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ABSTRACT

This paper presents a tutorial-style approach to synthesizing a mechatronic control system 
from scratch, with a focus on mathematical modeling, real-world verification, model-based 
control using the Linear Quadratic Regulator (LQR), and rapid control prototyping. The 
system’s equations of motion are derived through Lagrangian mechanics and subsequently 
linearized. Unknown parameters are estimated using optimization techniques. An LQR con-
troller is designed and implemented on the STM32F4 microcontroller and its performance is 
rigorously tested against disturbances using MATLAB/Simulink. The Reaction Wheel Pen-
dulum serves as the case study, demonstrating the successful implementation of the LQR 
controller, with the derived model verified through experimentation. A recovery angle of 20 
degrees is obtained.
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INTRODUCTION

The inverted pendulum is a nonlinear and underactu-
ated control problem that is used in developing new con-
trol algorithms and in teaching environments. Different 
types of this problem exist, such as the cart pendulum, 
the double inverted pendulum, the rotary pendulum, the 
damped driven pendulum, and the reaction wheel pen-
dulum to name a few [1–4]. These differ from each other 
mainly by the amount of underactuated joints, and by 
the actuated rigid body that is used to control the system. 
Comparisons of the different types of pendulum struc-
tures and their potential applications are given in [5]. 
However, the control problem of these systems remains 

the same, swinging up the pendulum from its downright 
position and stabilizing the pendulum in its inverted 
position.

One of the many types of inverted pendulums is the 
reaction wheel pendulum (RWP), which was first intro-
duced by Spong et al. [6]. The reaction wheel pendulum 
consists of two joints with parallel rotation axes, one of 
which is not actuated. The other joint is typically actuated 
by a DC motor and has a wheel attached to it which has 
a symmetric mass distribution, simplifying the analytical 
solution. The system is controlled using the wheel’s iner-
tia, whereby accelerating the wheel a reaction torque is 
produced.
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Studies on modeling and control of the RWP have been 
conducted in detail. Spong et al. [6] were the first to intro-
duce the system and proposed a stabilizing controller using 
an exact and approximate feedback linearization method, 
and a swing-up controller using partial feedback lineariza-
tion on a physical system. Bapiraju et al. [7] proposed mul-
tiple linearization methods for the RWP using a fuzzy logic 
controller to perform stabilization and showed the results 
in an experimental setup. Srinivas and Behera [8] proposed 
two new swing-up controllers based on sinusoidal swing-up 
and interconnection and damping assignment-passivi-
ty-based control, implementing them in real-time. Jepsen 
et al. [9] developed a RWP and described the design pro-
cess. In addition, swing-up control was implemented using 
a bang-bang controller, and stabilization was achieved 
through an observer-based feedback controller. Kadam and 
Seth [10] presented the modeling, simulation, and LQR 
control design for a one-wheel robot controlled by a reac-
tion wheel. 

Andrievsky [11] focused on the global stabilization of 
the RWP, ensuring stability for arbitrary initial conditions. 
An energy-based speed-gradient control scheme was used 
for the swing-up problem, and sliding mode control was 
used for stabilization, demonstrating the results through 
simulations. Gajamohan et al. [12] developed the Cubli, a 
cube equipped with a reaction wheel on three of its faces. 
The stabilization challenge involved stabilizing the cube 
on one of its edges. Similar to the RWP, the Cubli operates 
in three dimensions, making the balancing and swing-up 
problem more sophisticated. Nguyen et al. [13] mod-
eled and controlled the RWP using LQR and a fuzzy logic 
controller, comparing the results through simulation and 
experimental validation. The system demonstrated stabili-
zation from an initial position of 5 degrees. Trentin et al. 
[14] modeled and controlled a RWP equipped with two 
reaction wheels on opposite sides of the pendulum. They 
employed nonlinear proportional-derivative control and a 
sliding mode controller to stabilize the system. Montoya et 
al. [15] designed a controller based on the Lyapunov the-
ory, ensuring stable operation through control input with-
out additional calculations. The results were simulated, and 
asymptotic stability was guaranteed. Önen and Çakan [16] 
detailed the modeling and LQR control of the RWP system. 
Using a designed LQR controller, they simulated the system 
and presented the results. Cioaca and Flutur [17] designed 
a 3D-printed RWP system and stabilized it from an initial 
condition of 2 degrees. They presented results from both 
the physical system and the simulation.

For pendulum systems other than the RWP, many other 
methods such as PID, fuzzy logic, sliding mode control, 
LQR, adaptive control, neural network control, and model 
predictive control [18–22]. LQR is a fundamental control 
technique widely employed in various engineering disci-
plines to achieve optimal control of linear dynamic systems. 
It is a powerful tool that enables engineers to design con-
trollers that minimize a quadratic cost function, effectively 

balancing control efforts and system performance. With its 
solid theoretical foundation and versatility, the LQR con-
trol strategy has found applications in diverse fields such as 
aerospace, robotics, process control, and economics [23].

The significance of disturbance rejection in inverted 
pendulum systems cannot be overstated. Real-world 
applications, such as segways, can be accurately modeled 
as inverted pendulums, and they often encounter distur-
bances when navigating diverse terrains. While previous 
studies have conducted minor disturbance tests, this study 
aims to undertake a more aggressive disturbance rejection 
test. The evaluation will be based on the recovery angle, 
representing the system’s ability to return to a stable posi-
tion after being disturbed, without relying on a swing-up 
structure. Implementing this disturbance-rejecting control-
ler enhances the system’s suitability for more challenging 
environments where disturbances are frequent.

The sections are set up as follows. The equations of 
motion are derived using Lagrangian mechanics and, the 
system is linearized in section 2. The modeled system is 
verified and unmodeled parameters are estimated in sec-
tion 3. The LQR controller is designed in section 4. In sec-
tion 5, the hardware used in the system is specified and the 
designed controller is tested against disturbances.

EQUATIONS OF MOTION AND DYNAMICS

The system diagram is given in Figure 1. The system’s 
stable equilibrium is in the downright position. Throughout 
this paper, the pendulum angle is taken with reference to the 
upright position, which is the unstable equilibrium point, 

Figure 1. Reaction wheel pendulum diagram.
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around which stabilization is required. All system parame-
ters and the symbols used for them are presented in Table 1.

Mathematical Modeling
The pendulum can be thought of as a planar robot arm 

with two links the first link is the pendulum arm, and the 
second link is the reaction wheel. The positions and linear 
velocities of the center of masses are given in Eqs. (1) and 
(2) respectively. The linear velocities are obtained by taking 
the time derivative of the positions.

  (1)

  (2)

The Lagrangian is the difference between the kinetic 
and potential energy of the system, which are given in Eqs. 
(3) and (4) respectively. The kinetic energy of the system 
(T) consists of linear and angular components. The poten-
tial energy (U) only depends on the pendulum arm’s angle, 
since only that parameter affects the vertical displacement 
of the system. 

  (3)

  (4)

The reaction wheel’s angular velocity  must be written 
with respect to the pendulum arm, since in the real system, 
it will be measured in that way. Eq. (5) shows how the angle 
of the pendulum arm and reaction wheel added together, is 
equal to the reaction wheel angle with respect to the vertical 
reference. Taking the time derivative of Eq. (5) and substi-
tuting it in Eq. (3) yields Eq. (6) which is the system’s total 
kinetic energy. The Lagrangian (L) can thus be found and 
is given in Eq. (7).

  (5)

  (6)

  
(7)

Eq. (8) shows the Lagrange-Euler equation where q 
is a generalized coordinate system and Q is a generalized 
force vector. Since the Lagrangian is energy-based, the 
remaining dynamics such as friction, constraints, and/or 
contact forces can’t be modeled directly, hence the use of 
Q. The generalized coordinates in this system are q = [θ1; 
θ2]. Therefore, the output of Eq. (8) must be a 2x1 vector. 
Substituting Eq. (7) in Eq. (8), the equations of motion are 
presented in Eq. (9).

  (8)

  
(9)

where , . τ1 
and τ2 are the net joint torques. However, the system is only 
actuated in τ2. This results in τ1 only consisting of the fric-
tion in joint 1, which is written as b1. The control input will 
be written as τ, and the friction in joint 2 (which depends 
on the motor) is written as b2.

Note that Eq. (9) contains coupled dynamic equations, 
since  and  cannot be expressed independently. To 
uncouple the equations of motion, Eq. (9) is rewritten in 
the form of Eq. (10).

  
(10)

This is the matrix form of this system, here M is the 
mass matrix. To uncouple the equations, both sides can be 
multiplied by the inverse mass matrix. Doing this, yields 

 and  separately which are given in Eqs. (11) and (12) 
respectively.

  (11)

  (12)

Table 1. System parameters

Parameter Description
m1 Pendulum arm mass
m2 Reaction wheel mass
l1 Pendulum arm moment of inertia
l2 Reaction wheel moment of inertia
θ1 Pendulum arm angle
θ2 Reaction wheel angle (with respect to the pendulum arm)
θv Reaction wheel angle (with respect to vertical reference)
lc Pendulum arm center of mass
l Reaction wheel center of mass
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These equations are the system’s dynamic equations 
for a general control input. The nonlinearity of the system 
comes from the sin(θ1) term. Thus, the system can easily be 
linearized using the Taylor Series expansion, which will be 
done further in the paper.

The control torque will be supplied by a DC motor, 
which will be driven over an H-bridge. Therefore, express-
ing the control input as voltage rather than torque will 
make it more intuitive for the user. Eqs. (13) and (14) 
show the torque equation and current equation for a DC 
motor respectively. Table 2 shows the symbols and their 
definitions.

  (13)

  
(14)

The armature inductance is ignored, since in small 
power DC motors it is very small. Substituting Eq. (13) in 
Eq. (12), yields the motor torque with the voltage as the 
input. This can be used as our control input and substituted 
in the equations of motion. This will yield the final equa-
tions of motion given in Eqs. (15) and (16) with the motor 
voltage as the control input. 

  (15)

  
(16)

The parameters such as link lengths, center of mass 
location, mass and moments of inertia were obtained using 
Solidworks. All system parameters and their values are 
given in Table 3. 

The actuator is chosen as a 12 V Pololu #4862 brushed 
DC motor with a built-in encoder and gearbox. Therefore, 
the control input V is saturated to [-12, 12]. This needs to 
be included in the simulation, or the controller can output 
extreme voltage values.

State Space Representation and Linearization
In order to simulate the system, it is useful to repre-

sent the nonlinear system in state variables. The system is 
expressed with state variables in Eqs. (17), (18) and (19). 
Note that the reaction wheel angle is omitted, since it never 
appears in the equations of motion, thus .

  (17)

  (18)

  (19)

The system should be linearized, in order to use linear 
control methods. To linearize the system, the Taylor Series 
Expansion of the sine term is given in Eq. (20) and can be 
substituted in Eqs. (18) and (19).

  (20)

Since the goal of the system is to control it in the upright 
position, x1 will be close to 0. Therefore sin(x1) ≈ x1, which 
gets rid of the nonlinearity of the equations. The state space 
representation of the system is given in Eq. (21).

  

(21)

Table 3. System parameter values

Parameter Description Value
m1 Pendulum arm mass 0.043 [kg]
m2 Reaction wheel mass 0.042 [kg]
l1 Pendulum arm moment of inertia 0.00012 [kg m2]
l2 Reaction wheel moment of inertia 0.002005 [kg m2]
l Pendulum arm center of mass 0.03 [m]
lc Reaction wheel center of mass 0.093 [m]
R Armature resistance 6.6 [Ω]
KT Motor torque constant 0.0931676 [Nm/A]
KV  Motor velocity constant 0.0139746 [V/(rad/s)] 
n Gear ratio 9.68

Table 2. Motor parameter definitions

Parameter Description
V Input voltage
i Armature current
R Armature resistance
KT Motor torque constant
KV  Motor velocity constant
n Gear ratio
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Using Eq. (21), linear controllers can be designed and 
tested in simulation and on the real system. The control 
input V is saturated according to the motor operating limits 
and/or the supply voltage limits.

Parameter Estimation
In order to use model-based controller design methods, 

the real system and simulated system should perform as 
similarly as possible. All measurable parameters were given 
in Table 3. However, the equations of motion also include 
two friction terms.

The viscous friction coefficient of the DC motor can 
be found parametrically by using the DC motor’s specifi-
cations and is found as b2 = 0.0012. The viscous friction 
coefficient of the pendulum arm, however, has to be exper-
imentally verified. In order to do this, the pendulum was 
manually stabilized in the upright position. Afterwards, 
a small perturbation was applied to move the pendulum, 
after which the angle of the pendulum arm was recorded 
using an optical encoder. This was performed four times 
and similar results were obtained.

With the experimental results the model can be sim-
ulated using Eqs. (11) and (12) and optimized to fit the 
simulated response as closely to the experimental results 
as possible. This optimization is done using the nonlinear 
least squares method, with a sum squared error cost func-
tion. The error is defined in Eq. (22).

  (22)

MATLAB Simulink is used to solve the optimization 
problem. An inital guess of 0.001 for b1 was used. The 
results are given in Figure 2. The optimized result gives a 
mean absolute percentage error of 94.1%, which is the error 

in Eq. (22) divided by the experimental output and summed 
over all time steps. Note that the simulated response 
reaches steady state later than the experimental result in the 
optimized response. This is due to unmodelled nonlinear 
effects in the real system, such as the tension that occurs 
in the motor’s electrical wires. This is irrelevant, however, 
since the simulated and experimental results are very sim-
ilar up to 4 seconds, which is significantly more than the 
actuator’s response time. 

Controller Design
Now that an accurate system model is obtained, it 

can be used to design a controller. A Linear Quadratic 
Regulator (LQR) is chosen as the system’s controller in this 
paper. LQR is an optimal control method based on full state 
feedback, which means all states must be accessible. This 
method tries to minimize a cost function J, given in Eq. 
(23). 

  (23)

Q is the state-cost weighted matrix, R is the input-cost 
weighted matrix and u is the control input u = -Kx. This 
optimal control problem’s goal is to find an appropriate K 
vector that minimizes the cost function. To determine the 
Q and R matrices, a good first step is Bryson’s rule [24] 
which is given in Eq. (24).

  (24)

Figure 2. Optimization results.
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 are the elements of a diagonal matrix.  is the 
maximum error for state i.  is the maximum control 
input.

The max state errors were defined as 0.005°, 0.01 rpm 
and 0.1 rpm for x1, x2 and x3 respectively. These were 
obtained by iteratively testing the system using different Q 
and R matrices, where the best performing ones are given 
in Eq. (25). The maximum control input is the saturated 12 
Volts of the motor.

Figure 5. Simulink block diagram using Waijung Blockset.

  

Figure 4. CAD design and real system.

Figure 3. LQR controller block diagram.
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(25)

Using these Q and R matrices, the K gain matrix can 
be computed using MATLAB and used as a feedback gain 
on all the measured states. K was found as [-158.62, -15.02, 
-1.30]. In Figure 3 the system is represented in a block dia-
gram. The reference in the modeled RWP system is zero 
since stabilization is intended around this point. 

HARDWARE AND EXPERIMENTAL RESULTS

The CAD design in SOLIDWORKS and real system is 
given in Figure 4. The STM32F4 discovery board was used 
as the microcontroller. The code was generated using the 
Waijung Blockset by Aimagin [25] in MATLAB Simulink. 
The motor is a Pololu #4862 geared brushed DC motor. The 
motor was driven using a L298N dual channel H-bridge 
driver. The pendulum arm angle was read using a 2048 
CPR optical encoder connected to the shaft via a coupler. 
The Simulink block diagram is given in Figure 5. The fil-
tered derivative block is a transfer function block where 

 and ζ = 0.7. This Simulink block diagram was 
directly embedded on the microcontroller.

The disturbance rejection experiment results are given 
in Figure 6 and 7, respectively. The peaks in the pendu-
lum arm angle (θ1), are the points where the system was 
hit by an object. The stabilization of the system has an 
oscillatory behavior of 8 degrees. Furthermore, the maxi-
mum recovery angle is around 20 degrees as can be seen 
in Figure 7. The controller exhibits strong disturbance-re-
jecting performance, as it can stabilize the system even 
when it deviates significantly from the linearization point, 
despite being designed based on a linearized model. The 
behavior of the system against disturbances can be seen 
in the following video link https://www.youtube.com/
watch?v=bb33BNByxlQ. 

Nevertheless, enhancing the stability performance is 
feasible by adopting an alternative controller structure, as 
demonstrated in [9] with the implementation of an observ-
er-based feedback controller. Directly taking derivatives 
can result in noise amplification. To mitigate this, a sec-
ond-order low-pass filter is incorporated with the deriv-
ative, introducing additional delays. Therefore, the use of 
an observer-based feedback controller has the potential to 
improve stabilization performance.

Figure 6. Disturbance test-1.

https://www.youtube.com/watch?v=bb33BNByxlQ
https://www.youtube.com/watch?v=bb33BNByxlQ
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CONCLUSION 

In this paper, the Reaction Wheel Pendulum was math-
ematically modeled and the system’s equations of motion 
were derived. The system was linearized and was repre-
sented in state space. Furthermore, the only unmodeled 
parameter, friction in the pendulum arm, was estimated 
using optimization techniques by measuring the system’s 
natural response without any control inputs and fitting the 
simulated response to this. Using the complete and verified 
model, an LQR controller was designed and implemented 
on a microcontroller, after which a disturbance test was 
done to validate the controller’s performance against the 
supplied disturbances. The system reached a maximum 
recovery angle of 20 degrees, and had oscillatory steady 
state behavior of 8 degrees.

The controller can be enhanced by eliminating the 
oscillatory steady state response, which could be achieved 
using different Q and R matrices, thus different K gains. 
Also, using a different controller structure can improve 
the stabilization performance. Furthermore, adding imbal-
ances to the reaction wheel (such as small weights on one 
side) and designing and testing controllers against these can 
be possible areas of improvement. Compared to previous 

literature, this paper presents a new metric to character-
ize performance against disturbances, the recovery angle, 
which is the maximum angle the system can reach before 
it can return to its stable equilibrium without a swing-up 
procedure.
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