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ABSTRACT

The critical lateral buckling load of cantilever beams with IPE cross-section was calculated us-
ing analytical closed-form equations and numerical finite element analyses within the scope of 
the research. The equations suggested in the specifications for simply supported beams were 
used to calculate the buckling load of cantilever beams. The rationality of the values calculated 
due to this is not fully known. In the research, a single loading was made to the shear center 
at the free end of the cantilever beam. Cantilever length and section height were kept vari-
able. As a result, it has been determined that there are partial differences in the analysis result 
obtained from the elastic stability theory and finite element method. Accordingly, the results 
obtained from ANSYS and SAP2000 analyses confirm each other. On the other hand, the 
results obtained using the formulation of Timoshenko and Gere, the calculation results made 
according to the AISC and DCCPSS regulations, and the results obtained from the LTBeam 
program confirm each other. However, it differs from the FEA analysis due to the cantilever 
beam length’s shortening and the section height increase. Thus, to obtain accurate and reliable 
results in the buckling load calculation of cantilever beams, the equations used in analytical 
calculations were optimized according to finite element analysis (FEA) results. As a result of 
the study conducted according to the error criteria, it was determined that the updated equa-
tion results gave similar results to the FEA results.
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INTRODUCTION 

In the lateral buckling calculations of steel beams, the 
design methods of simply supported and cantilever beams 
given in the regulation are the same. However, due to the 
different end support conditions in cantilever beams, the 

maximum displacement and buckling angle occur at the 
free ends instead of the middle of the span. The buckling 
modes obtained as a result of this situation are different 
from each other. Therefore, the recommended methods for 
simple support beams are not suitable for cantilever beams 
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[1]. AISC or DCCPSS regulations do not guide the lateral 
buckling of cantilever beams [2,3]. This research aims to 
provide rational information against lateral buckling in the 
design of steel cantilever beams. In general, the concepts 
of lateral buckling of beams and lateral-torsional buckling 
are explained in many books in the literature. Accordingly, 
the elastic lateral torsion buckling load under the bending 
effect of simple supported beams can be solved with the 
help of closed-form equations [4–7]. However, analytical 
solutions become very complex when beam end conditions 
differ from simple support. Therefore, numerical approx-
imations such as the finite element method are needed to 
solve basic differential equilibrium equations [8–10]. The 
load-displacement relationships of I-section steel cantile-
vers were investigated by [11]. Under the effect of a single 
load at the free end, numerical and experimental results 
were compared. Accordingly, estimating the buckling load 
by numerical analysis with the ABAQUS program during 
the design phase was considered an acceptable method. 
Studies on unsymmetrical I-section cantilever beams were 
carried out by Samanta and Kumar [12]. In the studies, 
single load, distributed load, and moment were affected at 
the beam end. With the help of the ABAQUS program, the 
buckling load was investigated by giving lateral support to 
the top flange, bottom flange, and both. Accordingly, it has 
been found that if loading is made to the lower flange, the 
side support position does not significantly affect the can-
tilever beam buckling capacity. Özbaşaran et al. presented 
alternative design methods for calculating the buckling 
load and movement of I-section cantilever beams under the 
effect of lateral-torsional buckling [13]. In the critical elastic 
lateral-torsional buckling load calculation, the results of the 
closed-form equations, the analysis made by ABAQUS, and 
the experimental findings were found in accordance with 
the results of the proposed design method. Ma et al. con-
ducted a study on elastic lateral buckling of unsymmetrical 
I-section cantilever beams [14]. According to the Rayleigh-
Ritz method, while the profile flanges remain linear during 
buckling, it is assumed that the web part is susceptible to 
distortion. The accuracy of the proposed method has been 
verified with the help of the NASTRAN program, which 
calculates according to the finite element method. The 
elastic lateral torsional buckling behavior of tapered beams 
with different support conditions has been investigated by 
Andrade et al. [15]. A better understanding of the tapered 
beam behavior was provided by providing concrete expla-
nations for some of the results regarded as illogical in the 
research. Zhang et al. conducted studies on the lateral-tor-
sional buckling behavior of I-section cantilever beams with 
stiffening plates [16]. An analytical solution of the dimen-
sionless buckling equation of these beams was obtained 
with the help of dimensionless parameters. The dimension-
less critical moment formula developed with the help of 
mathematical optimization analysis software (1stOPT) has 
been verified with ADINA finite element software. A sim-
ple and useful calculation method for practical engineering 

calculations is presented in the research. The results of 
the finite element analysis of the elastic lateral-torsional 
buckling strength of light steel cantilever beams under the 
effect of transverse loading were shared by Kurniawan and 
Mahendran [17]. Accordingly, the applicability of modifi-
cation factors in various steel design codes was reviewed, 
and the design approach in the AS4100 code was proposed 
for light steel cantilever beams subjected to transverse 
loading. The study carried out by Trahair stated that the 
lateral buckling formulations suggested in the design reg-
ulations for simply supported beams with uniformly dis-
tributed loads are not suitable for cantilever beams [7]. 
His study aimed to develop simple approximate methods 
in the design of cantilever beams against inelastic lateral 
buckling. Within the scope of the research conducted by 
Yılmaz and Kıraç [18], an equation that can be used to cal-
culate the critical torsional buckling load of the IPE and 
IPN simple support beams in European norms was pre-
sented [18]. The slenderness of the profile section and the 
effect of loading positions were taken into account in their 
study. Consistent results were obtained among analytical, 
parametric, and numerical solutions. It has been found that 
the lateral torsional buckling load of European IPE and 
IPN beams can be determined by the presented equation 
and used safely in design procedures. I-section composite 
beams are discussed by Prombut and Anakpotchanakul 
[19]. It has been observed that the bending results obtained 
from the shear deformation theory and finite element anal-
ysis in beams under uniformly distributed load applied to 
the upper flange are compatible with each other. It is stated 
that thanks to the validated finite element procedure, real-
istic results can be obtained based on curvature, taper, 
and buckling along the length of an I-section. Özbaşaran 
and Yılmaz introduced shape optimization for symmetri-
cal I-section beams with tapered flanges and/or web [20]. 
The optimization procedure was created using the Big 
Bang - Big Crunch algorithm and Deb’s constraint handling 
method. The designs made were verified by finite element 
analysis. It has been shown that tapering in absolute con-
ditions may not significantly affect the material economy. 
Trahair stated that the design methods given in regulations 
such as AS4100, BS595, Eurocode3, and AISC for lateral 
buckling of cantilever beams are modifications of the rules 
introduced according to simple support beams [1]. The 
accuracy of these modifications was found to be question-
able, and it was emphasized that they could not fully guide 
the design. A different method has been developed, and the 
solution has been summarized with examples.

Minimizing the cost and weight of products has been an 
area of interest for many industries. It is among these sec-
tors in reinforced concrete and steel structures. Complex 
situations arise in reinforced concrete and steel structures 
design due to the nonlinear structure behavior and related 
design equations. In addition, the behavior of the designed 
sections under the effect of dynamic loads also creates 
complex situations. These problems are sizing optimization 
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problems [21]. Previous optimization studies on reinforced 
concrete and steel structures are based on weight and cost 
[22–30]. Shaqfa and Orbán improved the position of the 
upper and lower flexural member, simultaneously mini-
mizing cost, weight, and cost-weight [31]. Hayalioğlu and 
Değertekin presented a genetic algorithm for designing the 
optimum cost of nonlinear steel frames with semi-rigid con-
nections subject to the displacement and stress restrictions 
of the American Institute of Steel Construction-Allowable 
Stress Design (AISC-ASD) regulation [23]. As a result of 
their studies, they stated that more economical optimum 
frames could be obtained by adjusting the stiffness of the 
connections in frame systems. Omkar et al. used Particle 
Swarm Optimization (PSO) to minimize the weight and 
total cost of the composite component to achieve a certain 
strength of composite components [32]. Barraza et al. used 
Genetic Algorithm (GA) and Particle Swarm Optimization 
(PSO) to minimize the structural weight of steel structures 
exposed to earthquake loads and to improve the structural 
performance of buildings [33]. As a result of their studies, 
they emphasized that they generally obtained better solu-
tions with PSO in structural buildings compared to the GA 
approach. Another issue of sizing optimization is to maxi-
mize the cross-section against torsion and fracture [34–37]. 
Cho optimized the design of a composite cylindrical shell 
against buckling and fracture and stated that the optimized 
composite cylindrical shell exhibits significantly improved 
mechanical properties compared to the traditional design as 
result of the study [36]. Many optimization studies are also 
done in Excel−Solver [37–39]. Taki optimized the dimen-
sions of the Z-hardened panel under compression load with 
Excel-solver to update Farrar’s work. As a result of the work, 
he developed design charts for Z-hardened panels and pro-
duced a design guide [40]. Msabawy and Mohammad used 
the Generalized Reduced Gradient (GRG) algorithm in the 
Solver Add-on tool in Microsoft Excel to perform first-order 
elastic structural analysis of semi-rigid steel portal frames 
[37]. Msabawy and Mohammad used the GRG algorithm to 
optimize cross-sectional areas in cold-formed steel frames 
[39]. As a result of their studies, they stated that it proved 
the reliability and validity of the GRG algorithm in terms of 
the ability to obtain optimum configurations of optimized 
sections. In addition to the sizing optimization problem in 
reinforced concrete and steel structures, there are modi-
fication studies of theoretical equations. Perelmuter and 
Yurchenko determined the optimum height and weight of 
the tower by changing various equations depending on the 
capacity of the wind-powered generator’s generated energy 
[30]. Based on the concepts of the Euler-Bernouli beam 
theory and fracture mechanics, Vosoughi reformulated the 
management equation using genetic algorithms (GA) and 
particle swarm optimization (PSO) techniques [41]. They 
showed the convergence, efficiency, and accuracy of the 
optimization method with the finite element method by 
solving different examples. Le et al. took into account the 
Adaptive Neuro-Fuzzy Inference System (ANFIS) using the 

GA and PSO to assess the buckling damage of steel columns 
subjected to axially compressive load [42]. They concluded 
that the ANFIS-PSO method significantly outperformed 
the ANFIS-GA method with a correlation factor of 0.929. 
Jung et al. working to assess the tensile characteristics of 
high strength steel, used Artificial Neural Networks (ANN) 
and back-propagated linear regression [43]. They asserted 
that using a deep learning system produced predictions of 
yield strength, yield ratio, and tensile strength with high 
accuracy. Cuong-Le et al. introduced a PSO-optimized 
Support Vector Machine (SVM) to identify deterioration 
in truss and frame constructions [44]. Additionally, they 
contrasted the suggested approach with ANN, Deep Neural 
Networks (DNN), and Adaptive Neuro-Fuzzy Inference 
System (ANFIS). They concluded that the damage and 
the degree of damage for truss and frame structures were 
successfully identified using the proposed strategy, out-
performing the other techniques. Das and Das have used 
Random Forest Regressor (RFR) to evaluate the funda-
mental natural frequencies of isotropic plate structures 
[45]. They have been considered as square, rectangular, 
thin, and thick plates whose materials have been selected 
as Structural Steel, Aernet 100, Al 7108, and Al 2024 for 
the isotropic plates. They claimed that the suggested strat-
egy accurately predicts the fundamental natural frequency 
and is an adequate model for such a scenario. Özbayrak et 
al. conducted buckling load calculations using ANSYS on 
European I-section cantilever beams reinforced with trans-
verse stiffener plates at various intervals [46]. They have 
created formulations employing multiple linear regression 
analysis and multigene genetic programming techniques to 
estimate the found load values more effectively. According 
to their statement, the lateral buckling stress according to 
the transverse stiffener plate spacing for European I-section 
cantilever steel beams can be calculated with formulations 
created using computer technology.

In the construction literature, more studies use 
machine-learning models of steel I-beams and cantilever 
beams. Artificial intelligence has enabled the suggested for-
mula to successfully forecast the residual lateral buckling 
capacity of steel I-beams, according to research on artificial 
neural networks [47]. In a different study, a deep learning 
classifier was used to determine the damage status of can-
tilever beams in an invasive-free manner with the maxi-
mum level of accuracy [48]. Artificial neural networks were 
used to assess the twisting performance of a steel I beam 
that was externally attached to sheets with polymer matrix 
reinforcement enhanced with various fibers to reduce the 
experimental work [49]. Additionally, the web-post buck-
ling shear strength of cellular beams and the load-bearing 
capability of castellated steel beams were predicted using 
artificial neural network models [50,51]. Thanks to a data-
base provided by a study that included 475 finite element 
models, the lateral torsional buckling strength was cal-
culated using an artificial neural network and the mul-
tiple regression approach [52]. An adaptive neuro-fuzzy 
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inference system was used to develop empirical equations 
for estimating natural frequencies from a finite element 
dataset [53]. Additionally, form optimization makes use of 
artificial intelligence. Using a genetic algorithm, the stiff-
ness of cold-formed steel sections was increased [54]. 

Within the scope of the research, analytical calcula-
tions were compared with the results of numerical analy-
sis. It has been observed that the calculations made with 
the LTBeam program are compatible with the analytical 
calculation results. Critical lateral buckling loads found 
from analytical equations and LTBeam program results are 
consistent in this regard. However, it has been determined 
that there are some differences between these and the FEA 
results depending on the profile cross-section and length. 
In the studies in the literature, it is stated that the analysis 
made according to the finite element method with the help 
of developing computer technology is more accurate than 
the calculations made with closed-form equations. First, 
using two different FEA programs, lateral buckling loads 
calculated in the ANSYS program were verified with the 
help of the SAP2000 program. Later, studies were carried 
out to harmonize the results from the equations given in 
Timoshenko, Gere, and other Regulations with FEA results 
(ANSYS). Using optimization techniques, the equation 
given by Timoshenko and Gere and formulations given in 
AISC and DCCPSS regulations were successfully updated.

MATERIALS AND METHODS

In the case of a single load acting on the shear centre at 
the free end of the IPE section cantilever beam, the lateral 

buckling load was calculated and compared with five dif-
ferent methods. These are, respectively, elastic stability 
theory, regulation on design, calculation, and construction 
principles of steel structures (DCCPSS), LTBeam program, 
SAP2000, and ANSYS software (Figure 1). In the calcula-
tions, the material elasticity modulus was 210000 MPa, the 
shear modulus was 80769 MPa, and the Poisson ratio was 
0.3. The section heights of the cantilever beams used in the 
study include all IPE profiles in the range of 100-600 mm. 
Cantilever beam lengths were evaluated in five different 
sizes: 1000 mm, 1500 mm, 2000 mm, 2500 mm, and 3000 
mm.

Calculation According to Elastic Stability Theory
The critical value of the lateral buckling load for can-

tilever beams is calculated as given in Equation 1 by 
Timoshenko and Gere [6], depending on the boundary 
conditions of the beam endpoints.

	 	
(1)

The factor γ2 in this expression is a dimensionless coef-
ficient obtained according to the ratio L2C/C1. The values of 
this coefficient are as given in Table 1.

As the L2C/C1 ratio increases, the γ2 factor approaches 
the 4.013 limit value. This value corresponds to the critical 
load of thin rectangular beams. If ratio L2C/C1 takes values 
greater than 40, the approximate factor γ2 is calculated as 
given in Equation 2.

Figure 1. Lateral-torsional buckling condition.

Table 1. Factor γ2 for I-section cantilever beams

L2C/C1 0.1 1 2 3 4 6 8
γ2 44.3 15.7 12.2 10.7 9.76 8.69 8.03
L2C/C1 10 12 14 16 24 32 40
γ2 7.58 7.20 6.96 6.73 6.19 5.87 5.64
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(2)

Calculation According to AISC and DCCPSS Regulations
In the case of lateral torsion buckling boundaries, the 

positive contribution of the bending moment distribution 
along the length between the points supported by the lat-
eral stability connection is taken into account by the coeffi-
cient given in Equation 3. The regulations stipulate that this 
coefficient in cantilever beams is taken as Cb = 1 with an 
approach on the safe side. However, since it was determined 
that this approach has a limited contribution, the expres-
sion given in Equation 3 was used within the scope of the 
research.

	 	 (3)

The critical stress value of I-cross section elements with 
double symmetry axes, whose web and flange parts are com-
pact and under the effect of bending around their strong 
principal axes, are calculated with the expression given in 
Equation 4 according to the lateral-torsional buckling.

	 	
(4)

The effective radius of inertia used in the critical stress 
value formulation is as given in Equation 5.

	 	
(5)

Accordingly, the critical value of the lateral-torsional 
buckling load of the I cross-section elements under the 
bending effect is calculated as given in Equation 6 in the 
regulations.

	 	
(6)

Calculation According to Finite Element Method
Finite element models of beams were created with the 

help of ANSYS, SAP2000 and LTBeam software. Critical 
lateral buckling load analysis was performed with the help 
of the created models. Accordingly, three-dimensional solid 
modelling of cantilever beams was created in the analysis 
made with ANSYS software (Figure 2) The material type of 
the created models was defined as SOLID187. In the anal-
ysis made according to linear elastic material properties, 
cantilever beams were divided into finite elements with an 
average range of 2.5 ~ 5 cm. Fixed support was defined at 
the nodal point on one side of the beam endpoints, and a 1 
N unit loading was made to the shear centre on the other 
free end. The analysis type was selected as Eigen Buckling 
and the value calculated as buckling load factor at the end 
of the analysis gave the buckling load.

According to the analysis made by utilizing the SAP2000, 
the cantilever beam body and flange elements are defined 
using the Shell Element. (Figure 3). In the models, flange 
and web joints were combined at 90o angles. Cantilever 
beams with linear elastic material properties were divided 
into finite elements with an average range of 2.5 ~ 5 cm. 
Fixed support properties were assigned to the nodes on one 
side of the beam endpoints. The shear centre at the other 
free end was loaded with 1 N unit loading. P-Delta effects 
were taken into consideration by selecting the analysis type 

a) L=3000 mm b) L=2500 mm c) L=2000 mm d) L=1500 mm e) L=1000 mm

Figure. 2. Cantilever beams modelled in ANSYS program.

a) L=3000 mm b) L=2500 mm c) L=2000 mm d) L=1500 mm e) L=1000 mm

Figure 3. Cantilever beams modelled in the SAP2000 program.
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as Buckling. As a result of the analysis, the value obtained as 
the buckling load factor gives the buckling load value.

LTBeam is free software developed by CTICM (Center 
Technique Industriel de la Construction Métallique) in 
France, used only for the calculation of critical moments 
[55]. Critical elastic lateral-torsional buckling loads can 
also be determined through one-dimensional finite ele-
ment models, where beams are modeled according to their 
actual geometry using LTBeam software. (Figure 4).

The program can perform buckling analysis of both 
simply supported beams and cantilever beams. Limited 
documentation on LTBeam made interpretation of results 
difficult. However, several reliable sources Access Steel 
(2005) and ECCS (2006) refer to LTBeam as a useful pro-
gram [56,57].

Optimization With Microsoft Excel Solver
Solver is the simplest and most understandable com-

puter software used to find the optimal result. Solver is an 
add-in command available in Microsoft Excel. Although 
it is a command included in Excel, the user must enable 
this command. Solver is used to find the largest or small-
est value of the target cell in a formula. Constraints can be 
developed to the values to be used in models to be devel-
oped with the Solver and these restrictions can be applied 
to cells [Excel - help]. Using the lateral buckling load values 
of the IPE profile obtained from ANSYS program with the 
help of Excel Solver;
•	 The factor γ2 in Equation 1 given by Timoshenko and 

Gere was calibrated [6].
•	 Fixed coefficients in Equation 4 given in AISC and 

DCCPSS regulations were calibrated.

The steps taken for calibration were listed below.
1.	 The Solver command is opened from the Data tab.
2.	 The target cell is determined by choosing one of val-

ues such as mean absolute error (MAE), root mean 
square error (RMSE), and mean absolute relative error 
(MARE).

3.	 The Largest is chosen if the target cell value is desired 
to be as large as possible, and the Smallest is chosen if 
it is desired to be as small as possible. If certain value is 
desired to be obtained, the value option is selected, and 
its value is written in the box. Since the error rate was 
desired to be the least in the study, the smallest option 
and RMSE value were chosen.

4.	 A variable cell must be determined for each coefficient 
in the equations to be calibrated. Each variable cell must 
have a direct or indirect relationship with the target cell. 
In the study, cells containing the values of coefficients 
a, b and c were selected as variable cells. Before starting 
the optimization process, a random number must be 
defined to the coefficients a, b and c.

5.	 Solver is based on Nonlinear Generalized Restricted 
Gradient (GRG), Simple LP and expansion methods. 
The nonlinear Generalized Restricted Gradient (GRG) 
method was used in the study.

6.	 After clicking the Solve command, the equation was 
solved by the data solver and the expansion coefficients 
that give the smallest error value were calculated.

Error Criteria
Error criteria were used to test the accuracy of the cal-

ibrated equations for the estimation of the lateral buck-
ling load values of the IPE profiles. Commonly used error 

Figure 4. Cantilever beams modelled in LTBeam program.
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criteria in the literature are Mean Absolute Relative Error 
(MARE), mean absolute error (MAE), mean square error 
(MSE), root mean square error (RMSE), determination 
coefficient (R2) [58,59]. In this study, MARE, MAE, MSE, 
RMSE and R2 error criteria were used. The fact that MARE, 
MAE, MSE and RMSE values are closest to zero and R2 
value is closest to one reflects the accuracy and power of the 
prediction. In addition, the Nash-Sutcliffe efficiency coeffi-
cient (NSE), proposed by Nash and Sutcliffe [60], has been 
used in many studies to measure estimation accuracy. The 
variance of the estimated data compared to the variance of 
the observed data is a normalized statistic that determines 
the relative size. NSE expresses to what extent the observed 
and predicted data converge [60]. MARE, MAE, MSE, 
RMSE and NSE values were calculated from the formulas 
given in Equation 7-11.

	 	
(7)

	 	 (8)

	 	
(9)

	 	
(10)

	 	 (11)

RESULTS AND DISCUSSION

Analytical and Numerical Findings
The critical lateral buckling load of I-section cantilever 

beams was calculated using a total of five different meth-
ods. The calculated buckling loads were obtained by apply-
ing a single load to the centre of shear at the free end of 
the beam. Although there are differences when the profile 
section increases and cantilever length decreases, the buck-
ling load values calculated using the closed form equations 
and LTBeam program are close to each other. On the other 
hand, when the profile section is reduced and the cantile-
ver length is increased, differences occur in the FEA results. 
However, the buckling load values calculated with the help 
of FEA generally confirmed each other. As a result, the 
results of the first three methods and the last two methods 
given in Table 2 are quite different from each other. This 
can be clearly seen in Figure 5.

Table 2. Lateral buckling load values calculated with different methods

Profile Type Beam Length 
(mm)

Timoshenko
(kN)

AISC- DCCPSS
(kN)

LTBeam
(kN)

ANSYS
(kN)

SAP2000
(kN)

IPE 100 1000 40.18 39.36 40.44 37.44 11.23
IPE 120 74.03 71.94 73.83 69.76 35.05
IPE 140 127.87 125.38 126.77 113.22 66.57
IPE 160 209.12 208.97 207.47 121.78 98.05
IPE 180 329.12 334.59 324.40 194.45 132.95
IPE 200 497.23 516.59 493.53 203.16 170.85
IPE 220 777.32 800.37 749.76 297.87 219.68
IPE 240 1147.63 1197.99 1110.30 319.21 273.74
IPE 270 2146.85 1961.40 1771.40 479.70 353.49
IPE 300 4032.70 3103.90 2755.10 492.58 459.98
IPE 330 5881.12 4446.00 3923.00 676.51 557.10
IPE 360 8524.97 6392.55 5608.20 732.06 688.53
IPE 400 11748.40 8958.72 7819.20 854.77 832.07
IPE 450 16266.63 12778.91 11093.00 1070.22 1029.68
IPE 500 22154.84 18114.12 15656.00 1279.80 1254.17
IPE 550 29518.50 24797.49 21391.00 1551.16 1479.64
IPE 600 39465.72 34300.18 29512.00 1974.66 1830.02
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Table 2. Lateral buckling load values calculated with different methods (continued)

Profile Type Beam Length 
(mm)

Timoshenko
(kN)

AISC- DCCPSS
(kN)

LTBeam
(kN)

ANSYS
(kN)

SAP2000
(kN)

IPE 100 1500 15.09 15.26 15.12 14.96 0.93
IPE 120 26.78 26.45 26.95 26.04 4.20
IPE 140 45.22 44.05 45.43 41.66 14.30
IPE 160 73.31 71.32 73.39 62.39 33.28
IPE 180 113.51 110.87 112.95 85.32 59.11
IPE 200 171.76 168.80 170.06 114.40 86.15
IPE 220 256.21 256.34 254.27 146.67 119.08
IPE 240 375.37 380.28 372.89 189.23 153.26
IPE 270 586.02 609.80 580.41 234.77 200.59
IPE 300 916.78 952.75 884.95 296.73 263.50
IPE 330 1287.18 1359.60 1251.80 366.42 324.36
IPE 360 1784.93 1945.82 1775.40 452.60 410.13
IPE 400 2835.20 2718.34 2458.80 556.62 506.80
IPE 450 4704.91 3860.99 3457.90 692.70 644.73
IPE 500 7111.55 5457.19 4850.20 861.62 814.93
IPE 550 9850.19 7460.46 6604.60 1076.95 985.93
IPE 600 13685.47 10302.54 9079.00 1330.55 1273.27
IPE 100 2000 7.68 8.10 7.71 8.48 0.15
IPE 120 13.44 13.63 13.47 13.46 0.68
IPE 140 22.29 22.02 22.38 21.88 2.55
IPE 160 35.55 34.89 35.83 34.14 7.62
IPE 180 54.40 52.93 54.61 49.01 19.25
IPE 200 81.83 79.58 81.76 69.19 37.20
IPE 220 121.28 118.55 121.17 93.14 62.89
IPE 240 178.48 174.29 176.73 125.52 90.56
IPE 270 273.25 273.28 270.66 157.69 127.37
IPE 300 413.59 420.70 406.92 203.64 172.04
IPE 330 579.28 597.66 572.20 250.62 215.13
IPE 360 821.91 850.50 806.09 315.28 275.33
IPE 400 1148.93 1183.51 1110.20 383.08 341.32
IPE 450 1596.85 1671.94 1548.30 501.56 435.68
IPE 500 2190.69 2354.40 2158.40 623.86 554.99
IPE 550 2930.69 3212.96 2928.90 756.28 678.74
IPE 600 4677.88 4427.48 4010.90 940.96 882.53
IPE 100 2500 4.62 5.04 4.64 4.66 0.04
IPE 120 5.01 8.32 7.98 8.06 0.16
IPE 140 13.03 13.20 13.09 13.14 0.61
IPE 160 20.70 20.60 20.79 20.36 1.90
IPE 180 31.10 30.68 31.44 30.21 5.34
IPE 200 46.58 45.66 46.85 43.58 12.55
IPE 220 68.88 66.93 69.00 60.83 27.17
IPE 240 100.34 97.60 100.30 83.97 47.49
IPE 270 153.44 149.81 152.05 111.37 78.71
IPE 300 227.62 227.15 226.39 145.40 115.46
IPE 330 320.72 321.15 317.08 183.84 150.84
IPE 360 448.53 454.21 444.46 230.65 198.14
IPE 400 619.07 629.30 609.04 287.02 248.05
IPE 450 847.93 883.59 843.75 357.03 318.18
IPE 500 1204.29 1238.94 1170.30 446.34 407.00
IPE 550 1637.31 1687.23 1583.30 562.43 500.25
IPE 600 2235.76 2319.16 2160.30 703.94 650.52



Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 973−987, August, 2024 981

The existing analytical method formulations have been 
optimized according to the FEA analysis results obtained 
by utilizing the ANSYS program. There are two main rea-
sons for choosing the buckling load values to be referenced 
in FEA calculations from the ANSYS program instead of 
SAP2000. Firstly, cantilever beams are modelled as Solid 
elements in the ANSYS program and as Shell elements in 
SAP2000. Secondly, in SAP2000, while the web and flanges 
are joined perpendicular to each other at an angle of 90o; 
The web and flange joints of the models in ANSYS are cur-
vilinear and exactly the same as the real profile geometry. 
For these reasons, the ANSYS program was used for the 
buckling load values taken as a reference within the scope of 
the research. The comparisons of the buckling load values 
of the IPE series cantilever beams of five different lengths 
calculated by five different methods are as given in Figure 5.

Optimization Technique Findings with Microsoft Excel 
Solver

In the second stage of the study, the a and b coefficients 
in Equation 12 were calibrated with the help of Excel−Solver, 
keeping the relationship between the γ2 factor and the L2C/
C1 ratio. The analyses have been conducted on a computer 
with an AMD Ryzen 7 PRO 3700 8-Core 3.60 GHz proces-
sor and 8 GB RAM. In addition, the c, d and f coefficients 
in Equation 13 of AISC and DCCPSS Regulations were 
calibrated with the help of Excel−Solver. At this stage, two 
different calibration processes were carried out using two 
different equations. The graph of the relationship between 
the ratio L2C/C1 given in Table 1 and γ2 is given in Figure 

6. As can be seen in Figure 6, there is an exponential rela-
tionship between the ratio L2C/C1 and γ2 as in Equation 12. 
Therefore, the coefficients of Equation 12 were optimized 
to determine the γ2 factor. In the advancing age of science, 
there are new methods for calculating lateral buckling load 
values as well as the Timoshenko and Gere [6] equation. 
The c, d and f coefficients of Equation 13 were calibrated 
by adhering to AISC and DCCPSS Regulations and using 
the lateral buckling load values obtained from the ANSYS 
program.

	 	 (12)

	 	 (13)

c= 1, d= 0.078, f= 0.5

The coefficients of Equation 12 and Equation 13 were 
calibrated using Excel Solver so that the RMSE error cri-
terion was the smallest. The coefficients of the calibrated 
equations are given in Table 3. As seen in Table 3, the new 
coefficients are different from each other. Comparison 
criteria for two different calibrated equations are given 
in Table 4. The approximate MSE values of the calibrated 
equations were obtained as 890, MARE values of 50 and 

Table 2. Lateral buckling load values calculated with different methods (continued)

Profile Type Beam Length 
(mm)

Timoshenko
(kN)

AISC- DCCPSS
(kN)

LTBeam
(kN)

ANSYS
(kN)

SAP2000
(kN)

IPE 100 3000 3.08 3.44 3.08 3.11 0.01
IPE 120 3.29 5.62 5.25 5.32 0.05
IPE 140 3.54 8.81 8.53 8.49 0.19
IPE 160 13.37 13.61 13.44 13.88 0.59
IPE 180 20.06 20.00 20.18 19.94 1.69
IPE 200 29.90 29.54 29.96 28.98 4.18
IPE 220 43.54 42.73 43.88 41.22 10.21
IPE 240 63.10 61.89 63.59 59.46 21.10
IPE 270 95.81 93.21 95.68 80.80 43.34
IPE 300 142.61 139.31 141.52 107.71 73.51
IPE 330 200.10 196.04 197.65 139.41 104.75
IPE 360 276.97 275.53 276.06 186.65 145.01
IPE 400 380.57 380.04 376.98 222.18 186.48
IPE 450 524.17 530.18 519.59 287.56 242.90
IPE 500 727.46 739.97 717.59 348.59 313.45
IPE 550 979.80 1005.44 968.32 452.78 387.04
IPE 600 1319.75 1378.19 1317.40 551.96 504.52
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Figure 5. Lateral buckling loads of cantilever beams of different lengths.
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MAE values of 24. NSE error value was used because of 
high MSE values. An NSE value greater than 0.9 indicates 
that the estimate is correct. The scatter plots in Figures 7-8 
are quite good as there is no deviation from x=y (45°).

In recent years, machine learning research in the con-
struction industry have used a maximum of 3 performance 
criteria [47,49,50,52,53,61–65]. The equations created 
utilizing the six performance criteria have undergone a 

thorough analysis in this study. Six performance param-
eters were used to objectively assess the Caliber models’ 
performance.

The correlation coefficient R has been utilized as a per-
formance criterion in machine learning studies in the field 
of construction the most frequently in recent years [49, 50, 
52, 53, 63–67]. The R value for these studies in the literature 
was discovered to be somewhere in the range of 0.9, and 

Figure 6. Relationship between L2C/C1ratio and γ2

Table 3. Coefficients for calibrated models

Models a b
Caliber Model1 3.896068277 0.419127105

c d f
Caliber Model2 0 0.160835288821455 0.919080100568975

Figure 7. Comparisons of the prediction and ANSYS values of the buckling load for Calibration Timoshenko and Gere 
equation
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the correlation between the actual predicted value and the 
observed value was only somewhat stronger. Additionally, 
several researchers used the R2 criterion to assess the effec-
tiveness of the models they created for machine learning 
investigations [47,50,53,61]. The R2 criteria was determined 
to be more than 0.9 in these investigations. This finding 
demonstrates that prediction and observation have a stron-
ger link. The determination factor R2 criteria was utilized 
in this work instead of the R coefficient, which would have 
been misleading for assessing the performance of the mod-
els. Tables 4 show that the Caliber models’ findings meet 
the R2 criteria of larger than 0.9 and that there is a stronger 
connection between prediction and observation. 

The amount of time that passed while the suggested 
strategy was being used is another important finding. It 
took 0.173 seconds to optimize the coefficients. With the 
developing technology, the proposed approach for calculat-
ing the buckling load is not only accurate but also signifi-
cantly faster. Thus, decreases the amount of computation 
necessary to carry out such an analysis.

Excel−Solver has been used in optimization studies 
in the field of construction in recent years [36,38–40]. 
However, it was used for the first time in the field of con-
struction in the optimization of the coefficients of an equa-
tion in this study.

CONCLUSION

Analytical solutions become very complex when the 
beam end conditions are a cantilever beam with a fixed 

support as opposed to a simple support. Therefore, numeri-
cal approaches such as the finite element method are needed 
to solve the fundamental differential equilibrium equa-
tions. Despite having various types of smart automating, 
finite element types, and executed analyses, two identical 
models examined using the finite element method in two 
distinct verified software’s should have produced findings 
that are equal. Because the mesh cannot be adjusted, the 
usage of isoperimetric components on SAP2000 can only 
be used to make initial estimates for early phases of study. 
Finite elements with more nodes or integration points are 
not an option in SAP2000. ANSYS software, which is more 
suitable for research than design, has been preferred in 
finite element analysis due to the advantage of the selection 
and full control of different finite element meshes, where 
different behaviour rules of materials can be applied, and 
possible complex analysis applications.

In today’s steel specifications, no distinction is made in 
the design and calculation methods of simply supported 
beams and cantilever beams under the buckling effect. 
However, the buckling zones on the steel beams change 
according to the end support conditions. Considering these 
situations in differential equilibrium equations creates 
quite complex problems in generating analytical solutions. 
Instead, existing analytical formulas were optimized for 
cantilever beams with reference to finite element analysis. 
Thanks to the results obtained, the buckling load calcu-
lation of cantilever beams can be successfully solved with 
the help of renewed closed form equations. This renewed 

Figure 8. Comparisons of the prediction and ANSYS values of the buckling load for Calibration AISC - DCCPSS

Table 4. Comparison criteria of modified equations

NSE MAE MARE MSE RMSE R2
Caliber Model1 0.994 24.30 51.56 892.56 29.88 0.995
Caliber Model2 0.994 24.29 51.47 891.46 29.86 0.995
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formula can make very high accuracy predictions, which 
can be an alternative to finite element analysis.

The proposed approach in optimizing the coefficients 
has taken only 0.173 seconds, it can be concluded that 
employing Excel-Solver reduces the computational cost that 
is required to conduct for buckling loads of IPE-Section. 85 
numerical calculations were conducted to determine the 
buckling load of IPE cantilever beams with varied length. 
Therefore, only cantilever beams with the IPE section are 
compatible with the calibrated equation created using the 
Excel-Solver. Other I-section cantilever beams require a 
significantly wider variety of numerical analysis. In further 
studies, experimentally validate the proposed method and 
its results is recommended for buckling load calculations.

NOTATION

Pcr	 Critical buckling load
L	 Beam length
E	 Modulus of elasticity
Iy	 Moment of inertia about the weak axis
C	 Torsional stiffness
C1	 Distortion stiffness
Cb	 Moment correction coefficient
Fcr	 Critical Stress
Lb	 Length of element not supported by stability 

joint
its	 Effective radius of inertia
J	 Torsional constant
Cw	 Distortion constant
Wex	 Elastic section modulus about the strong axis
ho	 The distance between the centres of gravity of 

the cross-section flanges
γ2	 a dimensionless coefficient 
Mmaks	 The absolute value of the maximum bending 

moment along the length of the laterally unsup-
ported beam

MA	 The absolute value of the bending moment at 1/4 
point of the laterally unsupported beam length.

MB	 The absolute value of the bending moment at 1/2 
point of the laterally unsupported beam length.

MC	 The absolute value of the bending moment at 3/4 
point of the laterally unsupported beam length.

BLp	 Buckling load estimated by calibrated models
BLansys	 Buckling load obtained from ANSYS analysis
n	 Length of the series
BLansys	 Average of the buckling load obtained from 

ANSYS analysis
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