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ABSTRACT

The asymptotic expansion of the eigenvalue of Sturm-Liouville problem is presented. The 
problem has a symmetric double well potential that is continuous, symmetrical to both the 
midpoint and quarter point of the related interval and non-increasing on the quarter interval.
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INTRODUCTION

We are interested in the following equation

 (1)

In (1), we accept that t is independent variable, y is 
dependent variable of t, real spectral parameter λ is inde-
pendent of t, real potential function q is dependent of t 
and continuous. We consider (1) with the pair of following 
equations

 (2)

and

(3)

(2)-(3) are named as boundary conditions; (2) is com-
posed of real α1, α2, α1́, α2́ constants and β ∈[0,π) in (3). 
The problem (1)-(3) is a boundary value problem. We 
noticed that spectral parameter λ (is also called an eigen-
value) seems not only in (1) but also in (2) and it is desir-
able to determine all values of λ. Problems of this type arise 
routinely in solving partial differential equations, but also 
come up in other applications (see [14], [15] and [18]). 
Walter [26] proves very important theorem for (1)-(3) that 
if we have 

(4)
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(1)-(3) is a self-adjoint problem. The problem (1)-(3) 
described here is one of an eigenvalue problem (or called 
Sturm-Liouville problem) and this type problem is studied 
a lot of researchers (see [3,5,8-12,16,20,22]).

The expectation of this study is to achieve asymptotic 
estimates for eigenvalues of (1)-(3) with symmetric dou-
ble well potential q. The symmetric single and double well 
potentials are very important and famous functions espe-
cially in quantum mechanics (see [1,2,6,7,13,19,21,23,24]). 
We note that, on the related interval, a symmetric double 
well potential means that the function is symmetric not 
only on the whole related interval but also on the half of the 
related interval and non-increasing on the quarter of the 
related interval. So we can write for our continuous q in (1) 
that  is satisfied, mathemati-
cally. We also take without loss of generality that q(t) has a 
mean value zero, that is  and (4) is provided 
by (2).

MATERIALS AND METHODS

We know that if a function is monotone on the related 
interval, the function is also differentiable almost every-
where on that interval [17], so first of all, it should be 
emphasized that the derivative of the potential of our prob-
lem exists. 

Our method is based on [9]. If we reconstruct its main 
theorems for N = 2 in pursuit of our goal, we readily get the 
following results:

Theorem 1. The eigenvalues of (1)-(3) satisfy as λ → ∞
(i) for α2´ ≠ 0, β ≠ 0

(ii) for α2´ ≠ 0, β = 0

where  and  are 
defined by

  

(5)

and

  

(6)

Theorem 2. The eigenvalues of (1)-(3) satisfy as λ → ∞
(i) for α2´ = 0, β ≠ 0

 

(ii) for α2´ = 0, β = 0

RESULTS AND DISCUSSION

Our aim is to find the following asymptotic approxima-
tions for eigenvalues λn of (1)-(3) with symmetric double 
well potential q:

Theorem 3. Let q(t) be double symmetric in (1). 
Then, the eigenvalues λn of (1)-(3) satisfy as n → ∞ 
(i) for α2´ ≠ 0, β ≠ 0

(ii) for α2´ ≠ 0, β = 0

(iii) for α2´ = 0, β ≠ 0

(iv) for α2´ = 0, β = 0

Proof. (i) We compute the terms in Theorem 1-i). 
Firstly, from (5) and (6), we write that
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and

Therefore, if we define

  
(7)

 

and

 
(8)

where

  

(9)

we can rearrange Theorem 1-i) as follows:

  (10)

We will gain the asymptotic formula of the eigenvalue 

from (10). Also, we get ξ by using series expansion

 

By using this ξ in inverse tangent expansion 
, we obtain

  
(11)

For ϖ, we manage similar manner, thus we find that

By putting this calculated ϖ with S1 in (9) into inverse 
tangent expansion, we have that

The potential is symmetric double well in our problem, 
i.e. q(x) is symmetric, q´(x) exists and q´(x) = -q´(a - x). So 
we can write

And then,

that is

  
(12)

Also, since q(x) is double symmetric and q´(x) exists, we 
can compose , then
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hence, we gain

  

(13)

Similarly,

so

  

(14)

By substituting (13) and (14) in (12), we obtain

  
(15)

If we use the last equality in tan-1(ϖ), we can write

  
(16)

Now, we should calculate  to 
compute asymptotic eigenvalues of (10). From (6)

  
(17)

where

and

In the equation (17), since q(t) has a mean value zero, 
the term  is zero. We need to calculate I1, 
I2, I3. Let us adapt Leibniz Formula for these integrals, right 
away:

  

(18)

  

(19)

and since we know q(t) = q(a-t) 

  

(20)

Consequently, in the equation (17), the terms  and 
 get into error term  because of (19) and (20). 

So by using (15) and (18), we reorganize (17) as following:

  

(21)

Finally, substituting (11), (16) and (21) into (10) and 
using reversion, we demonstrate the theorem.

(ii) Similar to (i), we write Theorem 1-ii) as follows:
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Theorem 3-ii) eventually is proved by using substitution 
of (11), (21) and ξ is defined by (7) into the this equation, 
and then reversion.

(iii) We can reformulate Theorem 2-i) as following:

  (22)

where ϖ is defined by (8) and ς is defined by

  
(23)

By using series expansion, ς is found as

By using this ς in inverse cotangent expansion 
, we write that

  
(24)

Substituting (16), (21) and (24) into (22), we verify the 
theorem.

(iv) We reduce Theorem 2-ii) as following:

Here ς is given by (23). Theorem 3-iv) is a result of sub-
stituting of (21) and (24) into the last equation and using 
reversion.

An Example. q(t) = cos2t is an important, double sym-
metric function and used with different types in differential 
equations as potential. For example, Equation (1) with q(t) 
= ∈cos2t is named as Mathieu Equation. We note that ∈ is 
a real parameter and independent of t. Mathieu equation 
occurs in a broad spectrum of physical (for example, see 
[25]). If we express our conclusions Theorem 3 for q(t) = 
cos2t on [0,2π], we get as n → ∞

(i) for α2´ ≠ 0, β ≠ 0

(ii) for α2´ ≠ 0, β = 0

(iii) for α2´ = 0, β ≠ 0

(iv) for α2´ = 0, β = 0
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