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ABSTRACT

Soft set theory is a general mathematical framework for dealing with uncertainty. In this re-
gard, soft set operations can be regarded as crucial concepts in soft set theory, since they offer 
new perspectives for dealing with issues containing parametric information. In this paper, 
we give a theoretical study on AND-product (∧-product), which is an essential concept in 
decision making problems, by investigating its whole algebraic properties in detail regarding 
soft F-subsets and soft M- equality, the strictest type of soft equality. Moreover, in order to 
complete some incomplete results concerning AND-product in the literature, we compare 
our properties by the formerly obtained properties regarding soft L-equality and soft J-equal-
ity. Furthermore, we handle the whole relations between AND-product and OR-product, the 
other keystone in decision making. Besides, by establishing some new results on distributive 
properties of AND-product over restricted, extended, and soft binary piecewise soft set oper-
ations, we prove that the set of all the soft sets over U together with restricted/extended union 
and AND-product is a commutative hemiring with identity as the set of all the soft sets over U 
together with restricted/extended symmetric difference and AND-product forms a commuta-
tive hemiring with identity in the sense of soft L-equality. As analyzing the algebraic structure 
of soft sets from the standpoint of operations gives profound insight into the potential uses of 
soft sets in classical and nonclassical logic and since theoretical foundations of soft computing 
approaches are derived from purely mathematical principles, this research will pave the way 
for a wide range of applications, including new decision-making approaches and innovative 
cryptography techniques based on soft sets.

Cite this article as: Sezgin A, Atagün AO, Çağman N. A complete study on and-product of 
soft sets. Sigma J Eng Nat Sci 2025;43(1):1−14.

Research Article

A complete study on and-product of soft sets 

Aslıhan SEZGİN1,* , Akın Osman ATAGÜN2 , Naim ÇAĞMAN3

1Department of Mathematics and Science Education, Faculty of Education, Amasya University, Amasya, 20815, Türkiye
2Department of Mathematics, Faculty of Arts and Science, Kırşehir Ahi Evran University, Kırşehir, 40100, Türkiye 

3Department of Mathematics, Faculty of Arts and Science, Tokat Gaziosmanpaşa University, Tokat, 60000, Türkiye

ARTICLE INFO

Article history
Received: 15 August 2023
Revised: 08 October 2023
Accepted: 22 October 2023

Keywords:
AND-Product; Hemiring; Soft 
Equal Relations; Soft Sets

*Corresponding author.
*E-mail address: aslihan.sezgin@amasya.edu.tr 
This paper was recommended for publication in revised form by 
Editor-in-Chief Ahmet Selim Dalkilic

Published by Yıldız Technical University Press, İstanbul, Turkey
Copyright 2021, Yıldız Technical University. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

INTRODUCTION

Mathematical models have been widely used in practi-
cal problems related to engineering and computer science, 
economics, social, natural and medical sceinces, etc. Fuzzy 

set theory, initiated by Zadeh [1], has been developed in 
mathematics as an important tool for solving mathematical 
problems of uncertainty and ambiguity. However, there are 
some limitations and inadequacies related to parameteriza-
tion in fuzzy set theory.
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Therefore, Molodtsov [2] in 1999 initiated research on 
“Soft Set Theory” to overcome defects and inadequacies 
regarding fuzzy set theory. Since then, soft set theory has 
been used in problem solving for different areas, especially 
in decision making, analysis, forecasting, information sci-
ence, mathematics, etc. Since Maji et al. [3] described the 
application of soft set theory to a decision making problem, 
many researchers have developed new decision making 
methods with the help of soft sets [4-10].

Çağman and Enginoğlu [11] initiated a salient soft set 
based decision making, called uni-int decision making 
and it achieved the optimal decision from the experiment. 
Further, Çağman and Enginoğlu [12] defined soft matrices 
and they established min-max decision making methods 
for OR, AND, AND-NOT and OR-NOT product of the 
soft matrices and applied them to the real life problems that 
contain uncertainties. Since then, soft set theory has been 
widely and successfully applied to decision making prob-
lems [13-24].

First contributions to soft set operations were made 
in [25,26]. A thorough theoretical analysis of the soft set 
theory was conducted by Maji et al. [25]. In particular, 
they introduced the concepts of soft subset, soft intersec-
tion and soft union while discussing soft sets properties. 
These operations allowed for the creation of new soft sets 
from existing soft set datasets, but certain fundamental 
characteristics that are not universal was highlighted and 
refined in [27,28]. Moreover, Ali et al. [28] defined some 
restricted operations on soft sets, such as restricted inter-
section, restricted union, and restricted difference and 
improved the notion of the complement of a soft set. After 
then, in [29-45], the authors pointed out several gaps as 
regards basic operations in soft set theory in the existing 
literature and introduced new and improved operations 
and discussed the algebraic structure of the set of all soft 
sets defined on a fixed universe and fixed set of parameters. 
In recent years, studies on soft sets have been progressing 
rapidly. A new type of difference operation of soft sets was 
proposed by Eren and Çalışıcı [46]. Sezgin et al. [47] intro-
duced the concept of “extended difference” of soft sets and 
Stojanovic [48] defined the notion of “extended symmetric 
difference” of soft sets and their basic properties were stud-
ied in [47,48], respectively. Also, Yavuz [49] introduced a 
new type of intersection, union and symmetric difference 
of soft sets, and studied their basic properties.

In the context of soft set theory, soft subsets together 
with soft equal relations are essential concepts. Maji et al. 
[25] were the pioneers in using a very strict definition of 
soft subsets. Without mathematical validation, they pre-
sented some results on the soft distributive laws of such 
operations (see Proposition 2.6 in [25]). Soft distributive 
laws of Maji are not applicable to the soft equal relation 
mentioned in Remark 2.8 in [28] as pointed out by Ali et al. 
[29] and refuted by others. The concept of soft subsets were 
expanded by Pei and Miao [26] and Feng et al. [29] which 
can be considered as a generalization of Majis’ previous 

methods. Congruence relations on soft sets were intro-
duced by Qin and Hong [50], who also discussed two new 
types of soft equal relations. During their research on fuzzy 
soft sets with interval values, Jun and Yang [51] examined a 
broadening of soft subsets and attempted to modify Maji’s 
soft distributive laws using generalized soft equal relations 
(which we call J-soft equal relation for the sake of designa-
tion throughout the study). They presented a recent result 
that is known as generalized soft distributive laws of soft 
product operations. In a concise research note, Liu, Feng, 
and Jun [52] were motivated by the new ideas of Jun and 
Yang to define soft L-subsets and soft L-equal relations. A 
significant finding is that distributive laws do not apply to 
all forms of soft equal relations existing in literature.

Consequently, Feng et al. [53] also dealt with soft sub-
sets and the operation of soft products defined in [24] and 
continued the research started in [52]. Compared to notes 
[52], Feng et al. [53] mainly focused on different types 
of soft subsets and the algebraic properties of soft prod-
uct operations. In addition to the distributional laws that 
have been widely studied by many researchers, they also 
considered commutative laws, association rules, normal 
laws, and other fundamental properties. They also pro-
vided theoretical research related to the operation of soft 
products, namely the AND-product and the OR-product 
by soft L-subset and some related concepts. They consum-
mated some incomplete results concerning soft product 
operations existing in the literature and studied in detail 
the algebraic properties of the soft product operations for 
the J-equality and L-equality. It was shown that soft L-equal 
relations are congruent relations on free soft algebras and 
corresponding quotient structures that form commuta-
tive semigroups. (For more about soft equal relations, 
see [54-58]). Also, Singh and Onyeozili [39] established 
some results related to left distributive properties of AND-
product and OR-product over the restricted intersection, 
restricted union, restricted difference, extended intersec-
tion, and extended union. But they do not investigate the 
right distributive laws of AND-product and OR-product 
over the aforementioned operations and they ignored the 
case that the intersection of the parameter sets can be an 
empty set.

In 1934, the concept of semiring was first introduced 
by Vandiver [59]. Semirings have been the subject of sev-
eral hypotheses and observations from various academics, 
including [60, 61].

Research on semirings with additive inverse has also 
been done by certain scholars [62-65]. Especially in terms 
of applications, semirings have been the subject of much 
research recently (see [66]). Despite their importance in 
geometry, semirings are also important in pure mathemat-
ics and play a major role in many applications of practi-
cal mathematics and the information sciences [67–75]. A 
hemiring is a unique semiring with a zero and commuta-
tive addition. Hemirings are also important in the field of 
theoretical computer science. Hemirings arises naturally in 
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a number of applications to automata, computer sciences, 
and formal language theory [74–75].

This paper is a theoretical study on AND-product of 
soft sets, which has been the cornerstone and has been 
used by decision makers for many years. In the literature, 
AND-product and its properties have been investigated by 
different authors as regards different kinds of soft equali-
ties such as soft L-equality and soft J-equality. However, in 
this paper, we investigate the whole algebraic properties of 
AND-product such as commutative laws, associative laws, 
idempotent laws, and other all basic properties in detail as 
regards soft F-subsets and soft M-equality and compare 
them with the formerly obtained properties as regards 
soft L-equality and soft J-equality. Also, we give the rela-
tion between AND-product and OR-product. Moreover, by 
examining ֆ the distributive properties of AND- product 
over restricted, extended, and soft binary piecewise opera-
tions, we obtain that the set of all the soft sets over U together 
with restricted/extended union and AND-product form a 
commutative hemiring with identity as restricted/extended 
symmetric difference and AND-product in the sense of soft 
L-equality. We, by this study, complete the results concern-
ing the AND-product in the literature totally.

The following is the format of this document. In Section 
2, we review some basic ideas related to semirings and soft 
set theory. In Section 3, we completely handle the AND-
product and its whole algebraic properties as regards soft 
F-subsets and soft M-equality and compare our results with 
the formerly obtained. Section 4 is focuses on the distribu-
tion rules of AND-product over other types of soft set oper-
ations in order to reveal the algebraic structures of soft sets 
with AND-product and other soft set operations. A short 
conclusion is stated in the Conclusion Section.

PRELIMINARIES

Definition 2.1. Let U be the universal set, E be the 
parameter, P(U) be the power set of U and ֆ⊆E . A pair 
ꝷ(ꝷ,ֆ) is called a soft set over U where ꝷ is a set-valued 
function such that ꝷ:ֆ → P(U). [1]

It should be noted that Çağman and Enginoğlu [11] 
modified Molodstov’s notion of soft sets; nonetheless, we 
adhere to the original definition in this study and apply it. 
The sets of all the soft sets defined over U are referred as 
SE(U) throughout this work. The collection of all soft sets 
over U with the fixed parameter set A is denoted by SA(U), 
where A is a fixed subset of E. That is, while in the set SA(U), 
there are only soft sets whose parameter sets are A; in the 
set SE(U), there are soft sets whose parameter sets may be 
any set. Clearly SA(U) is a subset of SE(U). Henceforth, for 
convenience’s sake, soft set(s) shall be identified by SS(s) 
and parameter set(s) by PS(s).

Definition 2.2. Let (ꝷ,ֆ) be a SS over U. (ꝷ,ֆ) 
is called a relative null SS (with respect to the PS ֆ), 
denoted by ∅ֆ, if ꝷ(t)=∅ for all t∈ֆ and (ꝷ,ֆ) is called 
a relative whole SS (with respect to the PS ֆ), denoted by 

Uֆ if ꝷ(t)=U for all t∈ֆ. The relative whole SS UE with 
respect to the universe set of parameters E is called the 
absolute SS over U [28].

The unique SS over U with an empty PS is denoted by 
∅∅ and is referred to as the empty SS over U. Keep in mind 
that the SSs over U by ∅∅ and by ∅ֆ are distinct [31]. Unless 
otherwise indicated, we always take into account SSs with 
non-empty PSs in the universe U in the following.

Maji et al. [25] was the first to define the notion of soft 
subset, which we here call soft M-subset for avoiding con-
fusion, in a very strict manner as follows:

Definition 2.3. Let (O,W) and (L,B) be two SSs over 
U. (O,W) is called a soft M-subset of (L,B), denoted by 
(O,W)⊆̃M(L,B), if W⊆B and O(𝜏)=L(𝜏) for all 𝜏∈W. Two 
SSs (O,W) and (L,B) are said to be soft M-equal, denoted by 
(O,W)=M(L,B), if (O,W)⊆̃M(L,B) and (L,B)⊆̃M(O,W) [25].

Definition 2.4. Let (O,W) and (L,B) be two SSs over 
U. (O,W) is called a soft F-subset of (L,B), denoted by (O, 
W)⊆̃F(L,B), if W⊆B and O(τ)⊆L(τ) for all 𝜏∈W. Two 
SSs (O,W) and (L, B) are said to be soft F-equal, denoted 
(O,W)=F(L,B), if (O,W)⊆̃F(L,B) and (L,B)⊆̃F(O,W) [26].

Note that the definitions of soft F-subset and soft 
F-equal were actually first given by Pei and Miao in [26], 
however in some of the SS papers, it was stated that these 
definitions were first given by Feng et al. in [29], and for 
this reason, this relation is designated by the letter “F”.

In [52], it was shown that soft equal relations =M and 
=F coincide with each other. That is; (O,W)=M(L,B) 
⇔(O,W)=F(L,B). If two SSs on U satisfy such soft equiv-
alence, they are actually identical, because they have the 
same set of parameter and approximate function [52].

Jun and Yang [51], by relaxing the conditions on PSs, 
generalized the concepts of F-soft subsets and soft F-equal 
relations. Although in [51], it is called generalized soft sub-
set and generalized soft equal relation, hereinafter, we call 
soft J-subsets and soft J-equal relations, the first letter of 
Jun.

Definition 2.5. Let (O,W) and (L,B) be two SSs over 
U. (O,W) is called a soft J-subset of (L,B), denoted by 
(O,W)⊆̃J(L,B), if for all 𝜏∈W, there exist 𝜔∈B such that 
O(𝜏)⊆L(𝜔). Two SSs (O,W) and (L,B) are said to be soft 
J-equal, denoted (O,W)=J(L,B), if (O,W)⊆̃J(L,B) and 
(L,B)⊆̃J(O,W) [51].

In [52] and [53], it was shown that (O,W)⊆̃M(L, B)⇒ 
(O,W)⊆̃F(L, B)⇒(O,W)⊆̃J(L, B); but the converse may not 
be true.

Motivated by the notions of soft J-subset [51] and ontol-
ogy-based soft subsets [30], Liu, Feng and Jun [52] also 
introduced the following new kind of soft subsets (hence-
forth referred to as soft L- subsets and soft L-equality) that 
generalize both soft M-subsets and ontology-based soft 
subsets:

Definition 2.6. Let (O,W) and (L,B) be two SSs over 
U. (O,W) is called a soft L-subset of (L,B), denoted by 
(O,W)⊆̃L(L,B), if for all 𝜏∈W, there exist 𝜔∈B such that 
O(𝜏)=L(𝜔). Two SSs (O,W) and (L,B) are said to be soft 
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L-equal, denoted (O,W)=L(L,B), if (O,W)⊆̃L(L,B) and 
(L,B)⊆̃L(O,W) [52].

In [52], it was proved that, as regard soft subset relation, 
we have: (O,W)⊆̃M(L, B)⇒(O,W)⊆̃L(L, B)⇒(O,W)⊆̃J(L,B). 
And also as regards soft relations, we have: 
(O,W)=M(L,B)⇒(O,W)=L(L,B)⇒(O,W)=J(L, B). But the 
converses may be true. Here recall that (O,W)=M(L,B) if 
and only if (O,W)=F(L,B).

Thus, we can conclude that soft J-equality =J is the 
weakest soft equal relation, while soft M-equality (hence 
soft F-equality) is the strictest sense. Soft L-equal relation 
=L is a concept midway between them [52].

Example 2.7. Let E={e1,e2,e3,e4,e5,e6} be the PS, 
A={e2,e5} and B={e2,e5,e6} be the subsets of E and 
U={h1,h2,h3,h4,h5} be the initial universe set. Let 
(Г,A)={(e2, {h2,h4}), (e5, {h3,h4,h6})}, (Ϭ,B)={(e2, {h2,h4}), 
(e5, {h3,h4}), (e6, {h2,h3,h4,h6})}. (W,B)={(e2, {h3,h4,h6}), 
(e5, {h2,h4}), (e6, {h2,h3,h4,h6})}.

Since Г(e2)⊆Ϭ(e2) (and also Г(e2)⊆Ϭ(e6)) and 
Г(e5)⊆Ϭ(e6), it is obvious that (Г,A)⊆̃J(Ϭ,B). However, 
since Г(e5)≠Ϭ(e2), Г(e5)≠Ϭ(e5), and Г(e5)≠Ϭ(e6), we can 
deduce that (Г,A) is not a soft L-subset of (Ϭ,B). Moreover, 
as Г(e5)≠Ϭ(e5), (Г,A) is not a soft M-subset of (Ϭ,B).

Now, since, Г(e2)=W(e5) and Г(e5)=W(e2), it is 
obvious that (Г,A)⊆̃L(W,B). However, as Г(e2)≠W(e2), 
Г(e5)≠W(e5), (Г,A) is not again a soft M-subset of (W,B).

Example 2.8. Let E={e1,e2,e3,e4,e5} be the PS, A={e2,e5} 
and B={e2,e5,e6} be the subsets of E and U={h1,h2,h3,h4,h5} 
be the initial universe set. Let (Г,A)={(e2, {h2,h4}),  (e5, 
{h2,h3,h4,h6})}, (Ϭ,B)={(e2, {h2,h3,h4}), (e5, {h2,h3,h4,h6}), 
(e6,{h2})}.

Since Г(e2)≠Ϭ(e2), Г(e2)≠Ϭ(e5) and Г(e2)≠Ϭ(e6), it 
is obvious that (Г,A)≠L(Ϭ,B). However, since Г(e2)⊆Ϭ(e2) 
(moreover Г(e2)⊆Ϭ(e5)) and Г(e5)⊆Ϭ(e5), we can deduce 
that (Г,A)⊆̃J(Ϭ,B).

Moreover, since Ϭ(e2)⊆Г(e5) and Ϭ(e5)⊆Г(e5), and 
Ϭ(e6)⊆Г(e2), we can deduce that (Ϭ, B)⊆̃J (Г,A). Therefore, 
(Г,A)=J(Ϭ, B). As Г(e2)≠Ϭ(e2) and Г(e5)≠Ϭ(e5), it is obvi-
ous that (Г,A) is not a soft M- subset of (Ϭ,B).

For more on soft F-equality, soft M-equality, soft 
J-equality, soft L-equality, and some other existing defini-
tions of soft subsets and soft equal relations in the literature, 
we refer to [50-58].

Definition 2.9. Let (ꝷ,ֆ) be a SS over U. The relative 
complement of a SS (ꝷ,ֆ), denoted by (ꝷ,ֆ)r, is defined 
by (ꝷ,ֆ)r = (ꝷr,ֆ), where ꝷr: ֆ → P(U) is a mapping 
given by (ꝷ,ֆ)r = U\ꝷ(t) for all t ∈ ֆ [28]. From now on, 
U\ꝷ(t)=[ꝷ(t)]′ will be designated by ꝷ’(t) for the sake of 
designation.

Definition 2.10. Let (O,W) and (L,B) be two SSs over 
U. The AND-product (∧-product) of the SSs (O,W) and 
(L,B) is a SS defined by (O,W)∧(L,B)=(H,WxB), where 
H(x,y)=O(x)∩L(y) for all (x, y) ∈WxB [25].

Definition 2.11 Let (O,W) and (L,B) be two SSs over 
U. The OR-product (∨-product) of the SSs (O,W) and 

(L,B) is a SS defined by (O,W)∨(L,B)=(H,WxB), where 
H(x,y)=O(x)∪L(y) for all (x,y)∈WxB [25].

Here note that we prefer to use AND-product instead of 
∧-product and OR-product instead of ∨-product through-
out the paper.

Example 2.12. Let E={e1,e2,e3,e4} be the PS, A={e1,e3} 
and B={e2,e4} be the subsets of E and U={h1,h2,h3,h4,h5} 
be the initial universe set. Let (Г,A)={(e1, {h2}), 
(e3, {h2,h5})}, (Ϭ,B)={(e2, {h2,h4}), (e4, {h1,h5})}. 
Since, AxB={(e1,e2), (e1,e4), (e3,e2), (e3,e4)}, then 
(Г,A)∧(Ϭ,B)={((e1,e2), {h2}), ((e1,e4),∅), ((e3,e2), {h2}), 
((e3,e4), {h5})},(Г,A)∨(Ϭ,B)={((e1,e2), {h2,h4}), ((e1,e4), 
{h1,h2,h5}), ((e3,e2), {h2,h4,h5}), ((e3,e4), {h1,h2,h5})}.

Let “∇” be used to represent the set operations such as 
∩, ∪,\, ∆. Then, restricted SS operations, extended SS oper-
ations, and soft binary piecewise operations are defined as 
follows:

Definition 2.13. Let (ꝷ,ֆ) and (L,B) be SSs over U. The 
restricted ∇ operation of (ꝷ,ֆ) and (L,B) is the SS (Y,S), 
denoted by, (ꝷ,ֆ)∇R(L,B)=(Y,S), where S=ֆ∩B≠∅ and 
∀τ∈S,Y(τ)=ꝷ(𝜏)∇L(τ) [28,32]. Here note that if ֆ∩B=∅, 
then (ꝷ,ֆ)∇R(L,B)=∅∅ [31].

Definition 2.14. Let (ꝷ,ֆ) and (L,B) be SSs over U. 
The extended ∇ operation of (ꝷ,ֆ) and (L, B) is the SS 
(Y,S), denoted by, (ꝷ,ֆ)∇ε(L,B)=(Y,S), where S=ֆ∪B 
and ∀τ∈S,

[25,28,47,48].
Definition 2.15. Let (ꝷ,ֆ) and (L,B) be SSs over U. The 

soft binary piecewise ∇ operation of (ꝷ,ֆ) and (L,B) is the SS 
(Y,P), denoted by, (ꝷ,ֆ)∇̃(L,B)=(Y, P), where ∀𝜏∊ֆ

[46,49].
Compared to rings, semirings are more general. 

Typically, addition and multiplication are two binary oper-
ations that combine to form a semiring (R,+, · ), which is an 
algebraic structure made up of a non-empty set R and two 
semigroups (R,+) and (R,.), where multiplication is distrib-
utive over addition from both sides. A semiring is called a 
semiring with identity if it has identity with multiplication, 
and a commutative semiring if it has commutative multi-
plication. A zero is said to exist in R if there is an element 0 
∈ R such that 0. a = a. 0 = 0 and 0 + a = a + 0 = a for every 
a ∈ R. A hemiring is a semiring with a zero element and 
commutative addition. See [59-75] for further information 
on semirings and hemirings and [76] for further possible 
applications of soft sets and graph applications.

PROPERTIES OF AND-PRODUCT

In this section, a whole investigation on AND-product 
as regards its algebraic properties will be handled such as 
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commutative laws, associative laws, idempotent laws and 
other all basic properties concerning soft F-subsets and soft 
M-equality and we will compare them with the formerly 
obtained properties as regards soft L-equality and soft 
J-equality.

The set SE(U) is closed under AND-product. That is, 
when (Г,A) and (Ϭ,B) are two SSs over U, then so is (Г,A) 
∧(Ϭ,B). In fact, AND-product is a binary operation in 
SE(U), namely,

∧ : SE(U)xSE(U)→ SE(U)
((Г,A), (Ϭ,B)) → (Г,A)∧(Ϭ,B)=(H,AxB)
as the set SE(U) contains all the SS over U. Here note 

that, the set SA(U) is not closed under AND-product, since 
if (Г,A) and (Ϭ,A) are the elements of SA(U), (Г,A)∧(Ϭ,A) is 
an element of SAxA(U) not SA(U).

Maji et al. [25] stated without any proof that associative 
law holds for AND-product. But in [28], it was shown that 
(Г,A)∧((Ϭ,B)∧(Z,C))≠M ((Г,A)∧(Ϭ,B))∧(Z,C). Since the SS 
(Г,A)∧((Ϭ,B)∧(Z,C)) has the PS Ax(BxC) and the SS ((Г,A) 
∧ (Ϭ,B))∧(Z,C) has the PS (AxB)xC and strictly speaking, 
the cartesian product is not associative (unless one of the 
involved sets is empty), that is Ax(BxC) and (AxB)xC are 
not exactly identical from a set theoretic point of view, they 
cannot be soft equal in the sense of soft M-equality (and 
so soft F-equality). However in [52], it was shown that the 
associative laws of AND-product operation (which they 
call “Generalized Soft Associative Laws”) only hold in the 
sense of soft L-equality instead of soft M-equality (and so 
soft F-equality).

Proposition 3.1. (Г,A)∧((Ϭ,B)∧(Z,C))=L((Г,A)∧(Ϭ,B)) 
∧(Z,C) [52].

It was highlighted in [52] that although the SSs on the 
two sides are soft equal with regard to soft L-equal rela-
tions, they are not the same since they have distinct PSs. Put 
otherwise, we may state that rather than holding true for 
Maji’s soft M-equality, the associative rules of soft product 
operations only hold in the context of soft L-equality. For 
algebraic structures like semigroups, this differs from the 
standard associative principles of binary operations.

Thus, we can deduce that (SE(U), ∧) is a semigroup 
only in the sense of soft L-equality, not in the sense of soft 
M-equality. Also, since AND-product is not closed in the 
set SA(U), (SA(U), ∧) can not be a semigroup even in the 
sence of soft L-equality.

In classical set theory; the Cartesian product of sets is 
not commutative, that is AxB≠BxA. In [53], as the name of 
“generalized soft commutative laws” (see Proposition 3.2), 
it was shown that commutative law holds for AND-product 
with respect to soft L-equal relations.

Proposition 3.2. Let (Г,A) and (Ϭ,B) be two SSs over U. 
Then, (Г,A)∧(Ϭ,B)=L(Ϭ,B)∧(Г,A) [53].

We now have the following comparison:
Proposition 3.3. Let (Г,A), (Ϭ,A) and (Ϭ,B) be SSs 

over U. Then, (Г,A)∧(Ϭ,B)≠M(Ϭ,B)∧(Г,A), moreover (Г,A) 
∧(Ϭ,A)≠M(Ϭ,A)∧(Г,A).

Proof: Let first handle the case of (Г,A)∧(Ϭ,B). Since the 
PS of the left hand side is AxB, and the PS of the right hand 
side is BxA, and AxB≠BxA, (Г,A)∧(Ϭ,B)≠M(Ϭ,B)∧(Г,A) is 
obvious.

Now let handle the case of (Г,A) ∧(Ϭ,A). Since the PS of 
the left hand side is AxA, and the PS of the right hand side 
is AxA, the initial requirement for the soft M-equality has 
been met. Moreover,
i) Let (𝜏,𝜔)∈AxA such that 𝜏=𝜔. Then, 

(Г,A)∧(Ϭ,A)=(H,AxA), where H(𝜏,𝜏)=Г(𝜏)∩Ϭ(𝜏) 
for all (𝜏,𝜏)∈AxA. Let (Ϭ,A)∧(Г,A)=(K,AxA), where 
K(𝜏,𝜏)=Ϭ(𝜏)∩Г(𝜏) for all (𝜏,𝜏)∈AxA. Since Г(𝜏)∩Ϭ(𝜏)= 
Ϭ(𝜏)∩Г(𝜏), then (Г,A)∧(Ϭ,A)=(Ϭ,A)∧(Г,A) for the ele-
ments of AxA such that 𝜏 = 𝜔. However,

ii) Now suppose that (𝜏,𝜔)∈AxA such that 𝜏≠𝜔 and let 
(Г,A)∧(Ϭ,A)=(H,AxA), where H(𝜏,𝜔)=Г(𝜏)∩Ϭ(𝜔) 
for all (𝜏,𝜔)∈AxA and (Ϭ,A)∧(Г,A)=(K,AxA), where 
K(𝜏,𝜔)=Ϭ(𝜏)∩Г(𝜔) for all (𝜏,𝜔)∈AxA. Since Г(𝜏)∩Ϭ(𝜔) 
needs not be equal to Ϭ(𝜏)∩Г(𝜔), (Г,A)∧(Ϭ,A)≠M 
(Ϭ,A)∧(Г,A).
Proposition 3.3. shows that for satisfying 

(Г,A)∧(Ϭ,B)=M(Ϭ,B)∧(Г,A), first of all the PSs of the SSs 
of both sides should be equal; that is A sould be equal to B; 
but this is not a sufficient condition for the commutativity; 
as (Г,A)∧(Ϭ,A) is not soft M-equal to (Ϭ,A)∧(Г,A) although 
both sides have the same PSs.

In classical set theory, if A=B, then AxB=BxA. We now 
have the following comparison:

Proposition 3.4. Let (Г,A) and (Ϭ,B) be two SSs over U. 
If (Г,A)=M(Ϭ,B), then (Г,A) ∧(Ϭ,B)=M(Ϭ, B)∧(Г,A).

Proof: Since (Г,A)=M(Ϭ,B), then, A=B. Hence, 
AxB=BxA. Moreover, (Г,A)∧(Ϭ,B)=M(Г,A)∧(Г,A) and 
(Ϭ,B)∧(Г,A)=M(Г,A)∧(Г,A). Thus, the proof is completed.

In classical theory, AxB=BxA if and only if A=B, or 
A=∅ or B=∅; however the following example (Example 3.5) 
illustrates that Proposition 3.4 cannot be reversed in gen-
eral, that is, (Г,A)∧(Ϭ,B)=M(Ϭ,B)∧(Г,A) does not imply that 
(Г,A)=M(Ϭ,B).

Example 3.5. Let E={e1,e2,e3,e4} be the PS, A=B={e1,e3} 
be the subsets of E and U= {h1,h2,h3,h4,h5} be the initial 
universe set. Let (Г,A) and (Ϭ,B) be SSs over U defined as 
following:

(Г,A)={(e1, {h2,h5}), (e3, {h5})}
(Ϭ,B)={(e1, {h1,h4}), (e3, {h3,h4})}
Then, (Г,A)∧(Ϭ,B)=M{((e1,e1),∅), ((e1,e3),∅), 

((e3,e1),∅), ((e3,e3),∅)} and (Ϭ,B)∧(Г,A)=M{((e1, e1),∅), 
((e1,e3), ∅), ((e3,e1),∅), ((e3, e3),∅)}. It is observed that 
(Г,A)∧(Ϭ,B)=M(Ϭ,B)∧(Г,A); but (Г,A)≠M(Ϭ,B).

Note 3.6: In classical set theory, if AxB=BxA, then 
A=B or [A=∅ or B=∅]. Example 3.5 also shows us that, 
as a nonanalogy to the classical set theory, in SS the-
ory (Г,A)∧(Ϭ,B)=M(Ϭ,B)∧(Г,A) neither implies that 
(Г,A)=M(Ϭ,B) nor (Г,A)=M ∅A or (Ϭ,B)=M ∅B.

In classical set theory, if AxB=∅, then A=∅ or B=∅. 
Example 3.5 also illustrates that this case is not valid for 
SS theory as regards AND-product. For satisfying (Г,A) 

https://en.wikipedia.org/wiki/Associative
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∧(Ϭ,B)=M ∅AxB, it is compulsory that Г(𝜏)∩Ϭ(𝜔)=∅ for all 
(𝜏,𝜔)∈AxB as in Example 3.5.

In classical set theory, if A=∅ or B=∅, then AxB =BxA 
and also Ax∅=∅xA=∅. That is, the empty set commutes with 
any set under the cartesian product and ∅ is the absorbing 
element under cartesian product in the set of sets. In [53], 
it was shown that ∅A commutes with any SS whose PS is A 
under AND-product and also ∅A is the absorbing element 
for AND-product in SA(U) as regards L- equality. That is:

(Г,A)∧∅A=L ∅A∧(Г, A)=L ∅A.
However, as regards soft M-equality, we have Proposition 

3.7. and Proposition 3.8.:
Proposition 3.7. Let (Г,A) and (Ϭ,B) be two SSs over U. 

If (Г,A)=∅A or (Ϭ,B)=∅B, then (Г,A)∧(Ϭ,B) needs not be soft 
M-equal to (Ϭ,B)∧(Г,A).

Proof: Without loss of generality, let (Ϭ,B)=M∅B. 
Then, (Г,A)∧(Ϭ,B)=M(Г,A)∧∅B=M∅AxB and 
(Ϭ,B)∧(Г,A)=∅B∧(Г,A)=M∅BxA and since ∅AxB≠M∅BxA, 
(Г, A)∧(Ϭ, B)≠M(Ϭ,B)∧(Г,A).

We now have the following comparison:
Proposition 3.8. Let (Г,A) be a SS over U. Then, 

(Г,A)∧∅A=M ∅A∧(Г,A)=M ∅AxA.
Proof: Let ∅A=(S,A), where S(𝜏)=∅ for all 𝜏∈A. Then, 

(Г,A)∧∅A=M(Г,A)∧(S,A)=M(H,AxA), where H(𝜏,𝜔)=Г(𝜏)∩ 
S(ω)=Г(τ)∩∅=∅ for all (𝜏,𝜔)∈AxA. Hence, (H,AxA)=M 
∅AxA. Now, let ∅A∧(Г,A)=M(S,A)∧(Г, A)=M(K,AxA), where 
K(𝜏,𝜔)=S(τ)∩F(ω)=∅∩F(ω)=∅ for all (𝜏,𝜔)∈AxA. 
Hence, (K,AxA)=M ∅AxA.

Here note that while ∅A is absorbing element for 
AND-product in SA(U) as regards L-equality, it is not the 
absorbing element for AND-product in SA(U) as regards 
M-equality.

Corollary 3.9. Let (Г,A) and (Ϭ,B) be SSs over U. If 
(Г,A)=∅A or (Ϭ,B)=∅A, then (Г,A)∧(Ϭ,B)=M(Ϭ,B)∧(Г,A).

Now by being inspired by Proposition 3.8. and Corollary 
3.9., we have the following:

Proposition 3.10. Let (Г,A) and (Ϭ,B) be SSs over U. 
(Г,A)∧(Ϭ,B)=M(Ϭ,B)∧(Г,A)=M ∅∅ if and only if (Г,A)=M ∅∅ 
or (Ϭ,B)=M ∅∅.

Proof: Necessity: Let (Г,A)∧(Ϭ,B)=M(Ϭ,B)∧(Г,A)=M ∅∅. 
Since AxB=BxA=∅ if and only if A=∅ or B=∅, and since 
∅∅ is the unique SS over U with an empty PS, (Г,A)=∅∅ or 
(Ϭ,B)=∅∅.

Sufficiency: Let (Г,A)=∅∅ or (Ϭ,B)=∅∅. Without loss of 
generality, let (Ϭ,B)=∅∅. Then, B=∅ and since Ax∅=∅xA=∅, 
and since ∅∅ is the unique SS over U with an empty PS, the 
rest of the proof is obvious.

By Proposition 3.10, we have ∅∅∧(Г,A)=M(Г,A)∧∅∅=M 
∅∅ (1). This shows us that ∅∅ commutes with any SS under 
AND-product and ∅∅ is the absorbing element for AND-
product in SE(U) as regards soft M-equality (and thus, soft 
L-equality and soft J-equality, as soft M-equality requires 
soft L-equality and soft J-equality.)

Moreover, one can easily show that (Г,A)∧∅E=L 
∅E∧(Г,A)=L ∅E (2). This means that ∅E

commutes with any SS under AND-product and also 
∅E is the absorbing element for AND-product in SE(U) 
as regards L-equality, too. Thus, ∅∅ and ∅E are all the 
absorbing element for AND-product in SE(U) as regards 
L-equality. It is well-known a magma can have at most one 
absorbing element.

Here, we want to draw attention to one crucial point: 
Although the SSs on either side of Equations (1) and (2) 
differ in their PSs, they are soft equal in reference to soft 
L-equal relations. In other words, we can say that there are 
two different absorbing elements for AND-product opera-
tion in SE(U) (they are ∅∅ and ∅E), only in the sense of soft 
L-equality. Having two distinct absorbing elements in the 
sense of soft M-equality is ofcourse impossible. In fact, only 
∅∅ is the only absorbing element of AND-product in the set 
SE(U) in the sense of soft M-equality.

In [53], it was shown that (Г,A)∧UA=LUA∧(Г,A)=L(Г,A). 
That is, UA commutes with any SS whose PS is A under 
AND-product and also UA is the identity element for AND-
product in SA(U) as regards L-equality. Also, similarly 
one can show that (Г,A)∧UE=LUE∧(Г,A)=L(Г,A). That is, 
UE commutes with any SS under AND-product and UE is 
the identity element for AND-product in SE(U) as regard 
L-equality. Now, we have the following for soft M-equality:

Proposition 3.11. Let (Г,A) and (Ϭ,A) be SSs over U. If 
(Г,A)=M UA or (Ϭ,A)=M UA, then (Г,A)∧(Ϭ,A) needs not to 
be soft M-equal to (Ϭ,A)∧(Г,A).

Example 3.12. Let E={e1,e2,e3,e4} be the PS, 
A=B={e1,e3} be the subset of E and U={h1,h2,h3,h4,h5} be 
the initial universe set. Let (Г,A) and (Ϭ,A) be SSs over U 
defined as following:

(Г,A)={(e1,U), (e3,U)}=UA and (Ϭ,B)={(e1, {h1,h4}), 
(e3, {h3,h4})}. Then, (Г,A)∧(Ϭ,A)={((e1,e1), {h1,h4}), 
((e1,e3), {h3,h4}), ((e3,e1), {h1,h4}), ((e3,e3), {h3,h4})} and 
(Ϭ,A)∧(Г,A)={((e1,e1), {h1,h4}), ((e1,e3), {h1,h4}), ((e3,e1), 
{h3,h4}), ((e3,e3), {h3,h4})}. It is seen that (Г,A)∧(Ϭ,A)≠M 
(Ϭ,A)∧(Г,A).

We now have the following comparison:
Proposition 3.13. Let (Г,A) and (Ϭ,A) be SSs over U. 

If one of the SSs is the whole SS with respect to A, then 
(Г,A)∧(Ϭ,A)=M (Ϭ,A)∧(Г,A) if and only if the other SS is a 
constant function.

Proof: Necessity: Let (Г,A) and (Ϭ,A) be SSs over U 
such that (Г,A)=M UA and (Г,A)∧(Ϭ,A)=M (Ϭ,A)∧(Г,A), that 
is UA∧(Ϭ,A)=M (Ϭ,A)∧UA.

Let (𝜏,𝜔)∈AxA such that if 𝜏=𝜔. Then, UA 
∧(Ϭ,A)=M(Ϭ,A)∧UA implies that U∩ Ϭ(𝜏)=Ϭ(𝜏)∩U. That is 
Ϭ(𝜏)=Ϭ(𝜏) is already satisfied for all (𝜏,𝜔)∈AxA such that 
𝜏= 𝜔.

Therefore let (𝜏,𝜔)∈AxA such that 𝜏≠𝜔. Then, 
UA∧(Ϭ,A)=M (Ϭ,A)∧UA implies that U∩Ϭ(𝜔)=Ϭ(𝜏)∩U. 
That is, Ϭ(𝜏)=Ϭ(𝜔) for all (𝜏,𝜔)∈ AxA such that 𝜏≠ 𝜔. This 
implies that (Ϭ,A) is a constant function.

Sufficiency: Let (Г,A) and (Ϭ,A) be SSs over U such 
that (Г,A)=M UA and (Ϭ,A) is a constant function. Let 
(Г,A)∧(Ϭ,A)=M(H,AxA), where H(𝜏,𝜔)=Г(𝜏)∩ Ϭ(ω)=U∩ 
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Ϭ(𝜔)=Ϭ(𝜔) for all (𝜏,𝜔)∈AxA. Let (Ϭ,A)∧(Г,A)=(W,AxA), 
where W(𝜏,𝜔)=Ϭ(𝜏)∩Г(ω)=Ϭ(𝜏)∩U=Ϭ(𝜏) for all 
(𝜏,𝜔)∈AxA. Since Ϭ is a constant function, then Ϭ(𝜏)=Ϭ(𝜔) 
for all 𝜏, 𝜔∈A. Hence, H(𝜏,𝜔)=W(𝜏,𝜔) for all (𝜏,𝜔)∈AxA, 
implying that (H,AxA)=M (W,AxA), and so (Г,A)∧(Ϭ,A)=M 
(Ϭ,A)∧(Г,A).

With a generalization; we have the following proposi-
tion for the commutative property of the SSs under AND-
product whose PSs are the same.

Corollary 3.14. Let (Г,A) and (Ϭ,B) be SSs over 
U. (Г,A)∧(Ϭ,B)=M(Ϭ,B)∧(Г,A) if and only if A=B and 
Г(𝜏)∩Ϭ(𝜔)=Ϭ(𝜏)∩Г(𝜔) for all (𝜏,𝜔)∈ AxA such that 𝜏≠ 𝜔.

Example 3.15. Let E={e1,e2,e3,e4} be the PS, 
A=B={e1,e3} be the subset of E and U= {h1,h2,h3,h4,h5} be 
the initial universe set. Let (Г,A) and (Ϭ,A) be the SSs over 
U defined as following:

(Г,A)={(e1, {h1,h3}), (e3, {h1,h3,h4,,h5,})}
(Ϭ,A)={(e1, {h1, h2, h3 }), (e3, {h1,h3,h4})}.
Then, (Г,A)∧(Ϭ,A)={((e1,e1), {h1,h3}), ((e1,e3), 

{h1,h3}), ((e3,e1), {h1,h3}), ((e3,e3) {h1,h3,h4})} and 
(Ϭ,A)∧(Г,A)={((e1,e1), {h1,h3}), ((e1,e3), {h1,h3}), ((e3,e1), 
{h1,h3}),  ((e3,e3), {h1,h3,h4})}.

Since for all 𝜏≠ 𝜔, Г(𝜏)∩Ϭ(𝜔)=Ϭ(𝜏)∩Г(𝜔), then it t is 
observed that (Г,A)∧(Ϭ,A)=M (Ϭ,A)∧(Г,A).

Proposition 3.16. Let (Г,A) and (Ϭ,B) be SSs over U. 
(Г,A)∧(Ϭ,B)=M UAxB if and only if (Г,A)=M UA and (G,B)=M 
UB .

Proof: Necessity: Let (Г,A)∧(Ϭ,B)=M(Z,AxB), where 
Z(𝜏,𝜔)=Г(𝜏)∩Ϭ(𝜔) for all (𝜏,𝜔)∈AxB. Let UAxB=M(L,AxB), 
where L(𝜏,𝜔)=U for all (𝜏,𝜔)∈AxB. Since, Z(𝜏,𝜔)=L(𝜏,𝜔)= 
Г(𝜏)∩Ϭ(𝜔)=U, then Г(𝜏)=U for all 𝜏∈A and Ϭ(𝜔)=U for all 
𝜔∈B. Hence, (Г,A)=M UA and (Ϭ,B)=M UB.

Sufficiency: It is obvious, hence omitted.
In classical set theory; A⊆B ⇒ AxC⊆BxC. We now have 

the following comparison:
Proposition 3.17. Let (Г,A), (Ϭ,B) and (Z,C) be SSs over 

U. If (Г,A)⊆̃F(Ϭ,B), then (Г,A)∧(Z,C)⊆̃F(Ϭ,B)∧(Z,C).
Proof: Let (Г,A)⊆̃F(Ϭ,B). Then, A⊆B and hence, 

AxC⊆BxC. Moreover since (Г,A)⊆̃F(Ϭ,B), then Г(𝜏)⊆Ϭ(𝜏) 
for all 𝜏∈A. Thus, Г(𝜏)∩Z(𝜔)⊆Ϭ(𝜏)∩Z(𝜔) for all (τ,ω) 
∈AxC. So, (Г,A)∧(Z,C)⊆̃F(Ϭ,B)∧(Z,C).

In classical set theory; B⊆C ⇒ AxB⊆AxC. We now have 
the following comparison:

Proposition 3.18. Let (Г,A), (Ϭ,B) and (Z,C) be SSs over 
U. (Ϭ,B)⊆̃F(Z,C)⇒(Г,A)∧(Ϭ,B)⊆̃F(Г,A)∧(Z,C).

The proof is similar to the proof of Proposition 3.17, 
hence omitted.

In classical set theory, if AxC⊆BxC, then A needs not be 
a soft subset of B; but if AxC⊆BxC where C≠∅, then A⊆B. 
We now have the following comparison:

Proposition 3.19. Let (Г,A), (Ϭ,B) and (Z,C) be SSs 
over U. If (Г,A)∧(Z,C)⊆̃F(Ϭ,B)∧(Z,C) and (Z,C)≠F ∅∅ and 
(Z,C)≠F ∅C , then (Г,A)⊆̃F(Ϭ,B).

Proof: Let (Г,A)∧(Z,C)⊆̃F(Ϭ,B)∧(Z,C). Then, 
AxC⊆BxC. Since (Z,C)≠F ∅∅, then C≠∅. (As ∅∅ is the 
unique SS with an empty PS); hence AxC⊆BxC implies that 

A⊆B. Hence, the first condition for being the soft F-subset 
is satisfied.

Now, let (Г,A)∧(Z,C)=(T,AxC), where T(𝜏,c)=Г(𝜏)∩Z(c) 
for all (𝜏,c)∈AxC. Since A⊆ B, 𝜏∈A implies that 𝜏∈B. Also 
let (Ϭ,B)∧(Z,C)=F(P,BxC), where P(𝜏,c)=Ϭ(𝜏)∩Z(c). By 
assumption, since (T,AxC)⊆̃F(P,BxC), then T(𝜏,c)⊆P(𝜏,c) for 
all (𝜏,c)∈AxC. Thus, T(𝜏,c)=Г(𝜏)∩Z(c)⊆ P(𝜏,c)=Ϭ(𝜏)∩Z(c) 
and so Г(𝜏)⊆Ϭ(𝜏) for all 𝜏∈A (Since (Z,C)≠∅C, Z(c)≠∅ for 
all c∈C). Thus, (Г,A)⊆̃F(Ϭ,B).

In classical set theory; A⊆B and C⊆D⇒AxC⊆BxD. We 
now have the following comparison:

Proposition 3.20. Let (Г,A), (Ϭ,B), (Z,C) and (T,D) be 
SSs over U. (Г,A)⊆̃F(Ϭ,B) and (Z,C)⊆̃F(T,D)⇒(Г,A)∧(Z,C)
⊆̃F(Ϭ,B)∧(T,D).

Proof: Let (Г,A)⊆̃F(Ϭ,B) and (Z,C)⊆̃F(T,D), then A⊆B 
and C⊆D. Hence, AxC⊆BxD. Moreover, by assump-
tion, Г(𝜏)⊆Ϭ(𝜏) for all 𝜏∈A and Z(𝜔)⊆T(𝜔) for all 𝜔∈C. 
Thus, Г(𝜏)∩Z(𝜔)⊆Ϭ(𝜏)∩Z(𝜔) for all (τ,ω)∈AxC. So, 
(Г,A)∧(Z,C)⊆̃F(Ϭ,B)∧(T,D).

In classical set theory, (AxB)∩(CxD)=(A∩C)x(B∩D). 
We now have the following comparison:

Proposition 3.21. Let (Г,A), (Ϭ,B), (Z,C) and (T,D) 
be SSs over U. Then, [(Г,A)∧(Ϭ,B)]∩R[(Z,C)∧(T,D)]=M 
[(Г,A)∩R(Z,C)]∧[(Ϭ,B)∩R(T,D)]

Proof: The PS of the SS of the left hand side is 
(AxB)∩(CxD); and the PS of the SS of the right hand 
side is (A∩C)x(B∩D). Since, (AxB)∩(CxD)=(A∩C)
x(B∩D), the parameter condition for the soft M-equality 
is satisfied.

Let 𝜏∈A∩C and 𝜔∈B∩D. Hence, 𝜏∈A and 𝜏∈C, and 
𝜔∈B and 𝜔∈D. Thus, (𝜏,𝜔) ∈AxB and (𝜏,𝜔)∈CxD. Now, 
let (Г,A)∧(Ϭ,B)=M(N,AxB), where N(𝜏,𝜔)=Г(𝜏)∩Ϭ(𝜔) for 
all (τ, ω) ∈AxB and let (Z,C)∧(T,D)=M(K,CxD) where 
K(𝜏,𝜔)=Z(𝜏) ∩T(𝜔) for all (τ,ω)∈CxD. Now, suppose 
that (N,AxB)∩R(K,CxD)=M(M,(AxB)∩(CxD)), where 
M(𝜏,𝜔)=N(𝜏,𝜔)∩K(𝜏,𝜔) for all (τ,ω)∈AxB and (τ,ω) 
∈CxD. Hence M(𝜏,𝜔)=N(𝜏,𝜔)∩K(𝜏,𝜔)=[Г(𝜏)∩Ϭ(𝜔)]∩ 
[Z(𝜏)∩T(𝜔)].

Suppose that (Г,A)∩R(Z,C)=M(R,A∩C), 
where R(𝜏)=Г(𝜏)∩Z(𝜏) for all 𝜏∈A∩C and 
(Ϭ,B)∩R(T,D)=M(S,B∩D), for all 𝜔∈B∩D where 
S(𝜔)=Ϭ(𝜔)∩T(𝜔). Let (R,A∩C)∧(S,B∩D)=M(Y,(A∩C)
x(B∩D)), where Y(𝜏,𝜔)=R(𝜏)∩S(𝜔) for all (τ, ω)∈(A∩C)
x(B∩D). Hence; Y(𝜏,𝜔)=R(𝜏)∩S(𝜔)=[Г(𝜏) ∩Z(𝜏)]∩[Ϭ(𝜔) 
∩T(𝜔)]. When we consider the properties of operations on 
set theory, we obtain that M and Y are the same set-valued 
mappings, so the proof is completed.

In classical set theory, for all A, ∅⊆A. We now have the 
following comparison:

Proposition 3.22. Let (Г,A) and (Ϭ,B) be SSs over U. 
Then, ∅AxB⊆̃F(Г,A)∧(Ϭ,B), ∅BxA⊆̃F(Ϭ,B)∧(Г,A).

In classical set theory, for all A, A⊆U. We now have the 
following comparison:

Proposition 3.23. Let (Г,A) and (Ϭ,B) be SSs over U. 
Then, (Г,A)∧(Ϭ,B)⊆̃FUAxB and (Ϭ,B)∧(Г, A)⊆̃FUBxA.
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In [53], it was proved that the AND-product is idempo-
tent in the sense of soft J-equality, that is (Г,A)∧(Г,A)=J(Г,A); 
however in the sense of L-equality, the AND-product is 
not idempotent, that is, (Г,A)∧(Г,A)≠L(Г,A). Also, AND-
product is not idempotent in the sense of soft M-equality, 
that is, (Г,A)∧(Г,A)≠M(Г,A) due to the inequality of the PSs 
of the SSs of both sides. In [53], it was also proved that for 
certain types of SSs (sublattice SS), soft product operations 
may satisfy idempotent laws with respect to soft L-equal 
relations.

In what follows, we give the interrelations of AND-
product with OR-product.

Proposition 3.24. Let (Г,A) and (Ϭ,B) be SSs over U. 
Then, ((Г,A)∧(Ϭ,B))r=M(Г, A)r∨(Ϭ,B)r [32].

In Maji [25], it was stated without any proof that AND-
product distributes over OR-product, and OR-product dis-
tributes over AND-product as regards soft M-equality. But 
in [28], it was proved that AND-product does not distrib-
ute over OR-product, and OR-product does not distribute 
over AND-product as regards soft M-equality due to the 
inequality of the PSs of the SSs of both sides. In [51], it was 
proved that AND-product distributes over OR-product, 
and OR-product distributes over AND-product as regards 
soft J-equality; but in [52,53], it was shown with a coun-
terexample that AND-product does not distribute over 
OR-product, and OR-product does not distribute over 
AND-product as regards soft J-equality. Finally, with the 
help of soft L-subsets, in [52,53] the right answer to the 
above question concerning soft distributive laws was given 
follows:

Proposition 3.25. Let (Г,A), (Ϭ,B) and (Z,C) be SSs over 
U. Then,
i) (Г,A)∧((Ϭ,B)∨(Z,C))⊆̃L((Г,A)∧(Ϭ,B))∨((Г,A)∧(Z,C))

[52].
ii) (Г,A)∨((Ϭ,B)∧(Z,C))⊆̃L((Г,A)∨(Ϭ,B))∧((Г,A)∨(Z,C))

[53].
iii) ((Г,A)∧(Ϭ,B))∨(Z,C)⊆̃L((Г,A)∨(Z,C))∧((Ϭ,B)∨ (Z,C))

[52].
iv) ((Г,A)∨(Ϭ,B))∧(Z,C)⊆̃L((Г,A)∧(Z,C))∨((Ϭ,B)∧ (Z,C))

[53].
In classical set theory, A∩B⊆A∪B. We now have the fol-

lowing comparison:
Proposition 3.26. Let (Г,A) and (Ϭ,B) be SSs over U. 

Then, (Г,A)∧(Ϭ,B)⊆̃F (Г,A)∨(Ϭ,B).
Proof: Let (Г,A)∧(Ϭ,B)=(H,AxB), where 

Z(𝜏,𝜔)=Г(𝜏)∩Ϭ(𝜔) for all (𝜏,𝜔)∈AxB. Let (Г,A) 
∨(Ϭ,B)=(J,AxB), where J(𝜏,𝜔)=Г(𝜏)∪Ϭ(𝜔) for all (𝜏,𝜔)∈AxB. 
Since, Г(𝜏)∩Ϭ(𝜔)⊆Г(𝜏)∪Ϭ(𝜔) for all (𝜏,𝜔)∈AxB, the rest of 
the proof is obvious.

In classical set theory, A∩B=A∪B⟺A=B. However in the 
following example, we show that (Г,A)∧(Ϭ,B)=M(Г,A)∨(Ϭ,B) 
does not imply that (Г,A)=M (Ϭ,B).

Example 3.27. Let E={e1,e2,e3,e4} be the PS, A={e1,e2} 
and B={e1,e3} be the subsets of E and U={h1,h2,h3,h4,h5} 
be the initial universe. Consider (Г,A) and (Ϭ,B) as the SSs 
over U defined as following:

(Г,A)={(e1, {h2,h5}), (e2, {h2,h5})}
(Ϭ,B)= {(e1, {h2,h5}), (e3, {h2,h5})}.
Then,
(Г,A)∧(Ϭ,B)={((e1,e1), {h2, h5}), ((e1,e3), {h2,h5}), 

((e2,e1),  {h2,h5}), ((e2,e3),  {h2,h5})} and (Г,A)∨(Ϭ,B)={((e1, 
e1), {h2,h5}), ((e1,e3), {h2,h5}), ((e2,e1), {h2,h5}), ((e2,e3), 
{h2,h5})}.

It is seen that (Г,A)∧(Ϭ,B)=M(Ϭ,B)∧(Г,A); but (Г,A)≠M 
(Ϭ,B) (since A≠B).

Proposition 3.28. Let (Г,A) and (Ϭ,B) be SSs over U. 
(Г,A)∧(Ϭ,B)=M(Г,A)∨(Ϭ,B) if and only if Г and Ϭ are the 
constant functions such that Г(𝜏)=Ϭ(𝜔) for all 𝜏∈A and for 
all 𝜔∈B.

Proof: Necessity: Let (Г,A)∧(Ϭ,B)=M(Г,A)∨(Ϭ,B) 
and (Г,A)∧(Ϭ,B)=M(Z,AxB), where Z(𝜏,𝜔)=Г(𝜏)∩Ϭ(𝜔) 
for all (𝜏,𝜔)∈AxB and (Г,A)∨(Ϭ,B)=M(J,AxB), 
where J(𝜏,𝜔)=Г(𝜏)∪Ϭ(𝜔) for all (𝜏,𝜔)∈AxB. Since, 
(Z,AxB)=M(J,AxB), then Г(𝜏)∩Ϭ(𝜔)=Г(𝜏)∪Ϭ(𝜔) for all 
(𝜏,𝜔)∈AxB. This implies that Г and Ϭ are the constant func-
tions satisfying Г(𝜏)=Ϭ(𝜔) for all 𝜏∈A and for all 𝜔∈B.

Sufficiency: Let (Г,A) and (Ϭ,B) be SSs over U sat-
isfying that Г and Ϭ are constant functions such that 
Г(𝜏)=Ϭ(𝜔) for all 𝜏∈A and for all 𝜔∈B. Let (Г,A)∧(Ϭ,B)=M 
(Z,AxB), where Z(𝜏,𝜔)=Г(𝜏)∩Ϭ(𝜔) for all (𝜏,𝜔)∈AxB 
and (Г,A)∨(Ϭ,B)=M(J,AxB), where J(𝜏,𝜔)=Г(𝜏)∪Ϭ(𝜔) 
for all (𝜏,𝜔)∈AxB. Since Г(𝜏)∩Ϭ(𝜔)=Г(𝜏)∪Ϭ(𝜔) for all 
(𝜏,𝜔)∈AxB, this implies that (Z,AxB)=M(J,AxB). Thus, 
(Г,A)∧(Ϭ,B)=M(Г,A)∨(Ϭ,B).

Corollary 3.29: Let (Г,A) be a SS over U. (Г,A)∧( Г,A) 
=M(Г,A)∨(Г,A) if and only if Г is a constant function.

DISTRIBUTIONS

In this section, we explore more about the distributions 
of AND-product over restricted SS operations, extended 
SS operations and soft binary piecewise operations, 
respectively.

Distributions of AND-Product Over Restricted SS 
Operations

In this subsection, we examine the distributions of 
AND-product over restricted SS operations.

When considering the necessary condition for the soft 
M-equality, that is the equality of PSs of the SSs of both 
sides, we can deduce that the distributions of restricted SS 
operations over AND-product can not be examined, since 
the intersection operation does not distribute over carte-
sian product. Thus, the distribution of restricted SS opera-
tions over AND-product is never satisfied.

Here it should be noted that in [39], the distributions 
of AND-product over restricted intersection, restricted 
union and restricted difference are obtained but as regards 
restricted intersection and restricted union, only left dis-
tributions are examined. Moreover, in [39], the condition 
where the intersection of the PSs is empty was ignored. 
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Hence in this section, we handle the distributions of AND-
product over restricted SS operations completely.

Left-distributions of AND-product over restricted SS 
operations
1) (Г,A)∧[(Ϭ,B)∪R(Z,C)]=M[(Г,A)∧(Ϭ,B)]∪R[(Г,A)∧(Z,C)]

Proof: Let’s first check the equality of PSs of the SSs 
of both sides. The PS of the left hand side is Ax(B∩C), 
and the PS of the right hand side is (AxB)∩(AxC). Since 
Ax(B∩C)=(AxB)∩(AxC), the first condition for the soft 
M-equality is satisfied.

Let’s first consider the left side (LS). Assume that 
(Ϭ,B)∪R(Z,C)=M(K,B∩C), where K(𝜔)=Ϭ(𝜔)∪Z(𝜔) for 
all 𝜔∈B∩C. Let (Г,A)∧(K,B∩C)=M(L,Ax(B∩C)), where 
L(𝜏,𝜔)=Г(𝜏)∩K(𝜔) for all (𝜏,𝜔)∈Ax(B∩C). Hence, L(𝜏,𝜔) 
=Г(𝜏)∩K(𝜔)=Г(𝜏)∩(Ϭ(𝜔)∪Z(𝜔))=[Г(𝜏)∩Ϭ(𝜔)]∪[Г(𝜏) 
∩Z(𝜔)].

Now, let (Г,A)∧(Ϭ,B)=M(M,AxB), where M(𝜏,𝜔)=Г(𝜏) 
∩Ϭ(𝜔) for all (𝜏,𝜔)∈AxB and let (Г,A)∧(Z,C)=M(N,AxC), 
where N(𝜏,𝜔)=Г(𝜏)∩Z(𝜔) for all (𝜏,𝜔)∈AxC. Let 
(M,AxB)∪R(N,AxC)=M(T,(AxB)∩(AxC)), where 
T(𝜏,𝜔)=M(𝜏,𝜔)∪N(𝜏,𝜔) for all (𝜏,𝜔)∈(AxB)∩(AxC). 
Thus, T(𝜏,𝜔)=M(𝜏,𝜔)∪N(𝜏,𝜔)=[Г(𝜏)∩Ϭ(𝜔)]∪[Г(𝜏)∩Z(𝜔)] 
for all (𝜏,𝜔) ∈ (AxB) ∩ (AxC). When we consider the prop-
erties of operations on set theory, we have that L and T are 
the same set-valued mappings, so the proof is completed.

Here note that if B∩C=∅, then the PS of both sides is 
∅; that is, Ax(B∩C)=(AxB)∩(AxC)=∅ and since ∅∅ the 
unique SS over U with an empty PS, both side will be ∅∅. 
Thus, the soft M-equality is again satisfied.
2) (Г,A)∧[(Ϭ,B)∩R(Z,C)]=M[(Г,A)∧(Ϭ,B)]∩R[(Г,A)∧ (Z,C)]
3) (Г,A)∧[(Ϭ,B)\R(Z,C)]=M[(Г,A)∧(Ϭ,B)]\R[Г,A)∧(Z,C)]
4) (Г,A)∧[(Ϭ,B)∆R(Z,C)]=M[(Г,A)∧(Ϭ,B)]∆R[(Г,A)∧ (Z,C)]

Right-distributions of AND-product over restricted SS 
operations
1) [(Г,A)∩R(Ϭ,B)]∧(Z,C)=M[(Г,A)∧(Z,C)]∩R[(Ϭ,B)∧(Z,C)]

Proof: Let’s first check the equality of PSs of the SSs of 
both sides. The PS of the left hand side is (A∩B)xC, and 
the PS of the right hand side is (AxC)∩(BxC). Since (A∩B)
xC=(AxC)∩(BxC), the first condition of the soft M-equality 
is satisfied.

Let’s first consider the LS. Assume that 
(Г,A)∩R(Ϭ,B)=M(K,A∩B), where K(𝜏)=Г(𝜏)∩Ϭ(𝜏) 
for all 𝜏∈A∩B. Let (K,A∩B)∧(Z,C)=M(L,(A∩B)xC), 
where L(𝜏,c)=K(𝜏)∩Z(c) for all (𝜏,c)∈(A∩B)xC. Hence, 
L(𝜏,c)=[Г(𝜏)∩Ϭ(𝜏)]∩Z(c)=[Г(𝜏) ∩Z(c)] ∩ [Ϭ(𝜏) ∩Z(c)].

Now, let (Г,A)∧(Z,C)=M(M,AxC), where 
M(𝜏,c)=Г(𝜏)∩Z(c) for all (𝜏,c)∈AxC and let 
(Ϭ,B)∧(Z,C)=(N,BxC), where N(𝜏,c)=Ϭ(𝜏)∩Z(c) for all 
(𝜏,c)∈BxC. Let (M,AxC)∩R(N,BxC)=M(T,(AxC)∩(BxC)), 
where T(𝜏,c)=M(𝜏,c)∩N(𝜏,c) for all (𝜏,c)∈(AxC)∩(BxC). 
Thus, T(𝜏,c)=M(𝜏,c)∩N(𝜏,c)=[Г(𝜏)∩Z(c)]∩[Ϭ(𝜏)∩Z(c)] for 
all (𝜏,c)∈(AxC)∩(BxC). When we consider the properties 
of operations on set theory, we have that L and T are the 
same set-valued mappings, so the proof is completed.

Here note that if A∩B=∅, then the PS of both sides is 
∅; that is, (A∩B)xC=(AxC)∩(BxC)=∅ and since ∅∅ the 
unique SS over U with an empty PS, both sides will be ∅∅. 
Thus, the soft M-equality is again satisfied.
2) [(Г,A)∪R(Ϭ,B)]∧(Z,C)=M[(Г,A)∧(Z,C)]∪R[(Ϭ,B)∧(Z,C)]
3) [(Г,A)\R(Ϭ,B)]∧(Z,C)=M[(Г,A)∧(Z,C)]\R[(Ϭ,B)∧(Z,C)]
4) [(Г,A)∆R(Ϭ,B)]∧(Z,C)=M[(Г,A)∧(Z,C)]∆R[(Ϭ,B)∧(Z,C)]

Theorem 4.1. (SE(U),∪R,∧) is a commutative hemiring 
with identity element as regards soft L-equality (and hence 
J-equality).

Proof: In [31,32], it was shown that (SE(U),∪R) 
is a commutative monoid with identiy ∅E. Hence, we 
can deduce that (SE(U),∪R) is a semigroup. (SE(U),∧) 
is a semgiroup in the sense of soft L-equality (hence 
J-equality). Furthermore, ∧ distributes over ∪R from both 
sides. Therefore, (SE(U),∪R,∧) is a semiring. Further, 
(F,A)∪R(G,B)=M(G,B)∪R(F,A). That is to say, ∪R is com-
mutative in SE(U) and (F, A)∪R∅E=M ∅E ∪R(F,A)=(F,A) 
and (F,A)∧∅E=L∅E∧(F, A)=L∅E. That is to say, ∅E is the 
zero element of (SE(U),∪R,∧). Therefore, (SA(U),∪R,∧) 
is a hemiring as regards soft L-equality (and hence J- 
equality). Besides, since (F,A)∧(G,B)=L(G,B)∧(F,A) and 
(F,A)∧UE=LUE∧(F,A)=L(F,A), (SA(U),∪R,∧) is a commu-
tative hemiring with identity UE as regards soft L-equality 
(and hence J- equality).

Theorem 4.2. (SE(U),∆R,∧) is a commutative hemir-
ing with identity as regards soft L-equality (and hence 
J-equality).

Proof: In [32,49], it was shown that (SE(U),∆R) 
is a commutative monoid with identiy ∅E. Hence, we 
can deduce that (SE(U),∆R) is a semigroup. (SE(U),∧) 
is a semgiroup in the sense of soft L-equality (hence 
J-equality). Furthermore, ∧ distributes over ∆R from 
both sides. Therefore, (SE(U),∆,∧) is a semiring. Further, 
(F,A)∆R(G,B)=M(G,B)∆R(F,A). That is to say, ∆R is com-
mutative in SE(U) and (F,A)∆R∅E=M ∅E∆R(F,A)=M(F,A) 
and (F,A)∧∅E=L ∅E∧(F,A)=L∅E. That is to say, ∅E is the 
zero element of (SE(U),∆R,∧). Therefore, (SE(U),∆R,∧) 
is a hemiring as regards soft L-equality (and hence J- 
equality). Besides, since (F,A)∧(G,B)=L(G,B)∧(F,A) and 
(F,A)∧UE=LUE∧(F,A)=L(F,A), (SE(U),∆R,∧) is a commu-
tative hemiring with identity UE as regards soft L-equality 
(and hence J-equality).

Distributions of AND-Product Over Extended SS 
Operations

In this subsection, we examine the distributions of 
AND-product over extended SS operations.

When considering the necessary condition for the soft 
M-equality of SSs, that is the equality of PSs, we can deduce 
that the distributions of extended SS operations over AND-
product can not be examined, since the union operation 
does not distribute over cartesian product. Thus, the dis-
tribution of extended SS operations over AND-product is 
never satisfied.
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Here it should be noted that in [39], the distributions 
of AND-product over extended intersection and extended 
union are obtained but not over extended difference and 
symmetric difference operations; moreover in [39], only left 
distributions of AND-product over extended intersection 
and extended union are obtained. Hence in this section, we 
handle the distributions of AND-product over extended SS 
operations completely.

Left-distributions of AND-product over extended SS 
operations
1) (Г,A)∧[(Ϭ,B)∩ε(Z,C)]=M[(Г,A)∧(Ϭ,B)]∩ε[(Г,A) ∧(Z,C)]

Proof: Let’s first check the equality of PSs of the SSs of 
both sides. The PS of the left hand side is Ax(B∪C), and the 
PS of the right hand side is (AxB)∪(AxC). Since Ax(B∪C)= 
(AxB)∪(AxC), the first condition of the soft M-equality is 
satisfied. Moreover, since B≠∅ and C≠∅ by the assump-
tion, then B∪C≠∅. Thus, the PS of the SSs of both sides can 
never be ∅.

Now let’s first cinsider the LS. Let (Ϭ,B)∩ε(Z,C)=M 
(M,B∪C), where

for ∀𝜔∊B∪C. Now let (Г,A)∧(M,B∪C)=M (N,Ax(B∪C)), 
where N(𝜏,𝜔)=Г(𝜏)∩M(𝜔) for all (𝜏,𝜔)∊Ax(B∪C). (Here 
note that 𝜏∊A and 𝜔∊B∪C). Hence

Now, let’s consider the right side (RS). Let 
(Г,A)∧(Ϭ,B)=M(K,AxB), where K(𝜏,𝜔)=Г(𝜏)∩Ϭ(𝜔) 
for all (𝜏,𝜔)∊AxB. And let (Г,A)∧(Z,C)=M(T,AxC), 
where T(𝜏,𝜔)=Г(𝜏)∩Z(𝜔) for all (𝜏,𝜔)∊AxC. Now let 
(K,AxB)∩ε(T,AxC)=M(L,(AxB)∪(AxC)), where

for all (𝜏,𝜔)∊(AxB)∪(AxC). Hence,

Here note that, if 𝜔∊B∪C, then 𝜔∊B or 𝜔∊C. Let check 
all the possible cases:

Case 1. Let 𝜔∊B and 𝜔∉C. Then N(𝜏,𝜔)=Г(𝜏)∩Ϭ(𝜔) 
and L(𝜏,𝜔)=K(𝜏,𝜔)=Г(𝜏)∩Ϭ(𝜔),

Case 2. Let 𝜔∉B and 𝜔∊C. Then N(𝜏,𝜔)=Г(𝜏)∩Z(𝜔) 
and L(𝜏,𝜔)=T(𝜏,𝜔)=Г(𝜏)∩Z(𝜔),

Case 3. Let 𝜔∊B and 𝜔∊C. Then N(𝜏,𝜔)=Г(𝜏)∩ 
[Ϭ(𝜔)∩Z(𝜔)] and L(𝜏,𝜔)=K(𝜏,𝜔)∩T(𝜏,𝜔)=[Г(𝜏)∩Ϭ(𝜔)∩[
Г(𝜏)∩Z(𝜔)]=Г(𝜏)∩[Ϭ(𝜔)∩Z(𝜔)].

In all circumstances, N and L are the same set-valued 
mappings, so the proof is completed.
2) (Г,A)∧[(Ϭ,B)∪ε(Z,C)]=M[(Г,A)∧(Ϭ,B)]∪ε[(Г,A)∧(Z,C)]

3) (Г,A)∧[(Ϭ,B)\ε(Z,C)]=M[(Г,A)∧(Ϭ,B)]\ε[(Г,A) ∧(Z,C)]
4) (Г,A)∧[(Ϭ,B)∆ε(Z,C)]=M[(Г,A)∧(Ϭ,B)]∆ε[(Г,A)∧(Z,C)]

Right-distributions of AND-product over extended SS 
operations
1) [(Г,A)∪ε(Ϭ,B)]∧(Z,C)=M[(Г,A)∧(Z,C)]∪ε[(Ϭ,B)∧ (Z,C)]

Proof: Let’s first check the equality of PSs of the SSs of 
both sides. The PS of the left hand side is (A∪B)xC, and 
the PS of the right hand side is (AxC)∪(BxC). Since (A∪B)
xC=(AxC)∪(BxC), the first condition of the soft M-equality 
is satisfied. Moreover, since A≠∅ and B≠∅ by assumption, 
then A∪B≠∅. Thus, the PS of the SSs of both sides can 
never be ∅.

Now let’s first consider the LS. Let 
(Г,A)∪ε(Ϭ,B)=M(M,A∪B). Then, ∀𝜏∊A∪B;

Now let (M,A∪B)∧(Z,C)=M(N,(A∪B)xC), where 
N(𝜏,𝜔)=M(𝜏)∩Z(𝜔) for all (𝜏,𝜔)∊(A∪B)xC. Here 𝜏∊A∪B 
and 𝜔∊C. Hence,

Now let’s consider the RS. Let (Г,A)∧(Z,C)=M(K,AxC), 
where K(𝜏,𝜔)=Г(𝜏)∩Z(𝜔) for all (𝜏,𝜔)∊(AxC) and let 
(Ϭ,B)∧(Z,C)=M(T,BxC), where T(𝜏,𝜔)=Ϭ(𝜏)∩Z(𝜔). Hence, 
let (K,AxC)∪ε(T,BxC)=M(L,(AxC)∪(BxC)), where

Thus,

Here note that, if 𝜏∊A∪B, then 𝜏∊A or 𝜏∊B. Let check all 
the possible cases:

Case 1. Let 𝜏∊A and x∉B. Then N(𝜏,𝜔)=Г(𝜏)∩Z(𝜔) and 
L(𝜏,𝜔)=K(𝜏,𝜔)=Г(𝜏)∩Z(𝜔),

Case 2. Let x∉A and 𝜏∊B. Then N(𝜏,𝜔)=Ϭ(𝜏)∩Z(𝜔) and 
L(𝜏,𝜔)=T(𝜏,𝜔)=Ϭ(𝜏)∩Z(𝜔),

Case 3. Let 𝜏∊A and 𝜏∊B. Then N(𝜏,𝜔)=[Г(𝜏)∪Ϭ(𝜏)] 
∩Z(𝜔), and L(𝜏,𝜔)=K(𝜏,𝜔)∪T(𝜏,𝜔)[Г(𝜏)∩Z(𝜔)]∪[Ϭ(𝜏)∩Z
(𝜔)]=[Г(𝜏)∪Ϭ(𝜏)]∩Z(𝜔).

In all circumstances, N and L are the same set-valued 
mappings, so the proof is completed.
2) [(Г,A)∩ε(Ϭ,B)]∧(Z,C)=M[(Г,A)∧(Z,C)]∩ε[(Ϭ,B)∧(Z,C)]
3) [(Г,A)\ε(Ϭ,B)]∧(Z,C)=M[(Г,A)∧(Z,C)]\ε[(Ϭ,B)∧(Z,C)]
4) [(Г,A)∆ε(Ϭ,B)]∧(Z,C)=M[(Г,A)∧(Z,C)]∆ε[(Ϭ,B)∧(Z,C)]

Theorem 4.2.3. (SE(U),∪ε,∧) is a commutative hemir-
ing with identity as regards soft L-equality (and hence 
J-equality).

Proof: In [31], it was shown that (SE(U), ∪ε) is a com-
mutative monoid with identiy ∅∅. Hence, we can deduce 
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that (SE(U), ∪ε) is a semigroup. (SE(U), ∧) is a semgiroup in 
the sense of soft L-equality (hence J-equality). Furthermore, 
∧ distributes over ∪ε from both sides. Therefore, (SE(U), 
∪ε, ∧) is a semiring.

Further, (F,A)∪ε(G,B)=M(G,B)∪ε(F,A) by [31]. That is 
to say, ∪ε is commutative in SE(U) and (F,A)∪ε∅∅=M∅∅ 
∪ε(F, A)=M(F,A) by [31] and (F,A)∧∅∅=M ∅∅∧(F,A)=M∅∅. 
Namely, ∅∅ is the zero element of (SE(U), ∪ε, ∧). Therefore, 
(SE(U), ∪ε, ∧) is a hemiring as regards soft L-equality (and 
hence J-equality). Besides, since (F,A)∧(G,B)=L(G,B)∧(F,A) 
and (F,A)∧UE=LUE∧(F,A)=L(F,A), (SE(U),∪ε,∧) is a 
commutative hemiring with identity UE as regards soft 
L-equality (and hence J-equality).

Theorem 4.2.4 (SE(U), ∆ε, ∧) is a commutative hemir-
ing with identity element as regards soft L-equality (and 
hence J-equality).

Proof: In [48], it was shown that (SE(U), ∆ε) is a com-
mutative monoid with identiy ∅∅. Hence, we can deduce 
that (SE(U), ∆ε) is a semigroup. (SE(U), ∧) is a semgiroup in 
the sense of soft L-equality (hence J-equality). Furthermore, 
∧ distributes over ∆ε from both sides. Therefore, (SE(U), ∆ε, 
∧) is a semiring.

Further, (F,A)∆ε(G,B)=M(G,B)∆ε(F,A) by 
[48]. That is to say, ∆ε is commutative in SE(U) 
and (F,A)∆ε∅∅=M∅∅∆ε(F,A)=M(F,A) by [48] and 
(F,A)∧∅∅=M∅∅∧(F,A)=M∅∅. Namely, ∅∅ is the zero ele-
ment of (SE(U),∆ε,∧). Therefore, (SE(U),∆ε,∧) is a hemir-
ing as regards soft L-equality (and hence J-equality). 
Besides, since (F,A)∧(G,B)=L(G,B)∧(F,A) and (F,A)∧UE=L 
UE∧(F,A)=L(F,A), (SE(U),∆ε,∧) is a commutative hemir-
ing with identity UE as regards soft L-equality (and hence 
J-equality).

Distributions of AND-Product Over Soft Binary 
Piecewise Operations

In this subsection, we examine the distributions of 
AND-product over soft binary piecewise operations.

Left-distributions of AND-product over soft binary 
piecewise operations
1) (Г,A) ∧[(Ϭ,B)∩̃ (Z,C)]=M[(Г,A)∧(Ϭ,B)]∩̃ [(Г,A)∧(Z,C)]

Proof: Let’s first check the equality of PSs of the SSs 
of both sides. Here since the PS of the SSs of both sides 
is AxB, the first condition for the soft M-equality is satis-
fied. Moreover, by assumption since A≠ ∅ and B≠ ∅, then 
AxB≠∅. Thus, the PS of the SSs of both sides can never 
be ∅. Let’s first consider the LS. Let (Ϭ,B)∩̃ (Z,C)=M(M,B), 
where

for all ∀𝜔∊B. Now let (Г,A)∧(M,B)=M(N,AxB), where 
N(𝜏,𝜔)=Г(𝜏)∩M(𝜔) for all (𝜏,𝜔)∊AxB. Hence,

Now, let’s consider the RS. Let (Г,A)∧(Ϭ,B)=M(K,AxB), 
where K(𝜏,𝜔)=Г(𝜏)∩Ϭ(𝜔) for all (𝜏,𝜔)∊AxB.

And let (Г,A)∧(Z,C)=M(T,AxC), where 
T(𝜏,𝜔)=Г(𝜏)∩Z(𝜔) for all (𝜏,𝜔)∊AxC. Now let (K,AxB)∩̃ 
(T,AxC)=(L,(AxB)), where

for all (𝜏,𝜔)∊(AxB). Hence,

Since N and L are the same set-valued mappings, the 
proof is completed. Here note that when we consider the 
necessary condition for the M-equality of SSs, that is the 
eqality of PSs, we can not examine the left distributions of 
soft binary operations over AND-product, since A≠AxA. 
Thus, the left distribution of soft binary piecewise opera-
tions over AND-product is never satisfied.
2) (Г,A)∧[(Ϭ,B)∪̃ (Z,C)]=M[(Г,A)∧(Ϭ,B)]∪̃ [(Г,A)∧(Z,C)]
3) (Г,A)∧[(Ϭ,B)\̃(Z,C)]=M[(Г,A)∧(Ϭ,B)]\̃[(Г,A)∧(Z,C)]
4) (Г,A)∧[(Ϭ,B)∆̃ (Z,C)]=M[(Г,A)∧(Ϭ,B)]∆̃ [(Г,A)∧(Z,C)]

Right-distributions of AND-product over soft binary 
piecewise operations
1) [(Г,A)∪̃ (Ϭ,B)]∧(Z,C)=M[(Г,A)∧(Z,C)]∪̃ [(Ϭ,B)∧(Z,C)]

Proof: Let’s first check the equality of PSs of the SSs 
of both sides. Here since the PS of the SS of both sides is 
AxC, the first condition for the soft M-equality is satis-
fied. Moreover, since A≠∅ and C≠∅ by assumption, then 
AxC≠∅. Thus, the PS of the SSs of both sides can never 
be ∅. Let’s first consider the LS. Let (Г,A)∪̃ (Ϭ,B)=M(M,A), 
where

for all ∀𝜏∊A. Now let (M,A)∧(Z,C)=M(N,AxC), where 
N(𝜏,𝜔)=M(𝜏)∩Z(𝜔) for all (𝜏,𝜔)∊AxC. Hence,

Now let’s consider the RS. Let (Г,A)∧(Z,C)=M(K,AxC), 
where K(𝜏,𝜔)=Г(𝜏)∩Z(𝜔) for all (𝜏,𝜔)∊(AxC) and let 
(Ϭ,B)∧(Z,C)=M(T,BxC), where T(𝜏,𝜔)=Ϭ(𝜏)∩Z(𝜔). Hence, 
let (K,AxC)∪̃ (T,BxC)=M(L,AxC), where
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Thus,

Since N and L are the same set-valued mappings, the 
proof is completed.
2) [(Г,A)∩̃ (Ϭ,B)]∧(Z,C)=M[(Г,A)∧(Z,C)]∩̃ [(Ϭ,B)∧(Z,C)]
3) [(Г,A)\̃(Ϭ,B)]∧(Z,C) =M[(Г,A)∧(Z, C)]\̃[(Ϭ,B)∧(Z,C)]
4) [(Г,A)∆̃ (Ϭ,B)]∧(Z,C)=M[(Г,A)∧(Z,C)]∆̃ [(Ϭ,B)∧(Z,C)]

Note that, since soft binary piecewise operations are 
non-associative operations in the set SE(U) by [49], they 
can not form a semigroup in the set SE(U). Moreover, since 
AND-product is not closed in the set SA(U), (SA(U), ∧) can 
not be a semigroup even in the sence of soft L-equality. 
Hence, we have not investigated the soft algabraic struc-
tures as regards soft binary piecewise operations neither in 
the set SE(U) nor in the set SA(U).

CONCLUSION

AND-product, a crucial concept of soft set theory as 
regards decision making, were investigated by different 
authors concerning different kinds of soft equalities such 
as soft L-equality and soft J-equality. In this paper, however, 
we have investigated the AND-product and its whole alge-
braic properties such as commutative laws, associative laws, 
idempotent laws and other all basic properties in detail 
as regards soft F-subsets and soft M-equality which is the 
strictest type of soft equality. We have also compared our 
obtained properties with the formerly obtained properties 
as regards soft L-equality and soft J-equality. Also, by han-
dling some new results related to distributive properties 
of AND-product over other type of soft set operations, we 
complete the results concerning AND-product in the liter-
ature totally by proving that the set of all soft sets over U 
together with restricted/extended union and AND-product 
is a commutative hemiring with identity as restricted/
extended symmteric difference and AND-product in the 
sense of soft L-equality. Since studying the algebraic struc-
ture of soft sets from the perspective of operations provides 
deep insight into the potential applications of soft sets in 
classical and nonclassical logic, we are of the opinion that 
this paper contibutes to the literature of soft set in this 
regard. Furthermore, as soft sets are a powerful mathemat-
ical tool for recognizing uncertain objects, and the theoret-
ical foundations of soft computing approaches are derived 
from purely mathematical principles, this research will lay 
the groundwork for a wide range of applications, including 
new decision-making approaches and innovative cryptog-
raphy techniques based on soft sets. To continue on this 
research, studies on OR-product and its essential properties 
in respect to other types of soft equal connections can be 
handled in depth not only as regards soft sets but only bipo-
lar soft sets in order to contribute to the literature from the 
theoretical views and hence application aspects.
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