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ABSTRACT

Fusarium graminearum is the primary cause of Fusarium head blight (FHB) epidemics world-
wide. The characterization of F. graminearum isolates via physiological, genetic, and transcrip-
tional analysis was aimed in the study. A total of 31 isolates and a reference strain were grown 
on potato dextrose agar (PDA) for 7 days. According to measurements on the 4th and 7th day of 
cultivation, their minimum and maximum mean linear growth rates (LGRs) were calculated 
as 9.62±0.44 to 13.32±0.69 mm/day, respectively. Isolates were grouped as x<10 mm/day and 
10<x<20 mm/day. Amplification products of the internal transcribed spacer (ITS) regions of 
ribosomal RNA (rRNA) coding sequences with 1147 bp were digested with three restriction 
endonucleases in all isolates. Two different restriction profiles were obtained with PstI and 
Eco31I digestions whereas EcoRI yielded single banding profile. Polymerase chain reaction-re-
striction fragment length polymorphism (PCR-RFLP) genotyping was able to distinguish iso-
lates within the same species under four groups. FgMgv1, tri4 and MAT1-1-2 gene expression 
levels of selected one each isolate (FgM1, Fg174 and Fgsh4) with the highest, moderate and 
the lowest LGRs (13.32±0.69, 11.32±0.15 and 9.62±0.44 mm/day, respectively) were examined 
by qRT-PCR. Relative mRNA abundance values of FgMgv1 were 1.715±0.199, 0.089±3.166e-
004 and 0.020±1.408e-004 for FgM1, Fg174 and Fgsh4, respectively. Similarly, these values 
for tri4 were calculated as 0.081±0.009, 0.016±0.004 and 0.002±4.338e-005 and for MAT1-2 
as 2.097±0.484, 1.901±0.195, 1.047±0.136. Expression levels of these genes were significantly 
higher in FgM1 with the highest LGR values. Outcomes showed that PCR-RFLP method may 
become possible to distinguish the members of Fusarium species complex more clearly. More-
over, determined correlation among the LGRs of isolates, their aggressiveness and mycotoxin 
production capacities provided basic knowledge for supporting studies intended to control 
FHB infections.
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INTRODUCTION 

Fusarium graminearum is among the most encountered 
pathogens and the most virulent species in the world as the 
primary cause of Fusarium head blight (FHB). Small grains, 
wheat and barley are primarily affected by this disease which 
is prominent in regions with more humid environmental 
conditions during the flowering season [1, 2]. FHB affects 
the harvest due to floret sterility and reduction in kernel 
weight and size [3]. The fungus also produces significant 
numbers of mycotoxins as secondary metabolites [3-5] in 
the grains, reducing their quality and making them unfit for 
consumption [6]. These mycotoxins mainly include tricho-
thecene and the estrogenic mycotoxin zearalenone (ZEN). 
Upon consumption, they inhibit the synthesis of eukaryotic 
proteins and modify the immune functions in humans and 
animals, posing substantial health risks [7-10]. In humans, 
the mortality rate of systemic Fusarium infections is 
approximately 70% [11-14]. The trichothecene mycotoxins 
produced by F. graminearum include nivalenol (NIV) and 
deoxynivalenol (DON). Genetic profiles have been iden-
tified among the trichothecene compound, called chemo-
types. The acetylated derivative of NIV, 4-acetyl nivalenol 
(4-ANIV), are converted from the NIV chemotype. DON 
chemotypes and sub chemotypes, 3-ADON (3-acetyl 
deoxynivalenol) and 15-ADON (15-acetyl deoxynivalenol), 
can be found in different geographical regions. In America, 
Asia, Africa and Europe where the DON and NIV chemo-
types can be observed, one has been found to be dominant, 
suggesting a relationship between chemotypes and geo-
graphical distribution [15-17]. DON associated with FHB 
was found to be more dominant than NIV in Europe and 
USA, whereas the NIV chemotype was observed to be more 
dominant in the Korean population of F. graminearum [6].

The heterogeneity of the Fusarium genus makes it diffi-
cult to classify at a species level, and such a classification is 
of utmost importance to the identification and management 
of pathogens, causing yield losses across agricultural spaces 
[18, 19]. Traditionally, morphological characters –such as 
the structures and sizes of the macroconidia and microco-
nidia, or the presence or absence of chlamydospores– have 
traditionally been utilized in the identification of this spe-
cies [20]. The Fusarium species classification has also been 
made based on vegetative compatibility groups (VCGs) and 
host specificity and/or host-pathogen interaction [21]. The 
traditional morphological, bio-chemical, and cytological 
methods can sometimes be insufficient for identifying spe-
cies correctly [22]. DNA based molecular approaches pro-
vide faster and more reliable detection [23, 24]. 

The internal transcribed spacer (ITS) sequences of fungal 
ribosomal RNA (rRNA) genes have been extensively used in 
the molecular and ecological studies [22, 25-27]. Since ITS 
is the most evolved region among species within a genus, 
this region can discriminate at species level in Fusarium [22, 
26, 28]. Polymerase chain reaction-ITS-restriction fragment 
length polymorphism (PCR-ITS-RFLP) genotyping makes it 

possible to obtain banding patterns by characterizing isolates 
through the amplification and restriction enzyme digestion 
of this specific genomic regions of rDNA [29, 30]. 

Certain phenotypic traits such as linear mycelium 
growth rate and capacity of mycotoxin production are asso-
ciated the occurrence of molecular markers in Fusarium 
species. Variations in FgMgv1 gene that codes mitogen-ac-
tivated protein kinases which are required for the cell wall 
integrity signaling pathways and trichodiene synthase genes 
can lead to significant differences in phenotypic character-
istics of these species. The relationship between the mat-
ing-type and the radial growth capacity has been previously 
reported [31-35].

The main aim of this study is to utilize the PCR-ITS-
RFLP method to detect polymorphisms among the 31 F. 
graminearum isolates obtained from different regions of 
Iran. Moreover, radial growth rates of these isolates were 
compared to their aggressiveness and mycotoxin produc-
tion capacity by analyzing the expression levels of FgMgv1, 
MAT1-2, tri4 transcripts, which effects on phenotypic char-
acteristics. This study provides further insights into our 
knowledge of Iranian Fusarium isolates both at genotypical 
and phenotypical levels.

MATERIALS AND METHODS

Fungal Isolates, Linear Growth Rate Analysis
A total of 31 monosporic F. graminearum isolates were 

used in this study (Table 1). Samples obtained from diseased 
wheat kernels were collected from different regions of Iran 
[36]. H-11 F. graminearum reference strain was provided 
by Dr. Therese Lee (School of Agricultural Biotechnology, 
Seoul National University). Fungal isolates were main-
tained on a synthetic low nutrient agar SNA and stored in 
20% glycerol at -80 oC. The fungus was grown on potato 
dextrose agar (PDA) media for a period of 7 days at 25 oC 
for the testing of mycelial growth, the extraction of genomic 
DNA and total RNA. Growth measurements were taken on 
the 4th and 7th days of incubation to calculate values of lin-
ear growth rates (LGR) according to protocol described by 
Popiel et al. [37]. Mean LGR and standard errors were cal-
culated using GraphPad Prism 5.0 software, USA.

Genomic DNA Isolation and PCR-ITS-RFLP Analysis
The genomic DNAs of the isolates were extracted by uti-

lizing a kit for genomic DNA isolation (Roche, Switzerland). 
DNA quantification was done using a spectrophotometer 
(Thermo, USA). Specific oligonucleotide primers, ITS5 
(5´-GGAAGTAAAAGTCGTAACAAGG-3´) and NL4 
(5´-GGTCCGTGTTTCAAGACGG-3´) were used for 
amplification [28, 38]. 

PCR was performed in a final volume of 25 µL by using 
50 ng of genomic DNA, 1 × PCR buffer, 1.5 mM MgCl2, 0.2 
µM dNTPs, 10 pmol of each primer and 1 U (0.04 U/µL) Taq 
DNA polymerase (Thermo Scientific, USA). PCR was carried 
out on thermal cycler (BioRad, France). The conditions for 
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PCR amplification include pre-incubation at 94 oC for 5 mins, 
denaturation at 94 oC for 30 s, annealing at 56 oC for 30 s and 
extension for 1 min at 72 oC by 35 cycles. The final extension 
was at 72 oC for 3 mins. The PCR products were run on 1% 
agarose gel in TAE buffer at 70 V, 110 mA for 40 mins and 
stained with ethidium bromide. The images were visualized 
by using a gel visualization system (Avegene, Taiwan). 

The restriction patterns of the ITS regions were pre-
dicted for each of the known restriction enzymes using the 
Restriction Mapper tool (http://www.restrictionmapper.
org/). The most appropriate enzymes were selected. Three 
restriction enzymes, EcoRI, PstI and Eco31I, were used in 
PCR-ITS-RFLP analysis. These enzymes had restriction 
site(s) in the ITS regions of the rRNA gene. Aliquots of PCR 
products (500 ng) were digested with 10 units of restriction 
enzymes EcoRI, PstI and Eco31I (Thermo Scientific, USA) 
according to the manufacturer’s instructions. The digested 
PCR products were electrophoresed in 1.5% agarose gel at 
70 V, 110 mA in TAE buffer and stained with ethidium bro-
mide. The restriction fragments were visualized under UV 
light and photographed. To verify the obtained patterns, all 
restriction analyses were performed thrice.

Total RNA Isolation and cDNA Synthesis
Total RNAs from 7-day-old F. graminearum isolates 

(FgM1, Fg174 and Fgsh4) were extracted using TriPure 
Reagent (Roche, Switzerland). 100 mg of fresh mycelia 
were collected from petri dishes and homogenized with liq-
uid nitrogen and 1 mL TriPure reagent. The homogenized 
sample was transferred to the microtube, and the procedure 

recommended by the manufacturer was followed to iso-
late the total RNA. The isolated RNAs were checked with 
spectrophotometer (Thermo, USA) and agarose gel (1%) 
electrophoresis.

2 µg of total RNAs were used in synthesizing the cDNAs. 
The cDNA conversion was carried out using a commercial 
kit (Takara, Japan). 1 × PrimeScript master mix, 2 µg of 
total RNA and distilled water were mixed in a total of 20 µL 
of reaction volume. The mixture was incubated at 37 °C for 
20 min and at 85 °C for 5 min. 1:4 diluted cDNAs were used 
as the qRT-PCR templates.

Gene Expression Analysis
mRNA transcript abundance of FgMgv1, tri4, MAT1-2 

and β-tubulin was investigated by qRT-PCR analysis in FgM1, 
Fg174 and Fgsh4 isolates showing relative differences in LGR. 
β-tubulin was used as the endogenous control. Sybr Green 
I-based fluorescence assay and QuantStudio 5.0 (Thermo-
Applied Biosystems, USA) system were used in gene expression 
analysis. qRT-PCR mixture was prepared in a reaction volume 
of 20 µL containing 1 × Sybr Green mix (Takara, Japan), 20 
pmol forward primer, 20 pmol reverse primer (Table 2) and 
a 2 µL volume of cDNA equivalent to 1 µg of RNA. Cycling 
conditions were as follows: 95°C for 2 min (pre-denaturation), 
95 °C for 15 s, 57 °C for 15 s, 72 °C for 20 s with 45 cycles and 
melting curve step (95 °C for 15 s with 4.8 °C/s ramp rate and 
65 °C for 1 min with 2.5 °C/s ramp rate) with a common tem-
perature screening. 5-time log series were used in PCR effi-
ciency determination. Two independent biological and three 
technical replicates were used for each experiment. 

Table 1. F. graminearum isolates and their geographic origins, chemotypes, mean linear growth rates (LGRs) and banding 
patterns. SE: Standard error

Code Region Chemotype Mean 
LGR±SE
(mm/day)

Banding 
Pattern

Code Region Chemotype Mean 
LGR±SE 
(mm/day)

Banding 
Pattern

FgM1 Neka NIV 13.32±0.69 B Fgsh4 Neka NIV 9.62±0.44 B
FgM3 Neka NIV 10.27±0.01 C Fgsh5 Neka NIV 11.71±0.44 A
FgM5 Neka NIV 11.52±0.15 D Fgsh7 Neka 3-ADON 11.90±0.28 D
FgM6 Neka NIV 10.75±0.73 D Fgsh10 Neka NIV 13.38±0.73 D
FgM7 Neka NIV 12.32±0.10 C Fgsh13 Unknown 15-ADON 10.64±1.38 A
FgM9 Neka NIV 12.20±0.03 A Fgsh14 Unknown 3-ADON 12.01±0.09 B
FgM10 Neka NIV 9.82±0.98 D Fgsh15 Unknown 3-ADON 12.17±0.57 D
Fg4 Mazandaran NIV 12.95±0.46 D FgT2 Neka NIV 10.94±0.54 D
Fg5 Sari NIV 13.07±0.54 B FgT3 Neka NIV 12.38±0.15 D
Fg18 Moghon NIV 12.95±0.48 D FgT7 Neka NIV 12.95±0.48 D
Fg49 Moghon 15-ADON 13.07±0.54 D FgT9 Neka NIV 12.51±0.22 D
Fg56 Gorgan NIV 11.52±0.15 A FgT10 Neka NIV 12.32±0.15 D
Fg165 Kordkooy NIV 10.29±0.71 D FgT11 Neka NIV 13.26±0.66 D
Fg170 Gorgan NIV 10.52±0.16 D FgT12 Neka NIV 12.57±0.25 D
Fg174 Gorgan NIV 11.32±0.15 B FgT16 Neka NIV 12.70±0.38 A 
Fgsh1 Neka 15-ADON 11.37±0.34 D H-11 Korea 15-ADON 13.01±0.50 A
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Statistical Analysis
The products of RFLP were visually scored as the pres-

ence (1) or absence (0) of a band. A cluster analysis was 
performed to estimate the levels of intraspecific variability, 
using data the rDNA haplotypes defined in Table 3 by the 
PAST ver. 4.07 software. The dendrogram was generated 
based on Jaccard’s coefficient according to the unweighted 
pair-group method with arithmetic average (UPGMA) 
algorithm. 10000 iterations were performed to obtain 
impression of the robustness of the clusters. Column statis-
tics and one-way ANOVA tests of gene expression analysis 
were carried out using the GraphPad Prism 5.0 software.

RESULTS

In vitro Growth Capacity of Isolates
A total of 31 F. graminearum isolates and a reference 

strain were grown on PDA for 7 days. Their radial growth 
capacities were tested on the 4th and 7th days of incubation and 

LGR values were calculated as mm/day. The minimum and 
maximum mean LGR values were 9.62±0.44 and 13.38±0.73 
mm/day, respectively (Table 1). F. graminearum isolates were 
divided into two groups as x<10 mm/day (Group I) and as 
10<x<20 mm/day (Group II) according to LGR values. Only 
two isolates were clustered in Group I, the remaining isolates 
were clustered in Group II. 

Figure 2. Digestion products of 31 samples with PstI restriction enzyme. Two different profiles were observed in agarose 
gel electrophoresis: (1) 386 and 761 bp lengths, (2) 420 and 727 bp lengths. M: 1 kb DNA ladder (Thermo Scientific 
GeneRuler 1 kb DNA Ladder).

Figure 1. Amplification products with 1147 bp using ITS5/NL4 primer pair. M1: 1 kb DNA ladder (Thermo Scientific 
GeneRuler 1 kb DNA Ladder); M2: 100 bp DNA ladder (Thermo Scientific GeneRuler 100 bp DNA Ladder).

Table 2. Oligonucleotide primers used in gene expression analysis

Target Gene Primer Primer Sequence (F/R; 5’-3’) Size (bp)
β-tubulin beta AGGGTCATTACACCGAGGGT/GTACCACCACCAAGAGAGTGG 121
FgMgv1 mgv AGGTTCAACGATTCCGACAG/GACCATTACCCTGAGGCAGA 100
tri4 tri4 ATGGATGAAAGGCTCGAGGT/ACTGTCGGTGCTTTTGACG 139
MAT1-2 mat CGACCTCCCAAYGCYTACAT/TGGGCGGTACTGGTARTCRGG 260

Table 3. Restriction patterns of Fusarium isolates and esti-
mated fragment sizes (bp) of ITS regions of rDNA digested 
with PstI, Eco31I and EcoRI

Banding 
Pattern

PstI Eco31I EcoRI

A 386, 761 310, 849 271, 876
B 386, 761 310, 849 and 404, 720 271, 876
C 420, 727 310, 849 271, 876
D 420, 727 310, 849 and 404, 720 271, 876
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PCR-ITS-RFLP Analysis
In the PCR amplification using ITS5/NL4 primers, a 

1147 bp band was obtained in all the samples (Figure 1). 
Despite PstI having one cutting site at 386 bp position, the 
digestion of PCR products with PstI generated two profiles: 
one with 386 and 761 bp in lengths, the other with 420 and 
727 bp in lengths (Table 1 and 3, Figure 2). 

Eco31I digestion resulted in two different profiles. Of 
the two profiles in agarose gel electrophoresis, one con-
tained two fragments of 310 and 849 bp in lengths, and the 
other, four fragments of 310, 849, 404 and 720 bp in lengths 
(Table 1 and 3, Figure 3). 

Two bands with a length of 271 bp and 876 bp were 
observed in the gel via the EcoRI enzyme. EcoRI digestion 
resulted in an idiomorphic banding pattern in all isolates 

Figure 3. Restriction digestion of ITS regions with Eco31I enzyme resulting in two different banding profiles with 310, 849 
bps (represented by red arrows); and 310, 849 and 404, 720 bps (represented by turquoise arrows). M: 1 kb DNA ladder 
(Thermo Scientific GeneRuler 1 kb DNA Ladder).

Figure 5. ITS regions phylogenies of Fusarium isolates listed in Table 1. Dendrogram was constructed according to UP-
GMA of restriction digestion patterns of ITS with three restriction endonucleases (PstI, Eco31I and EcoRI). A, B, C, D 
represents banding patterns and the numbers at the nodes depict bootstrap values with 10000 iterations.

Figure 4. Gel picture of digestion products with EcoRI restriction enzyme. Expected banding patterns with 271 and 876 
bps were observed in all isolates. M: 1 kb DNA ladder (Thermo Scientific GeneRuler 1 kb DNA Ladder).
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(Figure 4). Overall, a total of four banding patterns, A-, 
B-, C-, D-pattern, were obtained via PCR-RFLP analysis 
(Table 3). Also, the dendrogram constructed from the data 
of rDNA haplotypes is shown in Figure 5. The obtained 
restriction patterns of the ITS regions did not show any 
correlation with the LGR values, geographic origin and 
chemotypes of the isolates.

Gene Expression Analysis
0.5-1 μg/μL of total RNAs (with ∆260/280 = 1.9-2.0 

absorbance values) were converted to cDNAs. E values for 
all genes were found within acceptable ranges (1.9-2.1). 
Relative transcript abundance values for FgMgv1, tri4 and 
MAT1-2 genes were calculated in three isolates and all val-
ues were compared to each other. Isolates with relatively 
higher LGR values showed significantly higher levels of 
FgMgv1, tri4 and MAT1-2 expression (Figure 6, Table 4). 
The alterations for each gene were found statistically signif-
icant (p<0.05). 

DISCUSSION

F. graminearum is the most prominent cause of FHB 
in wheat worldwide. However, the dominant species in 
specific locations can vary according to their hosts, cli-
mate conditions and environmental factors. High levels 

of phenotypical and genotypical diversity can be observed 
among Fusarium species [39, 40]. Popiel et al. [37] showed 
Fusarium isolates could be divided into three groups accord-
ing to their radial growth rate. However, changes in mor-
phological characteristics alone are not enough to reveal 
detailed data on Fusarium characterization. Additional 
methods such as molecular marker techniques can be car-
ried out for a comprehensive analysis of Fusarium isolates. 
Like the IGS-RFLP markers, which has been reported as a 
suitable and rapid technique to determine the intraspecific 
and phylogenetic relationship of Fusarium strains [41, 42], 
ITS regions also have the potential to be a target for the 
investigation of intraspecies discriminations due to greater 
mutation frequency within these regions rather than the 
rDNA sequences. Minor differences in nucleotide composi-
tion within the ITS regions can lead to the different restric-

tion patterns reflecting intraspecific variations [43-48]. In 
the present study, the identification of 31 F. graminearum 
isolates originating from Iran and a reference isolate was 
performed targeting the ITS regions with RFLP-PCR. The 
results showed two different band profiles obtained from 
gel electrophoresis by using the restriction enzyme PstI. As 
expected, 11 F. graminearum isolates showed banding pro-
files with 386 and 761 bp fragments when restricted with 
PstI enzymes. The other 21 samples produced a second 
profile with 420 and 727 bp in lengths. In digestion with 
Eco31I, the first profile was observed on 8 isolates by frag-
ments of 310 and 849 bp lengths. Remaining 23 isolates had 
the second profile consisted of four bands in the gel, with 
band lengths of 310, 849, 404 and 720 bp, respectively. The 
co-occurrence of haplotypes with 310, 849 and 404, 720 bp 
restriction fragment sizes could be caused by heterozygous 
somatic individuals (dikaryons).

The rDNA region that was analyzed showed enough 
polymorphism for the intraspecific Fusarium identifica-
tion according to specific rDNA haplotypes. As a result, it 
was revealed the PCR-ITS-RFLP approach appears to be 
a convenient tool to obtain intraspecific variability within 
F. graminearum. This method has the potential to evalu-
ate groups of closely related species and assign new strains 
rapidly.

Two-way ANOVA Analysis
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Figure 6. Relative mRNA abundance of FgMgv1, tri4 and 
MAT1-2 genes in three selected isolates. Alterations in rela-
tive mRNA abundance were statistically significant for each 
gene (p<0.05).

Table 4. Relative mRNA abundance of three selected isolates. The alteration in the expression level of each gene was found 
statistically significant (p<0.05). SE: Standard error

FgM1 Fg174 Fgsh4

Gene Mean±SE Mean±SE Mean±SE
FgMgv1 1.715±0.199 0.089±3.166e-004 0.020±1.408e-004
tri4 0.081±0.009 0.016±0.004 0.002±4.338e-005
MAT1-2 2.097±0.484 1.901±0.195 1.047±0.136
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The genotyping of species complex by targeting distinct 
genomic regions like FgMgv1 is a powerful approach to 
differentiating species and/or isolates of filamentous fungi 
[35]. FgMgv1 plays crucial roles in the regulation of vege-
tative differentiation, the generation of multiple responses 
during stress conditions and the generation of different 
signaling pathways that are involved in the production of 
mycotoxins. Also, the signaling pathways dealing with the 
high osmolarity glycerol and cell wall integrity was provided 
by constituents of FgMgv1 [49]. Hou et al. [31] reported that 
reductions in hyphal growth and DON production occur as 
consequences of the deletion of MGV1 in F. graminearum. 
The cell walls of mgv1 deletion mutants become hypersen-
sitive to cell wall stressors like lytic enzymes. Their hyphal 
fusion blocked especially on solid media [31]. This study 
recorded a higher FgMgv1 expression level in isolates with 
relatively higher LGR values.

Potential associations between hyphal growth and toxin 
production were examined by evaluating the gene expres-
sion of the tri4 gene, required for trichothecene biosyn-
thesis. This gene regulates several oxygenation reactions 
by coding a multifunctional oxygenase and is one of the 
commonly targeted genes for mycotoxin biosynthesis stud-
ies. Its expression level enables the selection of high or low 
DON producers and non-producer, which is an important 
criterion in plant pathology [50-52]. The expression level of 
the tri4 gene displays a major up-regulation in samples with 
10<x<20 mm/day LGR value.

The correlation between mycelial growth rates and 
expression patterns of MAT genes was also determined 
in the current study. F. graminearum is a homothallic 
(self-fertile) ascomycetous species, the genome of this 
species harbors two mating-type (MAT) genes, MAT1-1 
and MAT1-2. In addition to the MGV1 gene, MAT idio-
morphs that control two sex pheromone-receptors are 
required for the sexual reproduction in F. graminearum. 
In addition to primary roles of MAT genes in mate recog-
nition, they regulate several genes, involved in the stages 
of sexual development [53, 54]. 

CONCLUSION 

The results of this study support the association between 
genotypic and phenotypic traits by indicating a correlation 
between radial growth rate values and the expressions of 
genes related to selected traits of pathogenicity. Current data 
reflects that radial growth rate values could be associated 
with aggressiveness and mycotoxin production. Also, it was 
shown that the PCR-RFLP method may become possible 
to distinguish the members of Fusarium species complex 
more clearly by improving or refining a marker or geno-
typing profile. The outcome of the current study reveals 
the detailed phenotypic and genotypic characterization of 
Fusarium isolates from Iran and provide insights into better 
understand the genetic diversity of Fusarium species. 
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