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ABSTRACT

Diabetic retinopathy (DR) is a retinal condition that occurs due to diabetes mellitus and might 
lead to blindness. Early identification and treatment are crucial to slow down or prevent vi-
sion loss and degeneration. However, categorizing DR into several levels of severity remains a 
challenging problem due to the complexity of the disease. The Diabetic Retinopathy Grading 
System divides retinal pictures into five severity categories: No DR, Mild Non-Proliferative 
Diabetic Retinopathy (NPDR), Moderate NPDR, Severe NPDR, and Proliferative Diabetic 
Retinopathy. In this study, three deep learning models, namely ResNet50, Densenet201, and 
InceptionV3, were utilized for the classification of the APTOS 2019 diabetic retinopathy im-
age dataset. For the individual experiments of the models, transfer learning with fine-tuning 
and layer freezing was applied. Additionally, a decision-level fusion idea using soft voting 
was implemented across the three pre-trained models. The maximum accuracy achieved for 
the classification of the original imbalanced dataset was 85% with the fusion idea. To further 
improve the classification performance, a balancing technique based on oversampling with 
augmentation operations was applied to the original APTOS 2019 dataset. The proposed ap-
proach, which involves the idea of soft voting-based fusion across models along with data 
balancing, improved the classification performance and achieved an accuracy of 90%.
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INTRODUCTION 

Diabetic Retinopathy (DR) is one of the critical diabetes 
complications that cause blindness for the diabetic patients. 
In order to prevent blindness’s effect on further diabetic 
stages, eye screening tests should be performed repeat-
edly and periodically. But the diagnosis of DR over the 
color fundus images obtained by retinal cameras, requires 

experienced clinicians to identify the presence and also, the 
severity level of the disease [1]. Additionally, after the deter-
mination of DR, the regional analysis of each fundus image, 
which is a highly time-consuming process for clinicians, 
should be performed for the classification of the severity 
level. In this regard, computerized analyze systems can be 
used to alleviate these concerns and provide much more 
effective and accurate DR diagnose systems [2]. Most of the 
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computer’s analyzes based on autonomous systems employ 
deep learning-based techniques which achieve comprehen-
sive and high-performance outputs such as in the diagnosis 
of COVID19 [3]. morphological analysis of sperm [4], clas-
sification of the melanoma [5] etc. 

Deep Learning (DL) is a field of machine learning that 
considers methods especially for analyzing the images 
using deep convolutional neural networks [2]. The “deep” 
term refers to the depth of the model which indicates the 
number of hidden layers in the network. The key factor in 
the performance of deep networks is the data. Deep learn-
ing achieves higher accuracy compared to the traditional 
machine learning techniques when the network is fed with 
enough data. The core of DL architecture consists of arti-
ficial neural networks (ANNs). In contrast to the tradi-
tional ANN, which remains quite limited, DL utilizes the 
Convolutional Neural Networks (CNNs) which are the 
special type of ANN with convolution layers designed to 
process pixel data (images) [6]. One of the most effective 
benefits of using DL is to use the raw data without the need 
of applying an extra feature extraction step [7].

The important features which summarize the image 
can be automatically extracted by the model convolution 
filters during the learning process in DL [6]. In the med-
ical applications, due to this automatic feature extraction 
benefit of DL, pre-information about the disease and the 
significant effects of the disease over the images is no lon-
ger a requirement for developing an analyzing system. The 
feature extractor component in deep learning is a com-
bination of convolution and pooling. A convolution is a 
multiplication of an image matrix (the actual matrix) and a 
kernel/filter (another smaller matrix). Convolution kernels 
are determined automatically during training to minimize 
the error between predicted and actual values. The pool-
ing layer helps to reduce the spatial representation of the 
image to reduce the number of parameters and the amount 
of computation in the network. 

In literature, various architectures have been devel-
oped, including Alex Net, Google Net, Residual Network 
(ResNet), VGG16 etc. [8]. Each architecture has a different 
number of parameters and combination of convolution, 
pooling, normalization, SoftMax, ReLU layers. Various 
studies have been carried out for the detection and sever-
ity classification of DR. Gayathri et al. employed feature 
extraction and selection techniques to derive the appro-
priate characteristics from retinal fundus images [9]. They 
used the MR-MR (maximum relevance-minimum redun-
dancy) feature selection and ranking approach for the 
selection of top-ranked features. Then, a variety of machine 
learning classifiers including SVM, Naive Bayes, Random 
Forest, and multilayer perception (MLP), were utilized on 
three datasets (IDRiD, MESSIDOR, and DIARETDB0). 
They reported that MLP outperformed all other classifiers 
by using their suggested feature extraction and selection 
strategy for all datasets in terms of binary classification. 
In another study [10]. Gayathri et al. utilized the Wavelet 

Transform and Haralick feature extraction techniques. The 
directional characteristics in fundus images are consistently 
extracted by the Haralick features, which are based on sec-
ond order statistics. They focused on both binary (DR and 
No DR) classification and multi-class structure includ-
ing the severity levels of DR. For both scenarios (binary 
and multiclass), Random Forest was reported as the most 
accurate network when compared to SVM and Decision 
Tree over the classification of MESSIDOR, KAGGLE, and 
DIARETDB0 datasets.

 With the growing popularity and effectiveness of deep 
learning-based networks, several customized networks 
have been designed especially for the classification of DR 
images. Pratta et al. proposed a custom CNN architecture to 
recognize the complex characteristics of micro-aneurysms, 
exudate, and retinal hemorrhages [11]. Their proposed 
model resulted in 75% accuracy over 5000 validation data. 
To extract deep features from the retinal fundus, Gayathri 
et al. used a lightweight CNN model [12]. The features from 
the CNN output were utilized in the several machine learn-
ing algorithms (SVM, AdaBoost, Naive Bayes, and Random 
Forest). They used the IDRiD, MESSIDOR, and KAGGLE 
datasets to test the models. Their findings demonstrated 
that combining CNN feature extraction with the J48 classi-
fier resulted in an accuracy of 99.89% for binary classifica-
tion and 99.59% for multi-class classification.

Macsik et al. proposed a local binary convolutional neu-
ral network (LBCNN) with deterministic filter generation 
mode which can approximate the performance of the con-
ventional convolutional neural network (CNN) with fewer 
learnable parameters and with less memory utilization [13]. 
LBCNN architectures produced effective results when used 
with retinal fundus image datasets for binary classification. 
An average accuracy 89.71 was obtained for the EyePACS 
dataset.

For multiclass DR classification, Sarki et al. created 
an automated classification system using a CNN model 
[14] with image processing and optimization techniques. 
They reached a maximum accuracy of 86% on the original 
APTOS2019 dataset using the ResNet50[15]. According to 
their experiments performed over Eye PACS fundus image 
dataset, ResNet50 was the largest overfitting model. The 
most ideal, effective, and trustworthy DL algorithm for 
DR detection was reported as EfficientNetB4, followed by 
InceptionV3, NasNet Large, and DenseNet169. The max-
imum validation accuracy was obtained by EfficientNetB4 
with an accuracy of 79.11%. DenseNet201 achieved a 
76.80% accuracy score as the second place.

 Addition to single usage of transfer learning-based 
models for the classification, hybrid approaches including 
regular CNNs with pre-trained networks such as DenseNet, 
ResNet etc. were utilized for the DR specific problems. Raja 
et al. designed two hybrid models, which contain a custom 
CNN with DenseNet and ResNet pre-trained architectures 
[16]. The characteristics of the eye are extracted using the 
suggested deep learning architectures. The accuracy of the 
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single CNN model was measured as 75%, whereas hybrid 
CNN with DenseNet resulted in 93% accuracy score. Patel 
and Chaware used the transfer learning approach with the 
MobileNetv2 network model customized for the classifi-
cation of APTOS2019 dataset [17]. With the fine-tuning 
operations (freezing the first 169 layers), the validation 
accuracy had increased from 50% to 81%. This accuracy 
was achieved without any preprocessing augmentation or 
balancing processes. Alyoubi et al. implemented a deep 
learning-based model (CNN512) achieving an accuracy of 
84.1% on the APTOS2019 dataset after the preprocessing 
stage [18]. The applied processing methods included image 
enhancement, noise removing, cropping, color normaliza-
tion, and data augmentation. The CNN512 was designed 
using 32 layers including 6 convolution layers. Bodapati et 
al. designed a deep CNN using a transfer learning approach 
that integrates different representation forms of DR images 
acquired from the Xception and VGG16 models [19]. 
Despite the application of several structures, the recorded 
accuracy was measured as 82.54% on the APTOS2019 
dataset. Agus et al. had investigated 3 different image pre-
processing techniques with augmentation operations for 
the classification of the APTOS2109 dataset. The used 
model was EfficientNet-B7 with hyperparameters tuning. 
However, the best testing accuracy was 84% [20].

In this study, the performance evaluation of well-known 
pre-trained deep learning networks for the multi-level clas-
sification problem of DR has been investigated in terms 
of individual and combined usage of networks. A publicly 
available unbalanced dataset, APTOS2019, is used in the 
experiments. To enhance the classification performance, a 
data balancing approach, namely oversampling, has been 
applied to the dataset using data augmentation operations. 

The remainder of the research is organized into the follow-
ing sections. Section II introduces the materials and the 
methods used in the experiments. The results of the exper-
iments obtained by the individual and combined networks 
with data balancing pre-processing are presented in Section 
III. Lastly, the discussion and conclusions of the research 
are presented in Section IV.

MATERIALS AND METHODS

Initially, three pre-trained deep learning models were 
individually employed in the classification of the original 
APTOS 2019 dataset to evaluate the solo model perfor-
mances. Additionally, each experiment was also repeated 
over the balanced version of the dataset created using the 
data augmentation techniques for oversampling. In the 
final decision step, a decision level fusion technique was 
implemented over the model predictions. The flowchart of 
the presented study is given in Figure 1. The details of the 
presented study will be given in subsections.

Dataset Information
Dataset for the Asia Pacific Tele-Ophthalmology 

Society 2019 Screening for Blindness (APTOS 2019), which 
was organized by Aravind Eye Hospital in India, was used 
in this study. APTOS 2019 dataset includes 3662 fundus 
images that were gathered from several rural Indian sub-
jects [21]. Fundus photography was used by the hospi-
tal staff to collect retinal image samples from rural parts 
of India. These RGB fundus images were taken over an 
extended period. Later, a team of skilled physicians eval-
uated and classified the collected samples into five classes 
using the International Clinical Diabetic Retinopathy 

Figure 1. Flow chart of the proposed approach for classification technique.
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Disease Severity Scale (ICDRSS). APTOS 2019 is an imbal-
anced dataset in which the sample distributions are not 
equal for each class. The distribution of the samples across 
the classes is given in Figure 2.

 APTOS 2019 includes five classes as no DR, moder-
ate DR, mild DR, proliferative DR, and severe DR. The 
healthy retinal samples were represented in the first group 
(no DR). The rest of classes represent the severity levels of 
the diabetic retinopathy disease. The most severe status 
is indicated by the Proliferative DR class, which indicates 
the images having retinal hemorrhage. Mild DR class is the 
initial stage of the DR. The resolutions of the images vary 
from 474 × 358 to 3388 × 2588 pixels in width and height, 
respectively. This difference might cause problems for fur-
ther processing. Therefore, an image resizing procedure has 
been implemented before the network’s initial layers as in 
[22].

Methodology
The flowchart of the study is given in Figure 1. As 

an initial part of the study, the dataset was organized 
according to a 5-fold cross validation schema to perform 
the experiments more objectively by using the same data 
for training and testing sets of each network evaluation. 

Addition to original training set based experiments, a data 
balancing idea based on oversampling was implemented 
over the original training set to evaluate the effects of data 
balancing approach to model performances. In the over-
sampling, data augmentation techniques were employed 
to augment the number of images in classes with limited 
samples to match the sample count of the most abundant 
class. The augmentation method was applied only for the 
training data. Otherwise, applying augmentation tech-
niques to the test set will give higher accuracies in the 
classification due to biasing effects, but it will not repre-
sent the real classification accuracy for the APTOS data-
set. Three pre-trained models as ResNet-50, Densenet201, 
and InceptionV3 were utilized for the experiments in 
terms of Transfer Learning idea. In the first stage of the 
study, each network was separately trained and evaluated 
using the original and balanced version of APTOS data-
set. Then, decision-level fusion was performed over the 
predictions of individual models. The performances were 
evaluated using confusion matrix-based metrics. The 
details will be given in subsections.

K-Fold cross validation
K-Fold cross-validation is a widely used technique in 

machine learning and model evaluation. It is employed to 
assess the performance of a predictive model when dealing 
with a limited amount of data [23]. The process involves 
dividing the available dataset into K subsets of roughly 
equal size, where K is a positive integer usually chosen as 5 
or 10. Each subset is referred to as a fold. In the implemen-
tation of K-Fold Cross validation, the original dataset is 
randomly divided into K folds. Each fold contains an equal 
number of samples. The evaluation is performed K times. 
During each evaluation, one-fold is selected as the test set, 
while the remaining (K-1) folds are combined to create the 
training set. The model is trained on the training set and 
then evaluated on the test set. This process is repeated K 
times, with each fold being used as the test set once. The 
performance of the model is measured in each evaluation 
using metrics based on the confusion matrix, such as accu-
racy. Additionally, the confusion matrix of each evaluation 
is stored. Once all K evaluations are completed, the confu-
sion matrices of each evaluation are summed to obtain the 
confusion matrix for the whole dataset. Furthermore, the 
performance metrics from each iteration are averaged to 
derive a single performance score for the model. This aver-
age score represents the model’s overall performance on the 
dataset [24].

In this study, K was selected as 5, in which 20% of the 
dataset is organized for the test set and the remaining 80% 
is reserved for training of the model for each fold. The eval-
uation is performed 5 times with a different test set to mea-
sure the model performances over the entire dataset. The 
final confusion matrix was obtained by summing up each 
fold confusion matrix. 

  
Class Names # of images
No-DR 1805
Mild 370
Moderate 999
Severe 193
Proliferate-DR 295
Total 3662

Figure 2. Class Names and Sample distributions of AP-
TOS2019 dataset
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Data balancing
The size of datasets has a critical impact on the model 

performances in DL. Small datasets cause overfitting in 
the training of the models while large datasets are scarce 
because of the exhaustive and time-consuming data acqui-
sition process. Mostly, pretrained models can alleviate some 
of these concerns by extracting more informative features 
with the few data because of the enormous previous train-
ing procedure. Still, models might fail to generalize the per-
formance for imbalanced datasets. APTOS 2019 dataset is 
also an imbalanced dataset, which has a variation in num-
ber of images for each class as shown in Figure 2. Therefore, 
an alternative comparison to original dataset-based perfor-
mance evaluation, dataset balancing has been applied to 
original data in terms of over-sampling with data augmen-
tation techniques in the presented study. The total number 
of images of the less sampled classes were increased to the 
total number of images in the highest sampled class with the 
data augmentation techniques as demonstrated in Figure 3. 
But this increment was performed only for the classes in 
the training set of each fold to avoid the biasing effect for 
evaluation of the model.

In the data augmentation step, spatial and pixel value 
effects such as scaling, reflection, adjusting the brightness, 
rotation, and blurring were performed over the original 
images to generate augmented versions of images. In terms 
of rotation, images were turned on both the vertical and 
horizontal axes or in a randomly chosen direction in a 
range between -30 and 30. In the same way, images were 
also scaled on either axis with a range of 0.8 - 1.2. For 
brightness adjustments, a Gaussian variance function was 
used (between 0.1 and 0.9) to both brighten and blur the 
images in the dataset randomly. Lastly, reflection for both 
X and Y directions were applied. The implemented effects 
were demonstrated over an example image in Figure 4.

Transfer learning
Classical learning is primarily based on the training of 

discrete isolated models for a particular tasks and datasets. 
Model cannot be used in another task because there is no 
transferable knowledge in the classical learning process. 
However, Transfer Learning (TL) is an optimization tech-
nique for machine learning where a model created for one 
job can be the basis for a model in another task. It permits 
the transfer of information from big to small data sets. TL 

Figure 4. The effect of the implemented data augmentation techniques over an example image.

Figure 3. Demonstration of oversampling in training set.
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enables the use of information (features, weights, etc.) from 
previously learned models to train new models, which sig-
nificantly speeds up the training process for huge datasets. 
It is a common method in deep learning to employ pre-
trained models as a starting point in computer vision and 
similar applications since developing neural network mod-
els requires enormous computing and time resources. In 
this study, the output layers of models that have previously 
been trained were replaced with the class count of APTOS 
2019 dataset. Then, each model was re-trained

with several hyper-parameters as part of a transfer 
learning technique known as fine-tuning. Although trans-
fer learning requires the fewest number of parameters when 
compared to the model training from the scratch, still takes 
long training times to obtain the most accurate results [25].

In the implementation of TL, freezing some layers is fea-
sible to speed up the training, improve model performance, 
and prevent the first few layers’ weights from increasing 
excessively. When a model is trained without the layers 
being frozen at a predetermined length, the layers freeze 
one at a time, which is both ineffective and impractical. A 
precise layer freezing implementation can be applied so that 
several different models can be used quickly and extremely 
efficiently. However, freezing layers can frequently lead to 
overfitting problems. In this study, freezing of the different 
number of layers have been tested and freezing of the first 
10 layers have been observed for a more efficient way in 
model training.

Decision-level fusion
The classification results of the individual models are 

different due to having different architectures. The com-
bination of these results could increase the performance. 
This combination process for the resulting predictions 
is called decision-level fusion [26]. One of the fusion 
approaches is soft voting, which is based on the argmax 
of the sums of the predicted probabilities obtained from 
the outputs of each model. The soft voting depends on the 
obtained class assignment probabilities for each image to 
reduce the misclassification effect of incorrectly classified 
models. The soft voting prediction output can be written 
as in Equation 1.

  (1)

where 𝑤𝑗 is a weight that can be given to determine the 
contribution of each classifier and 𝑝𝑙,𝑗 represents the pre-
dicted probability of the class label 𝑙 and the classifier 𝑗. The 
idea of the soft voting is also demonstrated over an exam-
ple image in Figure 5. When there are conflicts in the class 
assignments, a soft-voting approach can improve its perfor-
mance in accordance with other network predictions that 
more precisely identify the sample [25].

The limitation of the soft voting technique is that the 
results will be incorrect if at least one of the three clas-
sification models does not provide a true result with a 

high probability value relative to the other two models. 
Furthermore, another critical limitation of the fusion 
approach emerges when all constituent models within the 
fusion structure collectively misclassify an image by assign-
ing it to an incorrect class label. In such circumstances, 
the fusion technique encounters a significant challenge, as 
it lacks the capability to accurately determine the correct 
class assignment for the image. Consequently, this scenario 
undermines the effectiveness of the fusion idea, as the 
aggregated predictions from the individual models fail to 
yield an accurate consensus, thereby impeding the success-
ful classification of the image. 

Performance metrics
In the performance analysis of the experiments, five 

metrics such as Accuracy, Precision, Recall, Specificity 
and F1 Score were used to compare the models in terms 
of both individual and fusion performances. Metrics were 
calculated from the confusion matrices according to true 
positives, true negatives, false positives, and false negatives. 
In the equations, TP, and TN stand for true positive and 
true negative which represent the correctly identified class 
centered positive and negative samples, respectively. False 
positive (FP) and false negative (FN) indicate the number 
of mis-classified samples that are indeed negative and pos-
itive, respectively.

Specificity reflects the conditional probability of a true 
negative which has been given a secondary class. As such, it 
estimates the likelihood of a negative labeling. It is denoted 
by Equation 2. 

  (2)

Accuracy represents the most common stat for measur-
ing the performances of models which directly informs that 

Figure 5. Demonstration of soft-voting technique.
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how many samples were properly identified. It was calcu-
lated as in Equation 3.

  (3)

The most significant performance metric used for 
classifying issues for balanced data sets is often accuracy 
scores. Accuracy, however, is not useful for specific tasks 
like analyzing the system consistency for a certain class. It 
is necessary to compute the Precision and Recall metrics. 
The Precision score represents how well class-based, accu-
rately predicted samples performed. It was calculated as in 
Equation 4.

  (4)

How percent of the data the system should correctly 
predict is expressed by the recall metric, which is calculated 
by Equation 5.

  (5)

F-score offers more informative comparison due to 
including both precision and recall scores. The harmonic 
average of the Recall and Precision values is used to calcu-
late the F-score rather than the arithmetic mean as shown 
in Equation 6. The harmonic average is used because it 
lessens the impact of outliers on the average.

  (6)

RESULTS AND DISCUSSION

Three pre-trained deep network architectures as 
ResNet50, DenseNet201 and Inception-v3 were utilized 
in the experiments. As an initial step, APTOS 2019 data-
set was re-organized and stored according to a 5-fold cross 
validation schema to compare the models more objectively 
by using the identical training and testing sets for each 
fold in the experiments. In the training of the models, the 

processes of fine tuning for hyper-parameter determination 
and layer freezing to use the pretrained model weights were 
employed. After getting individual classification results of 
each model, the soft voting-based class fusion technique 
was performed. The same procedure was repeated over the 
balanced dataset after oversampling the training sets of the 
original dataset with the data augmentation techniques. In 
the data balancing step, data augmentation techniques were 
not applied to the images in test sets of each fold to avoid 
biasing effects.

The experiments were performed using the MATLAB 
2021a over GPU-accelerated hardware. GeForce 970x (6 
GB) was employed in the training phase of the networks to 
accelerate the process. In addition to the GPU module, the 
testing platform had 16 GB of local ram and Intel i7 CPU 
with a 3.2 GHz processing speed. The determination of the 
hyper-parameter has a critical impact for each deep learn-
ing-based study. Therefore, different parameters for epoch 
size, minibatch size and learning rate have been tested as 
preliminary study. After these hyperparameter tests, the 
final parameters for the training of the models were deter-
mined as 20, 32 and 10−4 for epoch size, batch size and 
learning rate, respectively.

The individual and ensemble (decision level fusion) 
classification performances of the models over the original 
dataset is given in Table 1. In the individual experiments, 
similar performance scores were obtained. The highest 
classification accuracy for the individual usage of the mod-
els was measured as 80% for the ResNet50 over the original 
imbalanced dataset.

In addition to general accuracy scores, the confusion 
matrices of the individual classification performances were 
given in Figure 6. High classification result (above 95%) 
is achieved for the first class (no DR). Misclassification 
is mostly observed between the first two stages of disease 
(Between the mild and moderate stages of the disease). The 
images of third class (moderate) are more distinctive than 
other stages of DR. Models failed in the classification of the 
images for second, fourth and fifth classes (Mild, Severe 
and Proliferate stages of disease). Therefore, precision and 
recall scores were measured much lower. 

In the ensemble of the individual models, the highest 
accurate predictions of the individual models were aimed 

Table 1. Individual and Ensemble model performances over the original imbalanced dataset

Individual Model Performances Ensemble (Decision Level Fusion)

ResNet50 Densenet201 InceptionV3 Soft Voting
Precision 64% 68% 63% 77%
Recall 62% 65% 61% 64%
Accuracy 80% 78% 79% 85%
Specificity 94% 95% 94% 96%
F1-Score 63% 66% 62% 70%
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to select in the classification step by using the decision-level 
fusion idea including soft voting implementation over 
the prediction results of each model. The probabilities 
for every class for every image classification prediction 
were obtained to apply the voting process. The ensemble 
results over the original imbalanced dataset are presented 
in the right column of Table 1. The maximum accuracy is 
achieved as 85% with the ensemble idea compared to 80% 
obtained by the individual usage of ResNet50. Precision 
was also significantly increased. The confusion matrix of 
the soft voting-based ensemble idea is shown in Figure 7. 
The dramatic effect of the model fusion was observed over 
the third class (moderate DR) when compared to individual 
model outputs. Alternatively, precision scores increased by 
almost 10% with the decision level fusion idea. 

APTOS 2019 dataset is an imbalanced dataset in which 
the distributions of the number of images per class is dif-
ferent. In this study, a dataset balancing approach, over-
sampling, was performed to training sets of the models to 
evaluate the balancing effect over the model classification 
performances. In the oversampling process, data augmen-
tation techniques were used to generate the new images. 
Test sets were reserved with the original images due to 
avoiding the bias effects. According to the presented results 

in Table 2, the individual performance of DenseNet201 
was improved by 4% compared to the network trained by 
an imbalanced dataset. Additionally, the performances of 
ResNet50 and InceptionV3 were also increased by around 

Table 2. Individual and Ensemble model performances over the balanced dataset by oversampling

Individual Model Performances Ensemble 
(Decision Level Fusion)

ResNet50 Densenet201 InceptionV3 Soft Voting
Precision 68% 69% 65% 77%
Recall 65% 67% 63% 64%
Accuracy 82% 82% 80% 90%
Specificity 95% 95% 94% 96%
F1-Score 66% 68% 64% 70%

Figure 7. Confusion matrix of model ensemble approach 
over the imbalanced dataset.

Figure 6. Confusion matrices for individual usage of the models over imbalanced dataset.
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2%. 82%, 82%, and 80% accuracies have been measured 
for the individual usage of ResNet50, Densenet201, and 
InceptionV3 by using the balanced dataset, respectively.

The confusion matrices of the networks are shown in 
Figure 8. The number of correctly classified images (matrix 
diagonal elements) increased for classes 2, 4, and 5 com-
pared to the experiments conducted with the imbalanced 

dataset. In other words, balancing the dataset resulted in 
more accurate class assignments for the mild, moderate, 
and proliferative stages of DR.

Applying the soft voting over the individual model 
results, an accuracy of 90% was achieved with the balanc-
ing dataset, as shown in the right column of Table 2. Similar 
to the results obtained with the unbalanced dataset, the 
ensemble ideas of the models significantly improved the 
precision scores of individual networks in the experiments 
conducted with the balanced dataset. The confusion matrix 
of the fusion approach is demonstrated in Figure 9. The 
number of correctly classified images had increased for all 
classes, especially the 4th (Severe DR) and 5th (Proliferate 
DR) classes. 

The accuracy of the classification is considered the most 
important criteria. However, the training time and the com-
plexity of the methods are also important factors. These fac-
tors are greatly related to the size of the used architecture in 
the model. There are different transfer deep learning archi-
tectures. In Table 3, the architectural structure complexities 
of the utilized models are given with the classification per-
formances and the training times for APTOS2019 dataset. 

The depth of a network is directly related to the number 
of layers it contains, and each layer also contains param-
eters. Each layer of a network learns features by process-
ing data from previous layers, which may require adjusting 
more parameters. However, increasing depth does not 

Figure 9. Confusion matrix of model ensemble approach 
over the balanced dataset by oversampling.

Figure 8. Confusion matrices for individual usage of the models over balanced dataset.

Table 3. Complexity and Training times of utilized pretrained models

Model Size Parameters Depth Imbalanced Dataset Balanced Dataset

Accuracy Training Time Accuracy Training Time
ResNet50 98MB 25M 50 80% 39 min 82% 335 min
InceptionV3 92MB 23M 159 79% 45 min 80% 315 min
DenseNet201 80MB 20M 201 78% 73 min 82% 326 min
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always guarantee better results. Deeper networks can have 
more learning capacity, but they might also require more 
data and have longer training times. Additionally, they 
can become prone to overfitting. When using the deep 
learning networks, it’s important to carefully balance both 
depth and the number of parameters to enhance the mod-
el’s performance. This balance can vary depending on the 
specific tasks or datasets. For the APTOS 2019 dataset, 
deeper networks such as Inception and DenseNet cannot 
surpass the less layered network, ResNet, in classifying the 
original imbalanced dataset due to data scarcity. When the 
dataset was balanced with data augmentation, all the net-
works resulted in nearly identical classification accuracies. 
However, the training times of the models were extended. 
In the classification of the balanced version, three net-
works completed the training period in similar times while 
ResNet, being a lightweight network in comparison to the 
others in terms of depth, completed the training in a shorter 
time in the original dataset classification.

In Table 4, the results of the proposed approach were 
compared to the novel studies which had only covered 
APTOS 2019 dataset and used the similar deep learning 
methods. The proposed model outperforms similar studies 
by achieving a classification accuracy of 90% on a dataset 
with 5 classes. This improvement can be attributed to the 
implementation of data balancing and decision-level fusion 
of three pre-trained architectures as ResNet, DenseNet and 
Inception.

CONCLUSION

Addition to the fusion idea of the deep networks, a spe-
cific novel approach was implemented to enhance the accu-
racy of classifying the APTOS2019 dataset in this study. 
The challenge with this dataset lies in its imbalance and 
the limited number of images for the 4th and 5th classes. 
Balancing the dataset holds significance in ensuring equal 
representation of various data categories. This balance plays 
a crucial role in machine learning algorithms, as they may 
exhibit bias when data is imbalanced. Numerous tech-
niques are available to balance the dataset, one of which is 
oversampling. This method can be utilized to improve the 
performance of machine learning models, especially when 
addressing small minority groups. In this study, data bal-
ancing was applied using the idea of oversampling and the 
augmentation techniques. Over the balanced dataset, the 
performance of the individual models and the fusion idea 
were also evaluated. As a result, the classification perfor-
mance of the APTOS2019 diabetic retinopathy image data 
set increased to 90% from 85% by data balancing. Results 
proved that the proposed fusion idea over the balanced 
dataset was able to classify retinal images with high accu-
racy. Therefore, an automated examination system based 
on the proposed approach helps non-experts’ ophthalmol-
ogists in the initial examination process of the diabetic ret-
inopathy images.

Table 4. Performance Result Summary of the Related Works

Paper Method Accuracy
Sarki et al. 
2019 [14]

ResNet50 with fine-tuning, data augmentation, and volume increase on original APTOS  86%

Wang L. and Schaefer A.  
2020 [27]

Transfer learning to a pretrained MobileNetV2 and used a weighted loss function 77%

Pak et al.  
2020 [28]

DenseNet,, ResNet and Inception with an initial preprocessing stage  79%

Li et al.  
2020 [29]

InceptionV3, ResNet-50, DenseNet with data preprocessing (Noise removing, 
normalization and augmentation) .

80%

Lazuardi et al.  
2020 [30]

EfficientNet-B4 and EfficientNet-B5 with CLAHE (contrast limited adaptive histogram 
equalization) and image central cropping.

83.87%
83.89%

Patel R. and Chaware A 
2021 [17]

Implementation of MobileNetV2 using Transfer Learning and fine-tuning operations. 81%

Alyoubi et al.  
2021 [18]

deep learning-based model (CNN512) with image enhancement, noise removing, 
cropping, color normalization and data augmentation.

84.1%

Bodapati et al.  
2021 [19]

Combination of a custom deep CNN model with the integration of Xception and 
VGG16 architectures.

82.54%

Oulhadj et al. 
2022 [31]

Densenet-121, Xception, Inception-v3, Resnet-50 with an initial preprocessing stage 
including the elimination the effect of the background.

85.28%

Agus et al. 
2022 [20]

EfficientNet-B7 with hyperparameters tuning after 3 different image preprocessing 
techniques and augmentation operations.

84%

Proposed Soft voting over three pretrained models (ResNet, DesNet, Inception) with data 
balancing

90%
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In the future study, the classes with low samples of this 
data set could be increased by adding new real samples. 
These samples could be taken from certain hospital records 
to recreate more informative and balanced data. Thus, the 
accuracy of the models will greatly improve. Additionally, 
different deep learning models including the fundus image 
centered designs will be tested in the fusion manner.
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