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ABSTRACT

In regression analysis, joint modeling mean and dispersion is an essential tool in absence of 
the variance homogeneity. Moreover, it is known in the literature that the generalized normal 
(GN) distribution has some features that provide flexibility in modeling thanks to its shape 
parameter. This paper proposes a joint location and scale model of the GN distribution for 
modeling location and scale in the presence of heteroscedasticity. We provide maximum like-
lihood (ML) estimators for the parameters of the proposed model. We also give an estimation 
procedure to estimate all parameters simultaneously. For the application, some simulation 
study scenarios and a real-life example are carried out to prove the estimation performance of 
the proposed model.
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INTRODUCTION

The normal distribution is the most widely recognised 
distribution because it has a wider range of applications in 
many fields. However, it cannot be a tractable model in case 
of deviation from normality. In such cases, it may be more 
appropriate to model, for example, a speech signal with a 
Laplacxe distribution. Therefore, the generalized normal 
(GN) distribution or the generalized Gauss distribution, 
having a wider application area, was proposed to solve this 
modeling problem. Moreover, the GN is a generalization of 
the Laplace, normal and uniform distributions. This enables 
GN distribution to be applied for modeling different types 
of data sets. It proves its usefulness in many sciences and 
engineering application areas such as adding watermarks to 

images [1], modeling speech signals [2], atmospheric noise, 
subband coding of audio and video signals [3], impulsive 
noise, the direction of arrival, modeling of the independent 
component analysis [4], blind signal separation [5] and so 
on. The GN distribution is the bell-shaped curve and its 
probability density function (pdf) has the peaky shape of 
the maximum. Furthermore, the distribution is symmetric 
to the location and the pdfs can be formed differently by 
shape and scale parameters [6]. This indicates that the pdf 
of GN distribution enables heavy-tailedness in a wide limit. 
It means that this family of distributions may have a thicker 
or thinner tail thickness than the normal distribution.

On the other hand, joint mean and dispersion models 
have been very important instruments for modeling het-
eroscedastic data sets in homogenous populations. There 
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is extensive literature on joint mean and dispersion models 
which are summarized by [7] and [8]. This study also offers 
a chronicle summary of these studies in the following to 
locate their contribution to the existing literature. 

Firstly, [9] offered a log-linear transformation on vari-
ance parameter to handle heteroscedasticity. Following 
him, the likelihood ratio test when heteroscedasticity 
exists was introduced by [10]. Later, modeling the vari-
ance heterogeneity for the normal regression was pro-
posed by [11]. The parameters of the normal regression 
were estimated by [12] thanks to the restricted ML when 
the variances are dependent on log-linearly. By adopting 
generalized linear modeling, [13] explored an extension 
of the response surface approach to Taguchi-type robust 
designs. Subsequently, parameter estimation of the joint 
location and scale model of the t distribution was sug-
gested by [14]. Joint modeling of mean and scale param-
eters, when the data set is longitudinal, was offered using 
a robust approach by [15]. In 2011, the same researchers, 
[16], examined Bayesian inference for joint modeling of 
location and scale parameters of the t distribution when 
the data set includes longitudinal observations. The joint 
modeling of the location and scale parameters of the SN 
distribution was examined by [17]. Recently, [7] investi-
gated the joint modeling of location, scale, and skewness 
parameters of the skew Laplace normal (SLN) distribu-
tion, and [8] proposed joint location, scale, and skewness 
models with the mixtures of SLN distributions. Following 
them, some authors are interested in variable selection 
for the joint location and scale models. For instance, [18] 
considered variable selection for the inverse Gamma dis-
tribution and [19] investigated variable selection for the 
lognormal distribution. The variable selection for the joint 
location and scale model of the skew-normal (SN) [20,21] 
distribution was introduced by [22] and then followingly, 
[23] suggested variable selection for the parameters of 
joint location and scale model of the skew student-t-nor-
mal (STN) distribution. After that, [24] examined the 
variable selection for student-t regression models. [25] 
introduced variable selection in the joint location, scale, 
and skewness models of the SN distribution, and [26] pro-
posed variable selection in the joint location, scale, and 
skewness models of the STN distribution. 

The previous studies analyse the various versions of 
the GN distribution that have been obtained by adding the 
shape parameter to the normal distribution. The version 1 
family is called exponential power distribution or general-
ized error distribution, a parametric family of symmetrical 
distributions. The exponential power distribution was first 
defined by [27] and later redefined as the GN distribution 
by [28]. Parameter estimation of the GN distribution using 
various estimation methods has been examined by [29], 
[28], and [30]. However, the location and scale param-
eters of the GN distribution were not considered in joint 
modeling; this paper proposes parameter estimation for 
the joint location and scale models of the GN distribution 

introduced by [28], see also [31]. This model can also be 
used as an alternative model for the joint modeling location 
and scale parameters of the normal and Laplace distribu-
tions since the GN distribution is more flexible than these 
distributions for modeling data sets.

The design of the paper is considered as follows. Section 
2 defines the GN distribution and provides some proper-
ties of this distribution. Section 3 offers the parameter esti-
mation thanks to the ML estimation method for the joint 
location and scale models of the GN distribution. Section 
4 is devoted to applications, including a comprehensive 
simulation study and a real-life example to demonstrate 
the applicability of the proposed model. Section 5 presents 
some conclusions related to this study. 

Generalized Normal Distribution
We assume that the random variable Y has a GN distri-

bution with location parameter μ, scale parameter σ, and 
the shape parameter s considered in [28]. Its pdf is given 
below:

  
(1)

Here, Γ(⋅) denotes the gamma function. We note that the 
pdf given in (1) has two special cases according to s values. 
If s = 1 in equation (1), the distribution will be a Laplace 
distribution. On the other hand, if s is equal to 2 in equation 
(1), a normal distribution can be obtained. We further dis-
play Figure 1 to demonstrate the different pdf plots of the 
GN distribution. It can be observed from Figure 1 that the 
distribution is leptokurtic and heavy-tailed for small values 
of shape parameter s. 
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Figure 1. The pdf examples of the GN distribution for μ =0, 
σ = 1, and different parameter values of s.
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The cumulative distribution function (cdf) of GN dis-
tribution presented by [28] has the following form:

  (2)

  (3)

where  is the incomplete 
gamma function. We can give the following the nth moment 
of the GN distribution about the origin for each positive 
n integer introduced by [28] to investigate some distribu-
tional measures of the GN distribution:

  
(4)

We can obtain the expectation, variance, kurtosis, and 
skewness of the GN distribution as follows thanks to the nth 
moment of the GN distribution given in (4):

  

(5)

We see that the centre of the distribution is equal to μ 
and the skewness is zero. Besides, since variance and kur-
tosis depend on values of s, these measures become smaller 
concerning the shape parameter s.

Joint Location and Scale Models of the GN Distribution
Let us define the following joint location and scale mod-

els of the GN distribution: 

  (6)

where , y = (y1, y2, …, yn)T is the 
vector of observed responses, xi = (xi1, …, xip)T and zi = (zi1, 
…, ziq)T are the observed covariates corresponding to yi, β 
= (β1, …, βp)T is the p × 1 vector of unknown parameters in 
the location model, and γ = (γ1, …, γq)T is the q × 1 vector 
of unknown parameters in the scale model. Here, zi may 
consist of some or all variables in xi, and other variables 
not involved in xi; so, the location and scale models may 
include different covariates, or some of the same covariates, 
and belong to common covariates differently. Let x = (x1, 
…, xn)T and z =(z1, …, zn)T be the covariate matrices. 

Parameter Estimation of Joint Location and Scale Models 
of the GN Distribution

This part is devoted to finding ML estimators of 
parameters of joint location and scale models of the GN 

distribution. Consider the random sample (yi, xi, zi), i = 
1,2,…, n  from the model given in (6), and the parameter 
vector as θ = (βT, γT, s)T. Maximization of the following 
log-likelihood function of the joint location and scale mod-
els of the GN distribution gives the :

  

(7)

where . For the estimation pro-

cess, we obtain the score function vector

  (8)

where

  
(9)

  
(10)

and information matrix 

  

(11)

where

  

(12)

  

(13)

  

(14)
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(15)

Here, δ(∙) is the delta Dirac function. 
The following algorithm will allow us to find desired 

ML estimators for θ. In this algorithm, first, the estimators 
for β and γ are found and then the estimator for the param-
eter s is obtained using these estimators.

Algorithm:
Step 1. Set the starting values as 

.
Step 2. Use  β(k), γ(k) where ; 

and compute the following (k + 1)th estimates:

  (16)

Using the calculated  find  that maximizes 
the following equation:

  
(17)

Step 3. Repeat these 2 steps until convergence is 
achieved. 

NUMERICAL STUDIES

This section provides some simulation examples and a 
real data example to show the modeling performance of the 
joint location and scale models of the GN distributions. The 
computational details for the applications can be summa-
rized as follows.

Notes on Implementation
i) All numerical studies including simulation and real 

data examples were performed using the MATLAB R2017b 
software.

ii) The stopping rule is taken as 10-6 for all numerical 
examples.

iii) The starting points for the proposed algorithm 
given in Section 3 are set as the actual parameter values as 
the starting points to carry out the estimation procedure in 
the simulation study. Further, estimation results of the het-
eroscedastic normal regression model by [11] were taken as 
initial values for all of the location and scale models in the 
real data example. 

iv) Random sample generation from the GN distribu-
tion can be summarized in the following steps. We note that 
this generating procedure was proposed by [32].

- Sample X from the gamma distribution with parame-
ters 1/s and γ:

  (18)

-Generate a random number from the independent 
random variable Z that takes the values -1 and +1 with 0.5 
probability:

  (19)

- Generate random numbers from the GN distribution 
with parameters μ, σ,  and s using the following relationship:

  (20)

Simulation Examples
This section offers two simulation scenarios to investi-

gate the estimation performance of the joint location and 
scale models of the GN distributions. These two simulation 
scenarios include the cases when the parameter s is known 
and when it is unknown. The performance of the estima-
tors is measured in terms of the bias and the mean squared 
error (MSE). The formulas for these measures are given by:

  
(21)

where θ represents the true parameter value,  shows the 
estimate of θ for the jth simulated data and  
The simulation studies are replicated N = 1000 times. The 
sample sizes (n) are considered 50, 100, 150, and 200 for all 
simulation scenarios. 

The random sample generation is done by using the 
following location and scale models of the GN distribution

where all covariate vectors xi and zi are generated from 
uniform distribution Uniform(-1,1), which are indepen-
dent. For all simulation scenarios, the true parameter values 
are arbitrarily taken as β = (1,0.7,0.5) and γ = (-0.5, 0.3,0.2).  

Scenario 1. This simulation scenario was conducted 
when the shape parameter s is known and simulation 
results are presented in Tables 1-4. These tables provide 
bias and MSE values of estimates for the sample sizes 50, 
100, 150, and 200 and s = 1, 2, 3 and 5. We remind again 
that the GN distribution reduces to the Laplace distribu-
tion if s = 1 and reduces to the normal distribution if s = 
2. We also include results for different parameter values 
of s to examine the flexibility of the GN distribution. The 
simulation results given in the tables can be summarized 
as follows: The proposed parameter estimation algorithm 
for parameter estimation works well to obtain parameter 
estimates. Moreover, the MSE values decrease as the sam-
ple size increases, i.e. the parameter estimates are consis-
tent. According to bias values, we observe that estimates are 
close to true parameter values as the sample size increases. 
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Table 1. Values of bias and MSE for estimates (Scenario 1 when s = 1)

Model 
s = 1

n 50 100 150 200

Bias MSE Bias MSE Bias MSE Bias MSE
Location β1 -0.0019 0.0112 -0.0006 0.0046 -0.0034 0.0031 0.0003 0.0020

β2 0.0071 0.0385 -0.0023 0.0139 -0.0007 0.0092 -0.0001 0.0063
β3 0.0093 0.0361 -0.0014 0.0137 0.0013 0.0088 -0.0010 0.0059

Scale γ1 -0.0632 0.0206 -0.0303 0.0086 -0.0189 0.0051 -0.0181 0.0040
γ2 0.0334 0.0746 0.0105 0.0255 0.0108 0.0158 0.0040 0.0117
γ3 0.0215 0.0646 0.0048 0.0256 0.0048 0.0163 -0.0037 0.0118

Table 2. Values of bias and MSE for estimates (Scenario 1 when s = 2)

Model 
s = 2

n 50 100 150 200

Bias MSE Bias MSE Bias MSE Bias MSE
Location β1 -0.0024 0.0111 -0.0014 0.0052 -0.0030 0.0028 -0.0016 0.0023

β2 -0.0025 0.0335 -0.0004 0.0143 -0.0040 0.0096 0.0025 0.007
β3 -0.0056 0.0374 0.0023 0.0144 -0.0007 0.0082 -0.0029 0.0067

Scale γ1 -0.1904 0.0711 -0.1424 0.0369 -0.1258 0.0268 -0.1060 0.0192
γ2 -0.1356 0.172 -0.1240 0.0657 -0.1241 0.0467 -0.1265 0.0388
γ3 -0.0801 0.1501 -0.0854 0.0575 -0.0938 0.0386 -0.0820 0.0291

Table 3. Values of bias and MSE for estimates (Scenario 1 when s = 3)

Model 
s = 3

n 50 100 150 200

Bias MSE Bias MSE Bias MSE Bias MSE
Location β1 -0.0017 0.0120 0.0060 0.0039 -0.0003 0.0026 -0.0024 0.0019

β2 -0.0032 0.0360 -0.0011 0.0122 0.0000 0.0085 -0.0006 0.0061
β3 -0.0092 0.0326 0.0045 0.0116 0.0002 0.0072 -0.0039 0.0059

Scale γ1 -0.2106 0.0840 -0.2610 0.0793 -0.2441 0.0669 -0.2338 0.0601
γ2 -0.0883 0.1448 -0.1250 0.0555 -0.1365 0.0413 -0.1174 0.0312
γ3 -0.0908 0.1630 -0.0788 0.0424 -0.0869 0.0311 -0.0885 0.0254

Table 4. Values of bias and MSE for estimates (Scenario 1 when s = 5)

Model 
s = 5

n 50 100 150 200

Bias MSE Bias MSE Bias MSE Bias MSE
Location β1 -0.0155 0.0456 -0.0011 0.0080 0.0013 0.0020 -0.0016 0.0012

β2 0.0205 0.1822 -0.0025 0.0487 0.0021 0.0090 0.0010 0.0033
β3 -0.0055 0.1030 0.0058 0.0400 0.0017 0.0073 -0.0003 0.0036

Scale γ1 -0.1717 0.4134 -0.2554 0.2390 -0.2676 0.2236 -0.2818 0.0835
γ2 -0.1068 0.4007 -0.1186 0.1470 -0.1136 0.0626 -0.1202 0.0349
γ3 -0.0880 0.2802 -0.0785 0.1986 -0.0715 0.1789 -0.0882 0.0274
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Scenario 2. This scenario provides parameter estima-
tion when s is unknown. In this simulation example, we 
estimate all parameters simultaneously using the estima-
tion algorithm given in sub-section 3.1. The estimation 
results are given in Tables 5 and 6 for different sample sizes 
(n = 50, 100, 150 and 200) and the parameters s = 3 and 5. 
These tables consist of values of bias and MSE for estimates. 
From the tables, we observe that the proposed algorithm 
works effectively to estimate all parameters simultaneously. 
Furthermore, MSE values become smaller as the sample 
size increases.

Martin Marietta Data Set
This part is devoted to a real-life example of the appli-

cability of the proposed joint location and scale models of 
the GN distribution. The Martin Marietta data set consists 
of the excess rate of gains of the Marietta company and an 
index for the excess rate of gain for the New York Exchange 
(CRSP). For this data set, the company’s gains and the 
CRSP index were evaluated monthly for five years. This 
data set was used by [33] for normal regression analysis. 
Furthermore, in the Martin Marietta data set, the dense and 
irregular observations observed in the tails offer a robust 
method, and therefore, [34] and [35] proposed to use the 
Martin Marietta data set to model the skew t regression 
model. This data set was investigated by [14] for parameter 

estimation of the joint location and scale model based on 
the t distribution. Besides, [7] analysed this data set to esti-
mate parameters of the joint location, scale, and skewness 
model based on the skew Laplace normal distribution. 

In the literature, this data set is mostly considered for 
the case of heteroscedasticity. In order to prove that the 
Martin Marietta data set does not satisfy the homoscedas-
ticity assumption, we will apply the Breusch-Pagan test pro-
posed by [36]. The hypotheses for this test are as follows:

H0: Homoscedasticity is present (the residuals are dis-
tributed with equal variance),

H1: Heteroscedasticity is present (the residuals are 
not distributed with equal variance)

The p-value of the Breusch-Pagan test is 2.36 × 10-11 
which proves that heteroscedasticity is present. This result 
is also supported with the help of the plot of residuals ver-
sus fitted values given in Figure 2. Therefore, since the 
Martin Marietta data contains heteroscedasticity, we con-
sider using this data set to demonstrate the modeling per-
formance of the joint location and scale models of the GN 
distribution. We will also compare the proposed model 
with the joint location and scale models of the normal and 
Laplace distributions. 

Table 5. Values of bias and MSE for estimates (Scenario 2 when s = 3)

Model 
s = 3

n 50 100 150 200

Bias MSE Bias MSE Bias MSE Bias MSE
Location β1 0.0138 0.0456 0.0039 0.0080 -0.0027 0.0020 -0.0010 0.0012

β2 -0.0003 0.1822 -0.0048 0.0487 0.0010 0.0090 0.0019 0.0033
β3 -0.0119 0.1030 -0.0030 0.0400 0.0004 0.0073 -0.0007 0.0036

Scale γ1 -0.3039 0.4134 -0.2660 0.2390 -0.2408 0.2236 -0.2269 0.0835
γ2 -0.1017 0.4007 -0.1345 0.1470 -0.1283 0.0626 -0.1334 0.0349
γ3 -0.0463 0.2802 -0.0802 0.1986 -0.0806 0.1789 -0.0899 0.0274
s 0.2677 0.1136 0.3144 0.1127 0.3256 0.1124 0.3279 0.1118

Table 6. Values of bias and MSE for estimates (Scenario 2 when s = 5)

Model 
s = 5

n 50 100 150 200

Bias MSE Bias MSE Bias MSE Bias MSE
Location β1 -0.0048 0.0456 0.0060 0.0080 -0.0001 0.0020 -0.0001 0.0012

β2 -0.0277 0.1822 0.0064 0.0487 0.0007 0.0090 -0.0084 0.0033
β3 -0.0019 0.1030 -0.0052 0.0400 0.0045 0.0073 0.0033 0.0036

Scale γ1 -0.0516 0.4134 -0.1084 0.2390 -0.1497 0.2236 -0.2273 0.0835
γ2 -0.0805 0.4007 -0.0873 0.1470 -0.0813 0.0626 -0.1230 0.0349
γ3 -0.0944 0.2802 -0.0773 0.1986 -0.0874 0.1789 -0.0730 0.0274
s 0.7400 3.0065 0.6307 2.7641 0.6569 2.7588 0.6403 2.7203
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We will use the following information criteria for com-
paring the models:

  (22)

where l(⋅) represents the maximized log-likelihood, m 
shows the number of estimated parameters, cn indicates 
the penalty term, and n is the number of observations. For 
the penalty term, we set cn = 2 for the Akaike Information 
Criterion (AIC) introduced by [37], cn = log (n) for 
Bayesian Information Criterion (BIC) proposed by [38], 

cn = 0.2√n for Efficient Determination Criterion (EDC) 
defined by [39], and cn = log n + 1 for the Consistent Akaike 
Information Criterion (CAIC) proposed by [40]. 

Table 7 gives the estimation results, maximized like-
lihood, and the information criteria for the compared 
models. We note that the estimation procedure for the 
joint location and scale models of the Laplace distribu-
tion is obtained by modifying the estimation results for 
the Laplace regression model given by [41] and studied by 
[42]. The estimation procedure for the joint location and 
scale models of the Laplace distribution is summarized and 

Table 7. Estimation results for the compared models using the real-life data set.

GN Normal Laplace 

Estimate Estimate Estimate
Location model β0 0.0032 -0.0021 -0.0202

β1 1.3846 1.3121 1.2465
Scale model γ0 -5.3844 -5.3676 -2.1581

γ1 18.0275 18.4708 -14.1811
s 2.1700 - -

Information criteria 137.4844 126.1511 110.8426

AIC -264.9689 -244.3023 -213.6851
CAIC -249.4971 -231.9249 -201.3077
BIC -254.4971 -235.9249 -205.3077
EDC -267.2229 -246.1055 -215.4883

Note: The bold texts indicate the highest value of the maximized likelihood and the lowest values of the information criteria.

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Fitted values

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

R
es

id
ua

ls

Plot of residuals vs. fitted values

Figure 2. The plot of residuals versus fitted values.
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presented in the Appendix. From Table 7 we observe that 
the maximum log-likelihood value and the smallest infor-
mation criteria values are provided from the joint location 
and scale models of the GN distribution. This result is also 
supported by Figure 3, where the best fit is obtained by the 
joint location and scale models of the GN distribution.

CONCLUSION

This article offered parameter estimation of the joint 
location and scale parameters of the GN distribution, which 
is a helpful tool in modeling heteroscedasticity. This model 
is also more flexible than joint location and scale models of 
normal and Laplace distributions. We provided an estima-
tion methodology for the joint location and scale model of 
the GN distribution and proposed an algorithm to estimate 
parameters of interest simultaneously. We performed some 
simulation examples for the cases where the shape parame-
ter is known and unknown. From the simulation examples, 
we observed that the proposed algorithm works accurately in 
estimating all parameters. We also provided a real-life data 
set to demonstrate the modeling performance of the joint 
location and scale model of the GN distribution according 
to joint location and scale models of normal and Laplace 
distributions. The results of the real-life data set showed that 
the best model is obtained from the joint location and scale 
model of the GN distribution when compared with the other 
models in terms of information criteria. Finally, alternatively, 
the newly proposed GN joint location and scale model can 

be chosen to model heteroscedasticity over the normal and 
Laplace joint location and scale models.
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APPENDIX

We assume that the following model has the form of 
joint location and scale models of the Laplace distribution: 

  (23)

where y = (y1, y2, …, yn)T shows the vector of observed 
responses, xi = (xi1, …, xip)T and zi = (zi1, …, ziq)T are the 
observed covariates, β = (β1, …, βp)T is the parameter in the 
location model, and γ = (γ1, …, γq)T is the parameter in the 
scale model. 

In this section, we will give the summarization of the 
estimation procedure with the help of the EM algorithm 
proposed by [43] for the joint location and scale models of 
the Laplace distribution given in (23). The steps are given 
with the following algorithm:

EM Algorithm:
1. Set the starting point for 

2. E Step: Using the given values calculate

and obtain the following objective function:

3. M Step: Maximize the objective func-
tion concerning parameters. Use the current 

values  and compute 
.

Here, the first derivatives of β and γ can be found as: 

  
(24)

  
(25)

Further, the second derivatives of β and γ can be 
obtained as: 

  
(26)

  
(27)

  
(28)

Then, the Fisher information matrix is

4. Repeat these E and M steps until convergence is met.
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