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ABSTRACT

This paper is mainly devoted to exact solutions to the initial value problem for linear conform-
able systems with variable coefficients. The famous method known as the generalized Pea-
no-Baker series, which inholds the conformable integral, is exploited to acquire the state-tran-
sition matrix. A representation of an exact solution in a closed interval for linear confromable 
systems with variable coefficients is determined with the help of this matrix. It is verified by 
showing that the determined exact solution satisfies the systems step by step. Moreover, an-
other exact solution in the same closed interval is identified thanks to the method of variation 
of parameters. The existence and uniqueness of the second exact solution to the systems are 
provided by the Banach contraction mapping principle. This provides that the representations 
of the two solutions coincide although they are obtained by completely different approaches 
and they have completely different structures. A couple of examples are presented to exmplify 
the use of the findings.
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INTRODUCTION

For many right reasons, such as being a generalization of 
the traditional derivative and better representing scientific 
and social problems, the fractional order derivative [1-11], 
which can be obtained by replacing the integer order with 
the fractional order, has become a fascinating subject in the 
theory of functional spaces for a couple of decades. [12-17]. 
So far, effots have been made to define so many distinct 
fractional derivatives by many succesful researchers. There 
is no doubt that the most prevailing employed ones are 
Riemann-Liouville and Caputo fractional derivatives. They 

are both introduced by means of fractional integrals. This 
gives them nonlocal behaviors such as future dependence 
and historical memory. They satisfy the linearity which is 
the only feature inherited from the traditional 1st derivative. 
But including both the above-mentioned ones, the available 
fractional derivatives in the literatüre have many setbacks. 
For instance, most of them do not fulfilll that fractional 
derivatives of one are equal to zero except Caputo-type 
derivatives. All of them do not satisfy the corresponding 
product rule, the corresponding quotient rule, the corre-
sponding chain rule, the corresponding Rolle theorem, 
the corresponding mean value theorem, and generally the 
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corresponding semigroup property. To deal with some of 
these flaws, Khalil et al. [18] in 2014 defined the conform-
able derivative which is a novel fractional derivative and 
can be seen as an extension of the classical 1st derivative of 
a function. Dazhi and Maokang [19] in 2017 managed to 
describe the physical and geometrical interpretations of the 
conformable derivatives fort he first time.

Various social and scientific phenomena are formulated 
by means of linear fractional differential systems with vari-
able coefficients, such as linearized aircraft systems, linear-
ized population growth, linearized diffusion of the batteries, 
and linearized parameters’ distribution in the charge trans-
fer. Although there are lots of papers about linear fractional 
differential systems with constant coefficients and almost 
all of their aspects are investigatedi only a few studies are 
devoted to linear fractional differential systems with vari-
able coefficients and their explicit solutions. To the best of 
our knowledge, I can find no paper about such systems and 
their solutions in the conformable sense where are obtained 
via generalized Peano-Baker series. [20,21]. Finding cur-
rent in an electrical circut [22], falling objects with air resis-
tance, or determinig the motion of a rising [23] are included 
in applications of linear conformable systems with variable 
coefficients given in (1). In order to obtain an exact solution 
of a system, there are distinct approaches and methods such 
as the first integral method [24] which is applied succesfully 
for solving the comformable Wu-Zhang system with the 
time-fraction, the new extended direct algebraic method 
[25] which is used to find the new solitons solutions of the 
complex Ginzburg-Landau equation with Kerr law nonlin-
earity, the sine-Gordon expansion approach and the gener-
alized Kudryashov approach [26] which are applied to get 
exact solitary wave solutions to te Boussinesq model. This 
paper mainly provides an exact solution to the system by 
applying the generalized Peano-Baker series approach and 
the variation of constants method seperately.

In light of the above-cited works, the following linear 
coformable systems with variable coefficients are taken into 
consideration 

  
(1)

where 𝔻𝛽 represents the conformable derivative of frac-
tional order 0 < 𝛽 < 1, 𝜌: [0, 𝑇] → ℝ𝑛,  which is the well- 
known n-dimensional Euclidean space, is a ℝ𝑛 − valued 
function , both the matrix function 𝐴: [0, 𝑇] → ℝ𝑛×𝑛 and 
the function ℸ:  [0,  𝑇] → ℝ𝑛 are continuous. 

The results in this paper are presented below.
(i) A representation of the exact solution of the problem 

(1) is given in terms of determining the state-transi-
tion (matrix) function obtained from the generalized 
Peano-Baker series.

(ii) Another representation of the exact solution, which 
is different from the first one, of the problem (1) is 
offered based on the variation of constants method.

(iii) The existence uniqueness of the global solution of 
the nonlinear system (9) into a fixed point problem is 
transferred, which allows us to use the Banach fixed 
point to prove our main results. 

PRELIMINARIES

In this section, a couple of necessary paraphernalia to 
be available in the literatüre are remembered in order to 
allow a better understanding of the content af the paper.

Definition 1. [27] A fractional derivative in the 
conformable sense of order 0 < 𝛽 < 1 with a lower bound 𝜏 
of a function 𝜇: [𝜏 , ∞) → ℝ is given by

In addition, if 𝜇(.)  is differentiable and  
exists, 

Definition 2. [27] The conformable integral of fractio-
nal order 0 < 𝛽 < 1 with a lower bound 𝜏 of a function 𝜇: 
[𝜏 , ∞) → ℝ is given by

Theorem 3. [27] Let µ be continuous in the domain of 
 Then  
Lemma 4. [28] The conformable derivative of fractio-

nal order 0 < β < 1 for a function μ:  [τ,  ∞)  → ℝ exist iff it 
is differentiable at ς and also  is 
satisfied. 

Lemma 5. [29] The conformable derivative of fractional 
order 0 < β < 1 of an integral sign is as noted below

here, ρ is differentiable w.r.t the first component, and 
also α and α′ are continuous in a finite closed interval.

Homogeneous Linear Systems with Variable Coefficients
In this section, an explicit solution to the homogeneous 

version of the linear conformable systems with variable 
coefficients is investigated

  (2)

here, all of the information is introduced in (1).
Now, the state-transition (matrix) function will be 

offered to costruct the fundamental structure of the explicit 
solution to the system (2).

Definition 6. The state-transition (matrix) function of 
system (2) is defined as noted below
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where

and

here, 𝐼 and Θ are the n-by-n unit and zero matrices. The 
series in Definition 6 can be seen and named as the genera-
lized Peano-Baker series. [20,30].

Theorem 7. The state-transition function satisfies the 
equation (2) with the initial circumstance 𝒳(0, 0) = 𝐼 pro-
vided that it is uniformly convergent.

Proof. The mathematical meaning of the statement of 
this theorem is as follows:

Then let’s start showing the satisfaction of the first 
equation

Theorem 3 gives that

One can verify the initial circumstance as follows

Theorem 8. 𝜌(𝜍) =  𝒳(𝜍, 0) 𝜌0 fulfills the equation (2), 
which means that it is a solution to the given system, provi-
ded that it is uniformly convergent.

Proof. In the light of Theorem 7, one can easily get the 
following equalities

and

Corollary 9. When the special case of 𝐴(𝜍) =  𝐴 (cons-
tant) in the system (2) is considered, an explicit solution of 
the following system

  (3)

is given by the equation  which corre-
sponds to that of [5].

Corollary 10. For the case of 𝐴(𝜍) =  𝜍𝑝,  𝜌 ∈ ℝ+,  an epli-
cit solution of the following system

  (4)

is offered by

Proof. One can begin with the following calculation of 
the state-transition function as follows:

It follows from Definition 6 and the just-above infor-
mation that one writes the corresponding state-transition 
function as noted below

According to Theorem 8, the solution to the system 4 is 

given by  This concludes the proof. 
Remark 11. The solution in Corollary 10 reduces to that 

of [31] for 𝑝 = 0.

NONHOMOGENEOUS LINEAR SYSTEMS WITH 
VARIABLE COEFFICIENTS

In this section, an explicit solution to the nonhomoge-
neous version of the linear conformable systems with vari-
able coefficients is investigated
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  (5)

here, all of the information is introduced in (1).
Theorem 12. The solution 𝜌(𝜍) of (5) fulfilling zero ini-

tial circumstance 𝜌(0) = 0 has the following integral form

Proof. By employing Theorem 3 and Lemma 5, one 
acquires

Theorem 13. The solution 𝜌(𝜍)  of (5) has the following 
integral form

  
(6)

Proof. The proof is an immediate result of Theorem 8 
with Theorems 12.

Remark 14. For 𝛽 = 1, and 𝐴(𝜍) =  𝐴,  the integral equ-
ation in Theorem 13 makes into the following integral 
equation

which is, as it is well known, the analytical solution to 
the following first order Cauchy system

 Example 15. The below nonhomogeneous linear con-
formable system with variable coefficients is examined

  
(7)

One firstly determines the state-transition matrix of the 
system (7) step by step by using its definition

In brief, one has

Then the system’s state-transition matrix is given by

Then the analytical solution of the system (7) is given by 

Remark 16. Until here, uniformly convergent infinite 
series involving nested compositions of fractional integrals 
in the conformable sense to represent the solutions is used. 
In a way, this can be seen as a fractional approach and it has 
a setback such as being uniform convergence.

Now, an explicit solution of the same system (5), which 
can be also called as a conformable linear differential equ-
ation of fractional order 0 < β < 1, will be investigated by 
variation of constants technique. Firstly, one looks for a 
solution of its linear case.

Let’s get into the system (5) with the just-above equation 
to determine 𝐶(𝜍) ,
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Then, one of explicit solutions of the system (5) is given 
by the following continuous integral equation 

  (8)

where 𝐾 ∈ ℝ is an integration constant.
Remark 17. In one respect, this approach appears one 

of the advantages of conformable derivatives among other 
available fractional derivatives.

Remark 18. Under the variable transform 𝜌(𝜍) =  𝑢(𝜍) 
𝑣(𝜍) , one can easily get the same integral equation (8).

Corollary 19. The following continuous integral 
equation

is a global solution of the following nonlinear conform-
able system with variable coefficients

  (9)

Theorem 20. Assume that the nonlinear function is a 

Lipschitzian with a  and  Then the system 

(9) has an unique solution on [0,  𝑇] with 𝑇 > 0.
Proof. Let 𝐶[0, 𝑇] be the well-known continuous Banach 

space endowed with the infinity norm ‖. ‖∞ =  sup 𝜍∈  [0, 𝑇]  
‖𝜌(𝜍) ‖ for a norm ‖. ‖ on ℝ𝑛. Define the operator ℋ:  𝐶[0, 
𝑇] → 𝐶[0, 𝑇] by

For 𝜌, 𝜈 ∈  ℝ𝑛,  one can get the below inequality

which implies that ℋ is a contraction. Based on the 
Banach fixed point theorem, ℋ has an unique fixed point 
on [0,  𝑇] . So, the system (9) has an unique solution on [0,  
𝑇] .

Remark 21. According to Theorem 20, by the unique-
ness of solutions, the closed-form solution in (6) coincides 
with the explicit continuous solution in (8).

Example 22. If the system (4) in Corollary 10 with the 
initial circumstance is reconsidered, based on the represen-
tation of the solution in (8), one can get

The initial circumstance 𝜌(0) = 𝜌0 provides 

 which is the same solution in Corollary 10.

Example 23. If the system (7) in Example 15 with the 
initial circumstance is reconsidered, based on the represen-
tation of the solution in (8), one can get

which is the same solution in Example 15.

CONCLUSION

The state-transition matrix is obtained from the gen-
eralized Peano-Baker series. An explicit solution to the 
linear homogeneous and nonhomogeneous conformable 
systems with variable coefficients is derived based on this 
state-transition matrix. Another explicit solution of the 
same system is acquired with the help of the variation of 
constants method. These obtained solutions are shown to 
coincide on the closed interval by the fixed point theorem. 
By solving some examples with two different solutions, the 
results are verified to match. Again, the same examples are 
used to illustrate the results.

As a future work, one can discuss different kinds of 
stabilities and distinct sorts of controllability of linear con-
formable Dynamics with variable coefficients. As another 
future work, one can also introduce a conformable Riccati-
type differential equation and a conformable Bernoulli-
type differential equation annd investigate their solutions.

ACKNOWLEDGEMENT

I would like to thank my valuable wife for her moral and 
material support and patience at every stage of this article.

AUTHORSHIP CONTRIBUTIONS

Authors equally contributed to this work.

DATA AVAILABILITY STATEMENT

The authors confirm that the data that supports the 
findings of this study are available within the article. Raw 
data that support the finding of this study are available from 
the corresponding author, upon reasonable request.



Sigma J Eng Nat Sci, Vol. 42, No. 6, pp. 1806−1812, December, 2024 1811

CONFLICT OF INTEREST

The author declared no potential conflicts of interest 
with respect to the research, authorship, and/or publication 
of this article.

ETHICS

There are no ethical issues with the publication of this 
manuscript.

REFERENCES

 [1] Podlubny I. Fractional differential equations: an 
introduction to fractional derivatives, fractional dif-
ferential equations, to methods of their solution and 
some of their applications. Academic Press; 1998.

 [2] Podlubny I. What Euler could further write, or the 
unnoticed “big bang” of the fractional calculus. 
Fract Calc Appl Anal 2013;16:501–506. [CrossRef]

 [3] Li Y, Chen Y, Podlubny I. Stability of fractional-or-
der nonlinear dynamic systems: Lyapunov direct 
method and generalized Mittag-Leffler stability. 
Comput Math Appl 2010;59:1810–1821. [CrossRef]

 [4] Magin R, Ortigueira MD, Podlubny I, Trujillo J. On 
the fractional signals and systems. Signal Process 
2011;91:350–371. [CrossRef]

 [5] Luchko Y. Maximum principle for the generalized 
time-fractional diffusion equation. J Math Anal 
Appl 2009;351:218–223. [CrossRef]

 [6] Datsko B, Gafiychuk V. Complex spatio-temporal 
solutions in fractional reaction-diffusion systems 
near a bifurcation point. Fract Calc Appl Anal 
2018;21:237–253. [CrossRef]

 [7] Datsko B, Podlubny I, Povstenko Y. Time-fractional 
diffusion-wave equation with mass absorption in 
a sphere under harmonic impact. Mathematics 
2019;7:433. [CrossRef]

 [8] Chikrii A, Eidelman S. Generalized Mittag-Leffler 
matrix functions in game problems for evolution-
ary equations of fractional order. Cybern Syst Anal 
2000;36:315–338. [CrossRef]

 [9] Chikrii A, Matichin I. Presentation of solutions 
of linear systems with fractional derivatives in the 
sense of Riemann-Liouville, Caputo, and Miller-
Ross. J Autom Inf Sci 2008;40:1–11. [CrossRef]

[10] Matychyn I, Onyshchenko V. Time-optimal control 
of fractional-order linear systems. Fract Calc Appl 
Anal 2015;18:687–699. [CrossRef]

[11] Matychyn I, Onyshchenko V. Optimal control of 
linear systems with fractional derivatives. Fract Calc 
Appl Anal 2018;21:134–150. [CrossRef]

[12] Dubey R, Mishra VN, Ali R. Duality for unified 
higher-order minimax fractional programming 
with support function under type-I assumptions. 
Mathematics 2019;7:1034. [CrossRef]

[13] Pathak VK, Mishra LN, Mishra VN, Baleanu D. 
On the solvability of mixed-type fractional-or-
der non-linear functional integral equations in the 
Banach space C(I). Fractal Fract 2022;6:744. [CrossRef]

[14] Pathak VK, Mishra LN, Mishra VN. On the solvabil-
ity of a class of nonlinear functional integral equations 
involving Erdelyi-Kober fractional operator. Math 
Methods Appl Sci 2023;46:14340–14352. [CrossRef]

[15] Marasi HR, Mishra VN, Daneshbastam M. A con-
structive approach for solving system of fractional 
differential equations. Waves Wavelets Fractals Adv 
Anal 2017;3:40–47. [CrossRef]

[16] Vandana, Dubey R, Deepmala, Mishra LN, Mishra 
VN. Duality relations for a class of multiobjective 
fractional programming problem involving support 
functions. Am J Oper Res. 2018;8:294–311. [CrossRef]

[17] Farid G, Akbar SB, Rathour L, Mishra LN, Mishra 
VN. Riemann-Liouville fractional versions of 
Hadamard inequality for strongly m-convex func-
tions. Int J Anal Appl 2022;20:674–694. [CrossRef]

[18] Khalil R, Al Horani M, Yousef A, Sababheh M. A 
new definition of fractional derivative. J Comput 
Appl Math 2014;264:65–70. [CrossRef]

[19] Zhao D, Luo M. General conformable fractional 
derivative and its physical interpretation. Calcolo 
2017;54:903–917. [CrossRef]

[20] Baake M, Schlägel U. The Peano-Baker series. Proc 
Steklov Inst Math 2011;275:155–159. [CrossRef]

[21] Matychyn I. Analytical solution of linear frac-
tional systems with variable coefficients involv-
ing Riemann-Liouville and Caputo derivatives. 
Symmetry 2019;11:1366. [CrossRef]

[22] Gill V, Modi K, Singh Y. Analytic solutions of frac-
tional differential equations associated with RLC 
electrical circuits. J Stat Manag Syst 2018;21:575–
582. [CrossRef]

[23] Abell ML, Braselton JP. Introductory differential 
equations with boundary value problems. Academic 
Press; 2015. [CrossRef]

[24] Eslami M, Rezazadeh H. The first integral method 
for Wu-Zhang system with conformable time-frac-
tional derivative. Calcolo 2016;53:475–485. [CrossRef]

[25] Rezazadeh H. New soliton solutions of the complex 
Ginzburg-Landau equation with Kerr law nonlin-
earity. Optik 2018;167:218–227. [CrossRef]

[26] Akbar MA, Akinyemi L, Yao SW, Jhangeer A, 
Rezazadeh H, Khater MMA, et al. Soliton solutions 
to the Boussinesq equation through sine-Gordon 
method and Kudryashov method. Results Phys 
2021;25:104228. [CrossRef]

[27] Khalil R, Al Horani M, Yousef A, Sababheh M. A 
new definition of fractional derivative. J Comput 
Appl Math 2014;264:65–70. [CrossRef]

[28] Abdelhakim AA, Machado JAT. A critical analy-
sis of the conformable derivative. Nonlinear Dyn 
2019;95:30663–3073. [CrossRef]

https://doi.org/10.2478/s13540-013-0031-x
https://doi.org/10.1016/j.camwa.2009.08.019
https://doi.org/10.1016/j.sigpro.2010.08.003
https://doi.org/10.1016/j.jmaa.2008.10.018
https://doi.org/10.1515/fca-2018-0015
https://doi.org/10.3390/math7050433
https://doi.org/10.1007/BF02732983
https://doi.org/10.1615/JAutomatInfScien.v40.i6.10
https://doi.org/10.1515/fca-2015-0042
https://doi.org/10.1515/fca-2018-0009
https://doi.org/10.3390/math7111034
https://doi.org/10.3390/fractalfract6120744
https://doi.org/10.1002/mma.9322
https://doi.org/10.1515/wwfaa-2017-0004
https://doi.org/10.4236/ajor.2018.84017
https://doi.org/10.28924/2291-8639-20-2022-5
https://doi.org/10.1016/j.cam.2014.01.002
https://doi.org/10.1007/s10092-017-0213-8
https://doi.org/10.1134/S0081543811080098
https://doi.org/10.3390/sym11111366
https://doi.org/10.1080/09720510.2018.1466966
https://doi.org/10.1016/B978-0-12-417219-7.00001-6
https://doi.org/10.1007/s10092-015-0158-8
https://doi.org/10.1016/j.ijleo.2018.04.026
https://doi.org/10.1016/j.rinp.2021.104228
https://doi.org/10.1016/j.cam.2014.01.002
https://doi.org/10.1007/s11071-018-04741-5


Sigma J Eng Nat Sci, Vol. 42, No. 6, pp. 1806−1812, December, 20241812

[29] Mahmudov NI, Aydin M. Representation of solu-
tions of nonhomogeneous conformable fractional 
delay differential equations. Chaos Solit Fractals 
2021;150:111190. [CrossRef]

[30] Eckert M, Nagatou K, Rey F, Stark O, Hohmann S. 

Solution of time-variant fractional differential equa-
tions with a generalized Peano-Baker series. IEEE 
Control Syst Lett 2019;3:79–84. [CrossRef]

[31] Abdeljawad T. On conformable fractional calculus. J 
Comput Appl Math 2015;279:57–66. [CrossRef]

https://doi.org/10.1016/j.chaos.2021.111190
https://doi.org/10.1109/LCSYS.2018.2852600
https://doi.org/10.1016/j.cam.2014.10.016

