𝑓(𝑡) is a function on [0. 𝑇] ,, then 

1. 
2. 
Definition 2.6. [5] Let 𝑛 − 1 < 𝛼 < 𝑛 , the 𝑞-Riemann-

Liouville fractional derivative of the function 𝑓(𝑡) is given 
by 

Definition 2.7. [5] Let 𝑛 − 1 < 𝛼 < 𝑛 , the 𝑞-Caputo 
fractional derivative of the function 𝑓(𝑡) is given by 

.
Theorem 2.8. Suppose 𝑛 − 1 < 𝛼 < 𝑛  𝑓 ∈ 𝐿 [0, 𝑇]  with 

, then 

where 

Theorem 2.8. Suppose 𝑛 − 1 < 𝛼 < 𝑛  𝑓 ∈ 𝐿 [0, 𝑇] with 
𝑓(𝑡) ∈ 𝐴𝐶(𝑛 )[0,  𝑇]  with , then 

where 

Extension of q-Calculus
In the classical q-derivative, the rate of change in quan-

tum sense is defined by

In this case, the global q-derivative can be extended 
from 𝐷𝑞𝑓(𝑡) as
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Thus, the global q-integral with respect to 𝑞𝐷𝑔 is writ-
ten by

Now, according to the concept of iterated integral in 
quantum sense, the multiple q-integral follows [24].

As an analogous structure, the nth –times q-integral 
with respect to 𝜓, where 𝜓(0) = 0,  is 

Thus, we can define the 𝜓-quantum fractional integral, 
where 𝜓(𝑡) is continuous and stricly increase with 𝜓(0) = 0.

Definition 3.1. Let 𝑞 ∈ (0, 1), 𝛼 >  0, and 𝜓′(𝑡) ≠ 0, then 
the 𝜓 − 𝑞-Riemann-Liouvelle fractional integral is define 
as 

By substitution 𝜓(𝑠) = 𝑢,  we gain

  
(1)

Since it is analogous structure to the operator , it is 
clear that  also holds the following properties:

1. 
2. 
It can be seen that the operator is reduced to the defini-

tion 2.5 when 𝜓(𝑡) = 1
Definition 3.2. Let 𝑛 − 1 < 𝛼 < 𝑛 , the 𝜓 − 𝑞 − Riemann-

Liouville fractional derivative of the function 𝑓(𝑡) is given 
by 

It can be seen that the operator is reduced to the defini-
tion 2.6 when 𝜓(𝑡) = 1.

Definition 3.3. Let 𝑛 − 1 < 𝛼 < 𝑛 , the 𝜓 − 𝑞 − Caputo 
fractional derivative of the function 𝑓(𝑡) is defined by 

It can be seen that the operator is reduced to the defini-
tion 2.7 when 𝜓(𝑡) = 1.

To go further than this, it is essential to know the fol-
lowing spaces.

Definition 3.4. The space  is the space 
of function on [𝑎, 𝑏]  such that . 
Moreover, for 𝑞 = 1, gives .. 

Definition 3.5. The space  is a space of func-
tions on [𝑎, 𝑏] , such that .

Definition 3.6. The space  is a space of con-
tinuous function on [𝑎, 𝑏]  such that  
and .

Theorem 3.7. Suppose 𝑛 − 1 < 𝛼 < 𝑛  𝑓 ∈ 𝕃 [0, 𝑇]  with
, then 

Where 

Proof: The proof is trivial. By substituting the integral to 
the form of (3.1) and applying the theorem 2.8, we obtained 
the illustrated result.

 Theorem 3.8. Suppose 𝑛 − 1 < 𝛼 < 𝑛 , 𝑓 ∈ 𝕃𝑞[0, 𝑇]  
with , then 

where 

Proof: The proof is trivial. By substituting the integral to 
the form of (3.1) and applying the theorem 2.9, we obtained 
the illustrated result.

On 𝝍 − Quantum Fractional Difference Equation
The existence and uniqueness of solutions to the follow-

ing equations will be investigated in this part. Now, con-
sider the equation,

  
(2)

The mild solution of the equation (2) is written as

  (3)
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Such a solution is obtained by applying the theorem 3.7 
on (4.1). Next, consider the equation

  (4)

The mild solution of the equation (2) is written as

  (5)

Theorem 4.1. [5] Given that  is a func-
tion, such that 𝜙 ∈ 𝕃𝑞[0,  𝛼 ] ,  then , and 

.

Theorem 4.2. [19] Given that 0 < 𝑞 < 1 and 0 < 𝑠 <
1, the inequality of 𝑞 − gamma function for any 𝑧 > 0 is 
satisfied,

Theorem 4.3. Given that 0 < 𝑞 < 1 and 0 < 𝛼 < 1, the 
inequality of 𝑞− gamma function is true,

Proof: Suppose 𝑧 = 𝛼 and 𝑠 = 1 − 𝛼  into inequality of 
theorem 4.2; gives

Rearrange the inequality, the new inequality holds:

The proof is completed.
To establish the uniqueness of the solution, the follow-

ing assumption is important.
 (A0) There exists 𝑀 > 0,  such that 

for all 𝑢, 𝑣 ∈ 𝕃𝑞[0,  𝑇] .
Theorem 4.2. Suppose that the assumption (A0) 

holds. The equation (3) is a unique solution of (2), and the 

equation (5) is a unique solution of (4) if there exists the 

contraction constant  

Proof: Firstly, Define 𝕋: 𝕃𝑞[0,  𝑇] → 𝕃𝑞[0,  𝑇] by 𝕋𝑧 = 𝑧 . 
The fixed point equation of (3) is written as 

Then,

Also, the fixed point equation of (5) is written as 

Then 

It is clear that the contraction constants of both equations 
are the same. Thus, by Banach contraction theorem, equa-

tion (3) is a unique of (2), and equation (5) is a unique solu-

tion of (4), since . The proof is 
completed.

Ulam-Hyers Stability of Solutıon
In this part, we discuss the Ulam-Hyers stability.
Definition 5.1. Equation (2) is Ulam-Hyers stable if for 

any 𝜖 and for solution 𝑥 ∈ 𝕃𝑞[0,  𝑇]  of the inequality

there exists a constant.𝑐1 >  0 and a solution 𝑢 ∈ 𝕃𝑞[0,  𝑇] of 
the equation (2) with |𝑥 (𝑡) −  𝑢(𝑡)| ≤ 𝑐1𝜀.

Definition 5.2. Equation (4) is Ulam-Hyers stable if for 
any𝜖 and for solution 𝑦 ∈ 𝕃𝑞[0,  𝑇]  of the inequality
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there exists a constant𝑐2 >  0 and a solution 𝑢 ∈ 𝕃𝑞[0,  𝑇] of 
the equation (4) with |𝑦 (𝑡) −  𝑢(𝑡)| ≤ 𝑐2𝜀.

Theorem 5.3. Suppose the assumption (A0) is satisfied, 
then equation (2) is Ulan-Hyers stable.

Proof. Let 𝑥 ∈ 𝕃𝑞[0,  𝑇]  the first inequality in the defini-
tion (5.1). It follows that 

Now, suppose 𝑢 ∈ 𝕃𝑞[0,  𝑇]  be a solution of the equation 
(2). Hence, it satisfies

Thus we obtain 

Denote that , then

Therefore, the equation (2) is Ulam-Hyers stable.
Theorem 5.4. Suppose the assumption (A0) is satisfied, 

then equation (4) is Ulan-Hyers stable.
Proof. Let 𝑦 ∈ 𝕃𝑞[0,  𝑇]  the first inequality in the defini-

tion 5.2. It follows that 

Now, suppose 𝑣 ∈ 𝕃𝑞[0,  𝑇]  be a solution of the equation 
(4). Hence, it satisfies

This implies that 

Denote that , then

Therefore, equation (4) is Ulam-Hyers stable.

EXAMPLE

In this section, we give the examples to illustrate our 
result. Consider the following equations.

Example 1.

   (6)

The mild solution of (6) is written as

  
(7)

It can be seen that . By the mean value theorem, 
we get

This means the contraction constant

Thus, the equation (6) has (7) as a unique solution and 
is Ulam-Hyers stable.

Example 2.

  

(8)

The mild solution of (8) is written as:

  
(9)

It can be seen that  .  By the mean value theorem, 
we get
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This means the contraction constant

Thus, the equation (8) has (9) as a unique solution and 
is Ulam-Hyers stable.

Example 6.3.

  
(10)

The mild solution of (10) is written as:

  
(11)

According to the mean value theorem, it can be seen 
that  as

This means the contraction constant

Thus, the equation (10) has (11) as a unique solution 
and is Ulam-Hyers stable.

CONCLUSION

This paper present the extension concept of the q-calcu-
lus and introduce a new operators,  and . The 
novel-introduced operators are the more general version than 
the classical q-fractional operators. The existence and uniqu-
eness of solutions to the quantum fractional difference equ-
ations are proved by the Banach contraction theorem under 
Lipschitz conditions. Therefore, the Ulam-Hyers stability of 
solutions is demonstrated by the examples considered.
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