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ABSTRACT

Testing the equality of means of several skewed populations, particularly in the presence 
of nuisance parameters, is a central challenge in statistics. While various tests have been 
proposed for such as log-normal, inverse-normal, and exponential distributions leveraging 
methods like generalized p-value, parametric bootstrap, and the fiducial approach, there 
remains a notable gap in the literature, the absence of a computational approach meth-
od-based test for the two-parameter exponential distribution. Such a method is essential 
for achieving robust results in small sample sizes while considering power and Type I error 
probability. In response to this gap, our paper introduces and implements novel compu-
tational approach tests embedded in the doex package in R. Our focus is on assessing the 
equality of means for several skewed populations following a two-parameter exponential 
distribution. We conduct a comprehensive comparison of our proposed tests against exist-
ing alternatives, evaluating their penalized power and Type I error probability. Notably, our 
computational approach tests exhibit superior performance, particularly in cases involving 
small samples and balanced designs. Furthermore, to illustrate the practical relevance of 
our proposed tests, we present a real-world application using authentic data. This empirical 
demonstration serves to underscore the efficacy and applicability of our novel computation-
al approach tests in real-world scenarios.
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INTRODUCTION

Testing equality of means in the presence of nuisance 
parameters is a well-known Behrens-Fisher-type problem 
in statistics. There are many methods to solve this prob-
lem, such as generalized p-value, the parametric bootstrap, 
the fiducial approach, and the computational approach 
method. These methods are applied to many different 

Behrens-Fisher-type problems. Weerahandi [1] proposed 
the Generalized F-test, Krishnamoorthy et al. [2] proposed 
a parametric bootstrap test, Li et al. [3] proposed a fiducial 
approach test and Gokpinar and Gokpinar [4] proposed a 
computational approach test for testing equality of several 
means of normal populations under unequal variances. 
For comparing several log-normal means, Gokpinar and 
Gokpinar [5] and Jafari and Abdollahnezhad [6] proposed 
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tests based on the computational approach method. It is 
seen that this method has been used frequently in recent 
years. The major advantage of the computational approach 
over the alternatives is to be able to derive powerful tests in 
small samples without the need for knowledge about the 
sample distribution. The limitation of this method is dis-
cussed in [7].

The two-parameter exponential distribution is used 
in many real-life problems such as modeling extreme 
rainfalls, the lifetime of a component, the service time of 
an agent, and so on. There are some procedures improved 
for the two-parameter exponential distribution. Chen 
[8] proposed a range statistic for comparing location 
parameters of two-parameter exponential distributions. 
Singh [9] derived a likelihood ratio test for testing the 
equality of location parameters of two-parameter expo-
nential distributions based on Type II censored samples 
under unknown scales. Kambo and Awad [10] proposed 
a test statistic based on doubly censored samples to test 
the equality of location parameters of k exponential dis-
tributions when the scale parameter is unknown. Hsieh 
[11] proposed an exact test for comparing location 
parameters simultaneously of several two-parameter 
exponential distributions under unequal scale parame-
ters with unknown scale parameters. Vaughan and Tiku 
[12] extended the test developed by Tiku and Vaughan 
[13] for k - 2 populations for testing the equality of loca-
tion parameters of two-parameter exponential popula-
tions from censored samples. Ananda and Weerahandi 
[14] proposed a testing procedure based on generalized 
p-values for testing the difference of two exponential 
means. Wu [15] proposed a one-stage multiple com-
parison procedure for comparing k - 1 treatment expo-
nential mean lifetimes with the control based on doubly 
censored samples under unequal scales. Malekzadeh 
and Jafari [16] proposed some procedures based on 
generalized p-values, parametric bootstrap, and fidu-
cial approach by using Cochran type test statistics for 
testing the means of several two-parameter exponential 
distributions under progressively Type II censoring. In 
the testing equality of means of two-parameter expo-
nential distributions, the scale parameter is a nuisance 
parameter when it is unknown or unequal. Therefore, 
the considered problem turns into a Behrens-Fisher-
type problem. The major contribution of this paper is 
proposing the computational approach tests for testing 
the equality of two-parameter exponentially distributed 
population means under unequal scale parameters. 

The following section introduces the alternative tests 
and proposed computational approach tests. In Section 2, 
the alternative tests are introduced. Our proposed CATs 
are introduced in Section 3. The performance of the pro-
posed tests with the alternatives is investigated in terms of 
penalized power and Type I error probability in Section 4. 
An illustrative example is given in Section 5. The results are 
discussed in the last section.

TESTING EQUALITY OF SEVERAL TWO-
PARAMETER EXPONENTIAL MEANS UNDER 
UNEQUAL SCALES

In this section, the generalized p-value, parametric 
bootstrap, and fiducial approach tests are given for test-
ing the equality of two-parameter exponential distributed 
populations’ means. The probability density function of the 
two-parameter exponential distribution is as follows:

  (1)

where a is the scale and b is the location parame-
ter. The interested hypothesis is in the following for test-
ing the equality of means of the exponentially distributed 
populations.

  (2)

where µi is the mean of the i.th population. Johnson and 
Kotz [17] obtained the maximum likelihood estimate of the 
parameters as in the following equations [18, 19]:

  (3)

where  and . 
Cochran [20] type test statistics are used for Behrens-
Fisher problems. Here, it is modified for testing the equal-
ity of two-parameter exponential distributed means under 
unequal scale parameters.

  

(4)

where µi is the mean estimate and Si is the scale esti-
mate. The uniformly minimum variance unbiased estima-
tor of  can be shown as in (5).

  (5)

where  is the first order statistics and 
 is the scale estimator of the i.th 

population. Under the null hypothesis, Tt is approximately 
chi-square distributed with k - 1 degrees of freedom. Tt is 
used for the rejection rule as a critical value of the general-
ized p-value, parametric bootstrap, fiducial approach, and 
proposed computational approach tests in the following 
sections.

Generalized p-value (GP) Test
Tsui and Weerahandi [21] introduced the concept of 

generalized p-value can be used to derive the test statistics 
in the presence of nuisance parameters. Many research-
ers used this method to derive test statistics for several 
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distributions. In this method, firstly sufficient statistics of 
parameters of the related distribution are obtained. Using 
the sufficient statistics of the two-parameter exponential 
distribution, Malekzadeh and Jafari [16] proposed the GP 
test for the testing hypothesis in (2) by following these 
steps: (i) Ri can be obtained independently from the nui-
sance parameter and, (ii) since the observed λi values are 
independent of the nuisance parameter θi, generalized pivot 
variable can be estimated.

  (6)

where Ui and Vi are independent random samples with 
 and . For a given observed values of 

 as , the expected value and the variance 
of the generalized pivot variable Ri are obtained as follows:

  
(7)

The generalized p-value test statistic is obtained as in 
(8) using the expected value and variance of the generalized 
pivot variable Ri.

  

(8)

The rejection rule is H0 in (2) rejected when TGP ≥ Tt. 
The p-value of the GP test is computed at least 10,000 for 
Monte-Carlo runs pGP = P(TGP ≥ Tt). The null hypothesis is 
rejected when pGP < α0.

Parametric Bootstrap (PB) Test
Krishnamoorthy et al. [2] used the parametric boot-

strap approach for testing the equality of several popu-
lation means under unequal variances. Malekzadeh and 
Jafari [16] proposed the PB test for the testing hypothesis 
in (2).

  

(9)

where  and  are independent random 
samples,  and . 
The p-value of the PB test is computed with 10,000 Monte-
Carlo runs as in (10).

  (10)

The null hypothesis is rejected when pPB < α0.

Fiducial Approach (FA) Test
Li et al. [4] proposed to use of the fiducial approach for 

testing equality of several population means under unequal 
variances. Malekzadeh and Jafari [16] proposed the PB 

test for the testing hypothesis in (2). Let  and 

 are independent random samples. , and Si 
functions can be rewritten as random samples:

  
(11)

Parameter estimations are obtained as follows by using 
the observed values of :

  (12)

The test statistic TFA is obtained as in (13).

  

(13)

where . The p-value of the 
FA test is computed with 10,000 Monte-Carlo runs as in 
(14).

  (14)

The null hypothesis is rejected when pFA < α0.

PROPOSED COMPUTATIONAL APPROACH 

TESTS (CATs)

Pal et al. [22] proposed the computational approach 
method which is a type of parametric bootstrap method. 
The CAT method based on simulation and numerical com-
putations uses maximum likelihood estimates and does not 
require knowledge of any sampling distribution. It can be 
used easily, because of the development of calculation tech-
nology. Let δ is the nuisance parameter of the parameter 
space ζ = (θ, δ) and T = T(X; x, ζ)  is considered test statistic 
in testing the hypothesis H0: θ = θ0 versus HA: θ ≠ θ0. The 
p-value of the CAT is calculated by using the Algorithm 1.

To improve the test statistics, the RML estimators are 
obtained in the following steps. The likelihood function T 
(.) of a two-parameter exponential distribution is as follows:
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(15)

Here, to obtain RML estimators, under the true H0 

hypothesis, the b parameter can be expressed b = μ - a in 

terms of the nuisance parameter.

  
(16)

The log-likelihood function of the two-parameter expo-
nential distribution is as follows:

  

(17)

The maximum likelihood estimator of the parameters 
is obtained by the derivative of the log-likelihood function 
as follows:

  
(18)

Algorithm 2. p-value calculation of the proposed CATs 

1: Calculate the observed values of µi and ai for k samples.
2: Calculate the observed value of the test statistics Tt using the estimator in Step 1.
3: Find the restricted maximum likelihood (RML) estimator of the parameters for k samples under the true H0.
4: for  to M do
5: for  to ni do
6: for  to k do
7: Generate random samples from  for k samples.
8: end for
9: end for
10: Calculate the observed values of the µi and ai for generated samples.

11: Calculate the observed value of test statistics  using the estimators in Step 8.
12: end for

13: Calculate the p-value of the proposed CAT: 

Algorithm 1. p-value calculation of the CAT 

1: Calculate the observed values of the interested parameter θi and nuisance parameter δi  for k samples.
2: Calculate the observed value of the test statistics  using the estimator in Step 1.
3: Find the restricted maximum likelihood (RML) estimator of the parameters for k samples under the true H0.
4: for  to M do
5: for  to ni do
6: for  to k do

7: Generate random samples from  for k samples.
8: end for
9: end for
10: Calculate the observed values of the parameters for generated samples.

11: Calculate the observed value of test statistics  using the estimators in Step 8.
12: end for

13: Calculate the p-value of the CAT: 



Sigma J Eng Nat Sci, Vol. 43, No. 1, pp. 73−87, February, 2025 77

The restricted maximum likelihood estimator of the 
scale parameter is obtained in (19).

  (19)

The  estimator obtained here is used to calculate 
the critical values of CATs. The maximum likelihood esti-
mations of the two-parameter exponential distribution are 
biased. Zheng [23] obtained the penalized maximum like-
lihood estimators, and the estimations of the parameters 
have lower MSEs obtained. In this paper, there are four dif-
ferent CATs are proposed for testing the equality of two-pa-
rameter exponential distributed populations’ means by 
using the combinations of the mean estimators. The CAT1, 
CAT2, CAT3, and CAT4 are introduced in the following 
subsections.

Proposed Computational Approach Test 1 (CAT1)
The maximum likelihood estimator of the mean 

 is used in CAT1. It is also labeled as reference 
tests, and the null hypothesis is rejected when , 
which is calculated as in Algorithm 2.

Proposed Computational Approach Test 2 (CAT2)
The maximum likelihood estimation of the mean with 

the correction of unbiasedness  as in 
[16] is used in CAT2. The null hypothesis is rejected when 

.

Proposed Computational Approach Test 3 (CAT3)
The penalized maximum likelihood estima-

tion of the mean with the correction of unbiasedness 
 as in [16] is used in CAT3. The null 

hypothesis is rejected when .

Proposed Computational Approach Test 4 (CAT4)
The penalized maximum likelihood estimation of the 

mean  is used in CAT4. The null hypothesis 
is rejected when . The performance of the pro-
posed CATs over the GPD, PB, and FY tests is investigated 
by Monte-Carlo simulation studies in the next section.

MONTE-CARLO SIMULATION STUDY

The performance of the proposed CATs is investigated 
over the alternatives in terms of penalized power and Type I 
error probability when the nominal level of the test is taken 
α = 0.05 under different sample sizes and scale parameters 
in this section. We provide comprehensive simulation study 
results. It is known that Monte-Carlo simulation studies are 
used to compare the performance of the tests in terms of 
power and Type I error probability. However, any compar-
ison of the powers is invalid when Type I error probabili-
ties are different. Cavus et al. [24] proposed the penalized 
power approach to compare the power of the tests when 
Type I error probabilities are different.

  
(20)

where β is the Type II error rate, αi is the Type I error of 
the test and α0 is the nominal level. Penalized power adjusts 
the power function with the square root of the percentile 
deviation between Type I error probability and the nominal 
level. Thus, penalized power is used to compare the power 
of the tests in the simulation studies. The simulations are 
performed for balanced and unbalanced designs with doex 
package implemented in R [25, 26], and the results are 
based on 10,000 Monte-Carlo replications. The results of 
the simulations are given in the following subsections.

Type I Error Probability Results
The proposed CATs and the alternatives in the litera-

ture to control Type 1 error probability relative to the nom-
inal level are investigated. In the simulation study, the scale 
parameter is ai, the location parameter is bi, the sample size 
is ni, and the number of populations is k taken as configura-
tion factors. In addition, balanced and unbalanced designs 
are considered, and by increasing the differences between 
the sample size in the designs; the effect of design type on 
performance is investigated. The nominal level α0 = 0.05  
and location parameters are fixed as bi = 1,1,1. The Type 
I error probability of the tests k = 3 is given in Table 1. In 
the following tables, GP refers generalized p-value test, PB 
refers parametric bootstrap test, FA refers fiducial approach 
test, and CATs refer to computational approach tests.

According to the results in Table 1, CAT1, CAT2, and 
CAT4 can control the Type I error probability in small sam-
ples, while the PB test shows similar performance in medium 
and large samples. On the other hand, GPV and FA tests can 
only control the Type I error probability in large samples. 
When the properties of the tests to control Type I error prob-
ability are compared, GP, PB, FA, and CAT3 tests are conser-
vative, and CAT1, CAT2, and CAT4 are mostly liberal but 
conservative in some cases. The results of the Type I error 
probability of the tests k = 4 are given in Table 2.

The increasing of k from 3 to 4, decreases the Type I error 
probability of the tests except CAT4. In the general frame-
work, GPV, PB, FA, and CAT3 tests are conservative, while 
CAT1 and CAT2 tests are liberal in terms of Type I error 
probability. CAT4 test has a Type I error probability higher 
than the nominal level except for small samples. In medium 
samples, the Type I error probability of the GP and FA tests 
is far from the nominal level. In large samples, the FA test, 
as well as balanced designs, in addition to the GP and PB 
test, Type 1 error probability is far from the nominal level. 
While an unbalanced design does not negatively affect the 
performance of GP, PB, and FA tests, CATs seem to affect 
increasing the Type 1 error probability. This causes the 
Type 1 error probability of the CATs to exceed the nominal 
level. In balanced designs, CATs generally perform better, 
in all cases the Type 1 error probability of the CAT4 is very 
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Table 1. Type I error probability for k = 3

ni ai bi GP PB FA CAT1 CAT2 CAT3 CAT4

10,10,10
2,2,2

1, 1, 1

0.006 0.008 0.001 0.046 0.042 0.012 0.038

5,5,5 0.006 0.010 0.001 0.055 0.059 0.017 0.041

8,10,12
2,2,2 0.006 0.012 0.002 0.065 0.072 0.031 0.039

5,5,5 0.008 0.013 0.002 0.053 0.056 0.039 0.053

5,10,15
2,2,2 0.014 0.043 0.007 0.053 0.055 0.041 0.054

5,5,5 0.012 0.043 0.007 0.055 0.057 0.044 0.043

30,30,30
2,2,2 0.026 0.040 0.020 0.055 0.057 0.049 0.055

5,5,5 0.029 0.046 0.022 0.055 0.054 0.048 0.053

24,30,36
2,2,2 0.030 0.045 0.023 0.056 0.054 0.042 0.045

5,5,5 0.029 0.045 0.022 0.057 0.056 0.019 0.045

15,30,45
2,2,2 0.033 0.048 0.024 0.055 0.059 0.017 0.041

5,5,5 0.032 0.052 0.024 0.065 0.050 0.031 0.039

50,50,50
2,2,2 0.036 0.047 0.031 0.053 0.056 0.039 0.053

5,5,5 0.034 0.045 0.030 0.053 0.055 0.041 0.054

40,50,60
2,2,2 0.035 0.049 0.031 0.055 0.057 0.044 0.043

5,5,5 0.036 0.049 0.030 0.055 0.057 0.049 0.055

25,30,75
2,2,2 0.039 0.049 0.030 0.055 0.054 0.048 0.053

5,5,5 0.040 0.051 0.033 0.051 0.048 0.041 0.041

Table 2. Type I error probability for k = 4

ni ai bi GP PB FA CAT1 CAT2 CAT3 CAT4

10,10,10,10
2,2,2,2

1, 1, 1, 1

0.008 0.011 0.001 0.071 0.067 0.020 0.058

5,5,5,5 0.008 0.011 0.001 0.071 0.067 0.020 0.058

6,8,10,14
2,2,2,2 0.008 0.018 0.003 0.082 0.079 0.023 0.048

5,5,5,5 0.008 0.018 0.003 0.082 0.079 0.023 0.048

4,8,12,16
2,2,2,2 0.009 0.037 0.005 0.088 0.089 0.026 0.042

5,5,5,5 0.009 0.037 0.005 0.088 0.089 0.027 0.042

30,30,30,30
2,2,2,2 0.033 0.044 0.027 0.059 0.056 0.040 0.057

5,5,5,5 0.033 0.044 0.027 0.059 0.056 0.040 0.057

18,24,30,42
2,2,2,2 0.028 0.039 0.018 0.050 0.052 0.039 0.044

5,5,5,5 0.028 0.039 0.018 0.050 0.052 0.039 0.044

12,24,36,48
2,2,2,2 0.031 0.051 0.029 0.054 0.057 0.051 0.049

5,5,5,5 0.031 0.051 0.029 0.054 0.057 0.051 0.049

50,50,50, 50
2,2,2,2 0.029 0.037 0.026 0.060 0.059 0.051 0.060

5,5,5,5 0.029 0.037 0.026 0.060 0.059 0.051 0.060

30,40,60,70
2,2,2,2 0.041 0.055 0.038 0.058 0.057 0.047 0.056

5,5,5,5 0.041 0.055 0.038 0.058 0.057 0.047 0.056

20,40,60,80
2,2,2,2 0.044 0.050 0.029 0.052 0.048 0.041 0.042

5,5,5,5 0.044 0.050 0.029 0.052 0.048 0.041 0.042
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close to the nominal level. PB test in unbalanced designs 
appears to be less likely than the nominal level of Type I 
error probability in the relatively less unbalanced designs 
of medium and large samples and unbalanced designs of 
large samples. The increasing of the scale parameter $a_i$ 
does not affect the controlling Type I error probability of 
the tests. The results of the Type I error probability of the 
tests k = 5 are given in Table 3.

The results given in Table 2 are examined, the increas-
ing of the k decreased the Type 1 error probability of the 
tests. Type 1 error probability of CATs increased and it 
is more liberal than k = 4. Type 1 error probability of 
GP, PB, and FA tests decreases and gets closer to zero. 
Similar to the results in Table 3, GP, PB, FA, and CAT3 
tests are conservative, while CAT1 and CAT2 tests are 
liberal in terms of Type I error probability. CAT4 and PB 
test’s Type I error probability are closer than the others to 
the nominal level in small samples. It is observed that the 
Type I error probability of CAT1, CAT2, CAT4, and PB 
tests are close to the nominal level in medium samples. 
Type 1 error probability of PB, CAT1, CAT2, and CAT4 
tests are close to the nominal level in large samples. The 
unbalancedness of the design does not affect the Type 
I error probability of the GP, PB, and FA test, while it 

affects CAT1, CAT2, and CAT4 negatively in small sam-
ples. In medium and large samples, the unbalancedness 
of the design only affects the ability to control the Type 
I error probability of CAT4. The increase of the scale 
parameter ai does not affect the ability to control the 
Type 1 error probability.

According to the results in Tables 1, 2, and 3, it is 
observed that the ability to control the Type I error 
probability of the tests is affected by the sample sizes, 
number of populations and the design type. While the 
CAT1 and CAT2 control Type I error probability bet-
ter k = 3, the situation of increasing in the k inflates 
the Type I error probability of these tests. When the 
increasing of the k, the Type I error probability of the 
CAT4 is closest to the nominal level. The unbalanced-
ness of design does not affect the Type I error probabil-
ity of the GP, PB, and FA test, while it affects the ability 
to control the Type I error probability of CATs nega-
tively. It is observed that the Type I error probability of 
CATs may be sensitive to the unbalanced designs. Also, 
it is observed that the increase in the scale parameter 
does not affect the performance of the tests. According 
to the results obtained in this section, no test can ide-
ally control Type 1 error probability in every case. 

Table 3. Type I error probability for k = 5

ni ai bi GP PB FA CAT1 CAT2 CAT3 CAT4

10,10,10,10,10
2,2,2,2,2

1, 1, 1, 1, 1

0.005 0.008 0.002 0.063 0.061 0.016 0.055

5,5,5,5,5 0.005 0.008 0.002 0.063 0.061 0.016 0.055

6,8,10,12,14
2,2,2,2,2 0.006 0.019 0.001 0.070 0.073 0.020 0.049

5,5,5,5,5 0.006 0.019 0.001 0.070 0.073 0.020 0.049

4,6,10,14,16
2,2,2,2,2 0.017 0.044 0.010 0.093 0.096 0.028 0.040

5,5,5,5,5 0.017 0.044 0.010 0.093 0.096 0.028 0.040

30,30,30,30,30
2,2,2,2,2 0.022 0.036 0.012 0.052 0.053 0.037 0.052

5,5,5,5,5 0.022 0.036 0.012 0.052 0.053 0.037 0.052

18,24,30,36,42
2,2,2,2,2 0.038 0.055 0.025 0.057 0.058 0.044 0.052

5,5,5,5,5 0.038 0.055 0.025 0.057 0.058 0.044 0.052

12,18,30,42,48
2,2,2,2,2 0.040 0.047 0.025 0.050 0.051 0.034 0.033

5,5,5,5,5 0.040 0.047 0.025 0.050 0.051 0.034 0.033

50,50,50, 50,50
2,2,2,2,2 0.030 0.043 0.024 0.046 0.047 0.038 0.047

5,5,5,5,5 0.030 0.043 0.024 0.046 0.047 0.038 0.047

30,40,50,60,70
2,2,2,2,2 0.043 0.066 0.040 0.053 0.050 0.039 0.046

5,5,5,5,5 0.043 0.066 0.040 0.053 0.050 0.039 0.046

20,30,50,70,80
2,2,2,2,2 0.042 0.046 0.024 0.043 0.042 0.037 0.036

5,5,5,5,5 0.042 0.046 0.024 0.043 0.042 0.037 0.036
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Penalized Power Results
In addition to the configuration parameters used in 

Type 1 error probability calculations, the a3 parameter is 
used to control the effect size in this section. For the low 
and high levels of the scale parameter, the penalized power 
of the test is calculated by fixing the values of the scale 
parameters; 3,4,5 and 6,8,10 respectively. In all scenarios, 
location parameters are taken as b = 1,1,1. The penalized 
powers are given for the low value of the scale parameter (ai 
= 2) in Table 4, for the high value of the scale parameter (ai 
= 5) in Table 5 for k = 3. The penalized powers are given for 
the low value of the scale parameter (ai = 2) in Table 6, for 

the high value of the scale parameter (ai = 5) in Table 7 for k 
= 4. The penalized powers are given for the low value of the 
scale parameter (ai = 2) in Table 8, for the high value of the 
scale parameter (ai = 5) in Table 9 for k = 5.

CAT1 is the most powerful test in balanced and unbal-
anced designs, the PB is the most powerful test in more 
unbalanced designs in terms of penalized power according 
to the results given in Tables 4 and 5. While the sample size 
increasing, the CAT4 is getting more powerful in a balanced 
and unbalanced design, the CAT2 is getting also more pow-
erful than the others in a more unbalanced design. The 
increasing of the scale parameter value decreases the power 

Table 4. The penalized power for lower scale parameters and k = 3

ni ai bi GP PB FA CAT1 CAT2 CAT3 CAT4

10,10,10

2,2,3

1, 1, 1

0.0101 0.0143 0.0021 0.0847 0.0752 0.0226 0.0691

2,2,4 0.0254 0.0334 0.0055 0.0991 0.0919 0.0234 0.0808

2,2,5 0.0429 0.0581 0.0097 0.1145 0.1012 0.0317 0.0898

8,10,12

2,2,3 0.0245 0.0342 0.0039 0.0839 0.0773 0.0256 0.0635

2,2,4 0.0622 0.0779 0.0096 0.1077 0.1095 0.0380 0.0939

2,2,5 0.1181 0.1386 0.0177 0.1135 0.1160 0.0334 0.0967

5,10,15

2,2,3 0.0559 0.1119 0.0147 0.0579 0.0733 0.0230 0.0407

2,2,4 0.1590 0.2180 0.0265 0.0693 0.0875 0.0213 0.0371

2,2,5 0.3010 0.3475 0.0413 0.0658 0.0808 0.0179 0.0281

30,30,30

2,2,3 0.1610 0.2420 0.1253 0.3060 0.2901 0.2272 0.3021

2,2,4 0.4997 0.6363 0.4303 0.6721 0.6567 0.5812 0.6731

2,2,5 0.7297 0.8488 0.6697 0.9004 0.8759 0.8103 0.8984

24,30,36

2,2,3 0.2444 0.3225 0.1755 0.3040 0.3175 0.2734 0.3166

2,2,4 0.6301 0.7455 0.5232 0.7469 0.7418 0.6895 0.7457

2,2,5 0.8083 0.9180 0.7411 0.9276 0.9153 0.8773 0.9228

15,30,45

2,2,3 0.3307 0.4043 0.2160 0.3528 0.3737 0.3477 0.3381

2,2,4 0.7178 0.8277 0.5868 0.8019 0.8045 0.7852 0.7736

2,2,5 0.8447 0.9643 0.7630 0.9296 0.9179 0.9232 0.9160

50,50,50

2,2,3 0.3808 0.4686 0.3422 0.4672 0.4617 0.4604 0.4701

2,2,4 0.8119 0.9107 0.7675 0.8953 0.8795 0.9189 0.8963

2,2,5 0.8812 0.9700 0.8447 0.9477 0.9310 0.9842 0.9477

40,50,60

2,2,3 0.4722 0.5521 0.4015 0.5091 0.5283 0.5276 0.5332

2,2,4 0.8448 0.9522 0.8029 0.9096 0.9228 0.9335 0.9315

2,2,5 0.8821 0.9921 0.8549 0.9506 0.9594 0.9776 0.9684

25,50,75

2,2,3 0.5582 0.6071 0.4440 0.5556 0.5927 0.5562 0.5654

2,2,4 0.8840 0.9662 0.8103 0.9052 0.9257 0.8951 0.9144

2,2,5 0.9063 0.9937 0.8489 0.9440 0.9623 0.9266 0.9525
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of the PB test. In the results given in Tables 6 and 7, it is 
observed that the CAT1, CAT2, and CAT4 are most pow-
erful in balanced and unbalanced designs, the GP and PB 
test have similar power in unbalanced designs. A signifi-
cant increase in the power of CAT3 is observed and it is one 
of the most powerful tests when the sample size increases. 
However, the increasing of scale parameter value decreases 
the power of the GP test, the PB, CAT3, and CAT4 main-
tain their performance. Results k = 5 given in Tables 8 and 
9 indicate that the CAT1 and CAT3 are the most powerful, 
also the GP and PB tests are most powerful in only unbal-
anced designs. When the sample size increases and the 

design type is unbalanced, the performance of the CAT1 
and CAT3 decreases, and the GPV and PB tests main-
tain their powers. Despite the increasing scale parameter 
value, the GP, PB, and CAT3 maintain their powers. As a 
result, CATs outperform others in balanced design, the PB 
test is the most powerful in unbalanced design. When the 
k increases, the power of the GP test is competitive with 
the powerful tests. The PB and CAT1 tests maintain their 
power against the increase in the value of the scale parame-
ter. 

Table 5. The penalized power for higher scale parameters and k = 3

ni ai bi GP PB FA CAT1 CAT2 CAT3 CAT4

10,10,10

5,5,6

1, 1, 1

0.0215 0.0234 0.0164 0.0599 0.0586 0.0118 0.0524

5,5,8 0.0298 0.0321 0.0266 0.0880 0.0850 0.0299 0.0810

5,5,10 0.0419 0.0436 0.0369 0.0965 0.0935 0.0322 0.0858

8,10,12

5,5,6 0.0356 0.0367 0.0349 0.0620 0.0644 0.0210 0.0525

5,5,8 0.0651 0.0642 0.0622 0.0858 0.0893 0.0303 0.0672

5,5,10 0.1046 0.1051 0.1023 0.1077 0.1095 0.0380 0.0939

5,10,15

5,5,6 0.0221 0.0631 0.0094 0.0623 0.0770 0.0247 0.0416

5,5,8 0.0726 0.1325 0.0171 0.0614 0.0910 0.0170 0.0398

5,5,10 0.1577 0.2186 0.0266 0.0693 0.1080 0.0187 0.0444

30,30,30

5,5,6 0.1509 0.1628 0.1329 0.0991 0.0954 0.0779 0.0991

5,5,8 0.4060 0.4592 0.3732 0.3769 0.3619 0.3042 0.3759

5,5,10 0.5755 0.6553 0.5404 0.6721 0.6567 0.5812 0.6731

24,30,36

5,5,6 0.0758 0.0868 0.0742 0.1166 0.1173 0.1040 0.1212

5,5,8 0.2967 0.3371 0.2831 0.4361 0.4443 0.4041 0.4436

5,5,10 0.5172 0.5825 0.4921 0.7615 0.7656 0.7088 0.7736

15,30,45

5,5,6 0.0886 0.1306 0.0588 0.1154 0.1236 0.1115 0.1058

5,5,8 0.4225 0.4979 0.2934 0.4605 0.4720 0.4365 0.4327

5,5,10 0.7141 0.8159 0.5891 0.8019 0.8045 0.7852 0.7736

50,50,50

5,5,6 0.2984 0.3276 0.2862 0.1211 0.1199 0.1059 0.1211

5,5,8 0.6130 0.6734 0.5938 0.5988 0.5872 0.5921 0.5997

5,5,10 0.6634 0.7277 0.6399 0.8953 0.8795 0.9189 0.8963

40,50,60

5,5,6 0.1163 0.1323 0.1123 0.1411 0.1511 0.1432 0.1505

5,5,8 0.4950 0.5549 0.4724 0.6407 0.6591 0.6599 0.6712

5,5,10 0.6630 0.7370 0.6277 0.9096 0.9228 0.9335 0.9315

25,50,75

5,5,6 0.1498 0.1752 0.1097 0.1713 0.1814 0.1611 0.1602

5,5,8 0.6815 0.7300 0.5755 0.7099 0.7266 0.6785 0.6674

5,5,10 0.8951 0.9605 0.8291 0.9486 0.9433 0.8874 0.8828
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REAL DATA APPLICATION

In this application, the effect of antidotes developed 
against the poisons was tested on mice. The data set poi-
sons obtained from [27], and available in boot package in 
R, the response times of the mice against the treatment of 
antidotes A, B, C, and D were made. Parameter estimates 
and summary statistics (in week) are given in Table 10.

According to the summary statistics given in Table 10, 
antidote treatment is given to mice. The mean duration 
of remission is 0.33 weeks in antidote A, 0.71 in antidote 
B, and antidote C hence 0.41 weeks in antidote and 0.56 

weeks in antidote. It is observed that the estimates of the 
scale parameters are different. The data set is an example of 
a small sample balanced design. The distribution of remis-
sion times to treatment is given in Figure 1.

The distribution of the remission times of the poisons 
are right skewed and not normal according to the p-value 
of the Shapiro-Wilk Normality test is 0.0001 at the signif-
icance level is 0.05. Thus, the proposed tests for two-pa-
rameter exponential distribution should be used because 
of the distribution of data. In this example, the aim is to 
test whether antidotes have equal effects on the duration 
of remission. Thus, the most effective treatment can be 

Table 6. The penalized power for lower scale parameters and k = 4

ni ai bi GP PB FA CAT1 CAT2 CAT3 CAT4

10,10,10,10

2,2,2,3

1, 1, 1, 1

0.0096 0.0135 0.0028 0.0864 0.0847 0.0293 0.0780

2,2,2,4 0.0170 0.0315 0.0036 0.0990 0.0942 0.0372 0.0928

2,2,2,5 0.0229 0.0457 0.0057 0.0982 0.0933 0.0356 0.0854

6,8,12,14

2,2,2,3 0.0243 0.0375 0.0043 0.0757 0.0859 0.0250 0.0726

2,2,2,4 0.0678 0.0804 0.0072 0.0765 0.0835 0.0306 0.0775

2,2,2,5 0.1445 0.1249 0.0079 0.0765 0.0788 0.0290 0.0618

4,8,12,16

2,2,2,3 0.0474 0.0713 0.0058 0.0678 0.0757 0.0263 0.0418

2,2,2,4 0.1468 0.1220 0.0094 0.0671 0.0772 0.0214 0.0409

2,2,2,5 0.2861 0.1978 0.0152 0.0580 0.0645 0.0214 0.0334

30,30,30,30

2,2,2,3 0.1296 0.2041 0.0919 0.1961 0.2013 0.1534 0.2023

2,2,2,4 0.4103 0.5641 0.3435 0.5505 0.5679 0.4546 0.5629

2,2,2,5 0.7006 0.8315 0.6133 0.8046 0.8259 0.7175 0.8204

18,24,36,42

2,2,2,3 0.2992 0.3359 0.1655 0.3110 0.3275 0.2626 0.2910

2,2,2,4 0.7183 0.7578 0.5341 0.7800 0.7953 0.6917 0.7427

2,2,2,5 0.8200 0.8845 0.7325 0.9620 0.9512 0.8673 0.9118

12,24,36,48

2,2,2,3 0.3414 0.3565 0.1578 0.3349 0.3465 0.3069 0.2990

2,2,2,4 0.7551 0.8169 0.5513 0.7727 0.7783 0.7703 0.7693

2,2,2,5 0.8385 0.9723 0.7846 0.9372 0.9141 0.9565 0.9614

50,50,50, 50

2,2,2,3 0.3063 0.3813 0.2713 0.3670 0.3719 0.3693 0.3679

2,2,2,4 0.7276 0.8080 0.6941 0.8271 0.8350 0.8832 0.8289

2,2,2,5 0.8350 0.8891 0.8154 0.9083 0.9160 0.9842 0.9074

30,40,60,70

2,2,2,3 0.5616 0.5568 0.4221 0.5153 0.5376 0.5488 0.5367

2,2,2,4 0.9058 0.9325 0.8639 0.9062 0.9179 0.9509 0.9251

2,2,2,5 0.9206 0.9525 0.8971 0.9285 0.9366 0.9713 0.9449

20,40,60,80

2,2,2,3 0.6425 0.6050 0.4171 0.5834 0.5982 0.5422 0.5376

2,2,2,4 0.9317 0.9720 0.8048 0.9600 0.9629 0.8994 0.9071

2,2,2,5 0.9449 1 0.8383 0.9806 0.9806 0.9206 0.9285
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provided by determining the antidotes or antidotes to be 
used. The tests are considered in this study implemented 
in doex package as well as the other ANOVA methods 
under non-normality [28, 29, 30] and used for testing null 
hypothesis and the p-values obtained are given in Table 11.

The null hypothesis is rejected at the 0.05 significance 
level according to the p-value results obtained from all tests 
except the FA test from the tests given in the table above. 
Thus, it is concluded that the duration of remission of anti-
dotes is not equal.

CONCLUSION

Based on the simulation results and the application to 
a real dataset, several conclusions can be drawn regarding 
the performance of the proposed tests and their applica-
bility in practical scenarios. In both balanced and unbal-
anced designs, CAT1 emerges as the most powerful test, 
outperforming others. The PB test, while generally pow-
erful, exhibits its highest power in more unbalanced 
designs, showcasing its suitability for specific scenarios. 
As the sample size increases, CAT4 becomes more power-
ful in both balanced and unbalanced designs, with CAT2 

Table 7. The penalized power for higher scale parameters and k = 4

ni ai bi GP PB FA CAT1 CAT2 CAT3 CAT4

10,10,10,10

5,5,5,6

1, 1, 1, 1

0.0066 0.0090 0.0021 0.0758 0.0709 0.0241 0.0703

5,5,5,8 0.0125 0.0172 0.0028 0.0977 0.0893 0.0342 0.0901

5,5,5,10 0.0170 0.0315 0.0036 0.1077 0.1003 0.0365 0.0990

6,8,12,14

5,5,5,6 0.0118 0.0187 0.0029 0.0684 0.0748 0.0236 0.0566

5,5,5,8 0.0317 0.0492 0.0043 0.0780 0.0929 0.0244 0.0687

5,5,5,10 0.0678 0.0804 0.0072 0.0780 0.0863 0.0299 0.0733

4,8,12,16

5,5,5,6 0.0163 0.0463 0.0044 0.0664 0.0716 0.0279 0.0383

5,5,5,8 0.0667 0.0820 0.0065 0.0640 0.0753 0.0270 0.0429

5,5,5,10 0.1468 0.1220 0.0094 0.0679 0.0768 0.0270 0.0402

30,30,30,30

5,5,5,6 0.0397 0.0737 0.0281 0.0702 0.0718 0.0543 0.0728

5,5,5,8 0.1745 0.2684 0.1299 0.2800 0.2873 0.2090 0.2816

5,5,5,10 0.4103 0.5641 0.3435 0.5601 0.5679 0.4584 0.5679

18,24,36,42

5,5,5,6 0.0683 0.0960 0.0351 0.1089 0.1127 0.0886 0.1002

5,5,5,8 0.3983 0.4463 0.2280 0.3951 0.4215 0.3394 0.3846

5,5,5,10 0.7183 0.7578 0.5341 0.7723 0.7877 0.6701 0.7427

12,24,36,48

5,5,5,6 0.0783 0.1109 0.0453 0.1049 0.1200 0.0945 0.0942

5,5,5,8 0.4444 0.4624 0.2325 0.4233 0.4384 0.3846 0.3973

5,5,5,10 0.7551 0.8169 0.5513 0.7521 0.7852 0.7351 0.7547

50,50,50, 50

5,5,5,6 0.0621 0.0873 0.0526 0.1178 0.1167 0.0966 0.1158

5,5,5,8 0.4137 0.5060 0.3748 0.5347 0.5276 0.4707 0.5287

5,5,5,10 0.7276 0.8080 0.6971 0.8971 0.8894 0.8282 0.8991

30,40,60,70

5,5,5,6 0.1464 0.1621 0.1069 0.1451 0.1545 0.1346 0.1424

5,5,5,8 0.6867 0.6817 0.5649 0.6776 0.7040 0.6406 0.6678

5,5,5,10 0.9058 0.9325 0.8639 0.9570 0.9703 0.9090 0.9420

20,40,60,80

5,5,5,6 0.1446 0.1570 0.0831 0.1602 0.1575 0.1545 0.1471

5,5,5,8 0.7644 0.7310 0.5379 0.7046 0.6790 0.7278 0.7148

5,5,5,10 0.9317 0.9720 0.8048 0.9334 0.8891 0.9674 0.9580



Sigma J Eng Nat Sci, Vol. 43, No. 1, pp. 73−87, February, 202584

also demonstrating increased power, particularly in more 
unbalanced designs. However, it’s noteworthy that the 
power of the PB test decreases with an increase in the scale 
parameter value.

Considering the results for various scenarios and design 
types, CAT1, CAT2, and CAT4 consistently prove to be the 
most powerful tests, while GP and PB tests demonstrate 
similar power in unbalanced designs. CAT3 exhibits a sig-
nificant increase in power with an increase in the sample 
size, becoming one of the most powerful tests. Notably, GP’s 
power decreases with an increase in the scale parameter 

value, whereas PB, CAT3, and \textbf{CAT4} maintain 
their performance.

For the case when k = 5, CAT1 and CAT3 emerge as 
the most powerful tests, with GP and PB being particularly 
powerful in unbalanced designs. With an increase in sample 
size and unbalanced design, the power of CAT1 and CAT3 
decreases, but GP and PB tests maintain their effective-
ness. Remarkably, despite an increase in the scale param-
eter value, GP, PB, and CAT3 maintain their power. CATs 
consistently outperform other tests in balanced designs, 
while the PB test stands out as the most powerful test in 
unbalanced designs. As k increases, GP’s power competes 

Table 8. The penalized power for lower scale parameters and k = 5

ni ai bi GP PB FA CAT1 CAT2 CAT3 CAT4

10,10,10,10,10

2,2,2,2,3

1, 1, 1, 1, 1

0.0065 0.0170 0.0014 0.0815 0.0170 0.0744 0.0576

2,2,2,2,4 0.0123 0.0280 0.0029 0.0969 0.0216 0.0849 0.0685

2,2,2,2,5 0.0210 0.0383 0.0036 0.1041 0.0208 0.0791 0.0736

6,8,10,12,14

2,2,2,2,3 0.0204 0.0322 0.0064 0.0753 0.0213 0.0624 0.0533

2,2,2,2,4 0.0430 0.0605 0.0078 0.0844 0.0190 0.0713 0.0597

2,2,2,2,5 0.0955 0.0951 0.0092 0.0753 0.0134 0.0525 0.0533

4,6,10,14,16

2,2,2,2,3 0.0458 0.0756 0.0119 0.0779 0.0283 0.0438 0.0551

2,2,2,2,4 0.1288 0.1266 0.0157 0.0765 0.0250 0.0438 0.0541

2,2,2,2,5 0.2616 0.1587 0.0171 0.0628 0.0200 0.0338 0.0444

30,30,30,30,30

2,2,2,2,3 0.0905 0.1564 0.0618 0.1991 0.1363 0.2049 0.1408

2,2,2,2,4 0.3139 0.4552 0.2329 0.5206 0.3751 0.5226 0.3681

2,2,2,2,5 0.5741 0.7239 0.4741 0.7557 0.5960 0.7698 0.5343

18,24,30,36,42

2,2,2,2,3 0.3062 0.3061 0.1511 0.2785 0.2504 0.2726 0.1970

2,2,2,2,4 0.7292 0.7323 0.4736 0.7112 0.6699 0.7325 0.5029

2,2,2,2,5 0.8738 0.9153 0.7201 0.8913 0.8825 0.9316 0.6303

12,18,30,42,48

2,2,2,2,3 0.3761 0.3186 0.1560 0.3228 0.2193 0.2272 0.2282

2,2,2,2,4 0.8079 0.7848 0.4793 0.7713 0.6040 0.6203 0.5454

2,2,2,2,5 0.9074 0.9480 0.7422 0.9545 0.8121 0.8146 0.6749

50,50,50, 50,50

2,2,2,2,3 0.2688 0.3578 0.2239 0.3885 0.3269 0.3875 0.2747

2,2,2,2,4 0.7091 0.8308 0.6578 0.8635 0.7705 0.8654 0.6106

2,2,2,2,5 0.8384 0.9300 0.8038 0.9625 0.8881 0.9635 0.6806

30,40,50,60,70

2,2,2,2,3 0.5460 0.4630 0.3871 0.5510 0.4817 0.5138 0.3896

2,2,2,2,4 0.9160 0.8408 0.8544 0.9730 0.8800 0.9353 0.6880

2,2,2,2,5 0.9356 0.8686 0.9092 0.9980 0.9035 0.9603 0.7057

20,30,50,70,80

2,2,2,2,3 0.6406 0.5485 0.3739 0.5283 0.4802 0.4702 0.3726

2,2,2,2,4 0.9210 0.9372 0.7706 0.9081 0.8695 0.8636 0.6421

2,2,2,2,5 0.9285 0.9613 0.8103 0.9266 0.8891 0.8821 0.6552
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Table 11. The results of the tests

Test p-value
GP 0.0475*
PB 0.0205*
FA 0.0630
CAT1 0.0032**
CAT2 0.0038**
CAT3 0.0077**
CAT4 0.0036**
*significance at α = 0.05, **significance at α = 0.01

Table 10. The summary statistics of the data

Statistics A B C D
ni 12 12 12 12

0.15 0.42 0.19 0.26

0.18 0.29 0.22 0.30

0.33 0.71 0.41 0.56

Table 9. The penalized power for higher scale parameters and k = 5

ni ai bi GP PB FA CAT1 CAT2 CAT3 CAT4

10,10,10,10,10

5,5,5,5,6

1, 1, 1, 1, 1

0.0036 0.0088 0.0014 0.0625 0.0147 0.0553 0.0442

5,5,5,5,8 0.0080 0.0177 0.0021 0.0869 0.0193 0.0839 0.0615

5,5,5,5,10 0.0123 0.0280 0.0029 0.0969 0.0216 0.0849 0.0685

6,8,10,12,14

5,5,5,5,6 0.0066 0.0212 0.0036 0.0662 0.0182 0.0574 0.0468

5,5,5,5,8 0.0226 0.0401 0.0064 0.0778 0.0213 0.0634 0.0550

5,5,5,5,10 0.0430 0.0605 0.0078 0.0844 0.0190 0.0713 0.0597

4,6,10,14,16

5,5,5,5,6 0.0248 0.0539 0.0089 0.0736 0.0300 0.0402 0.0521

5,5,5,5,8 0.0636 0.0841 0.0127 0.0808 0.0300 0.0466 0.0572

5,5,5,5,10 0.1288 0.1266 0.0157 0.0765 0.0250 0.0438 0.0541

30,30,30,30,30

5,5,5,5,6 0.0280 0.0530 0.0204 0.0728 0.0561 0.0765 0.0515

5,5,5,5,8 0.1201 0.2024 0.0087 0.2574 0.1782 0.2657 0.1820

5,5,5,5,10 0.3139 0.4552 0.2329 0.5206 0.3751 0.5226 0.3681

18,24,30,36,42

5,5,5,5,6 0.0727 0.1106 0.0425 0.0975 0.0841 0.0951 0.0689

5,5,5,5,8 0.4050 0.4014 0.2107 0.3630 0.3184 0.3716 0.2567

5,5,5,5,10 0.7292 0.7323 0.4736 0.7112 0.6699 0.7325 0.5029

12,18,30,42,48

5,5,5,5,6 0.1050 0.1166 0.0449 0.1059 0.0679 0.0708 0.0749

5,5,5,5,8 0.4957 0.4089 0.2009 0.4198 0.2916 0.3032 0.2969

5,5,5,5,10 0.8079 0.7848 0.4793 0.7713 0.6040 0.6203 0.5454

50,50,50, 50,50

5,5,5,5,6 0.0625 0.0927 0.0527 0.1020 0.0826 0.1010 0.0721

5,5,5,5,8 0.3651 0.4730 0.3188 0.5012 0.4328 0.5090 0.3544

5,5,5,5,10 0.7091 0.8308 0.6578 0.8635 0.7705 0.8654 0.6106

30,40,50,60,70

5,5,5,5,6 0.1264 0.1271 0.0895 0.1290 0.1059 0.1174 0.0912

5,5,5,5,8 0.6715 0.5762 0.5121 0.6860 0.6066 0.6563 0.4851

5,5,5,5,10 0.9160 0.8408 0.8544 0.9730 0.8800 0.9353 0.6880

20,30,50,70,80

5,5,5,5,6 0.1569 0.1453 0.0819 0.1337 0.1167 0.1131 0.0945

5,5,5,5,8 0.7614 0.6909 0.4826 0.6629 0.6076 0.6028 0.4688

5,5,5,5,10 0.9210 0.9372 0.7706 0.9081 0.8695 0.8636 0.6421
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with other powerful tests. Both PB and CAT1 tests main-
tain their power against an increase in the scale parameter 
value. In conclusion, the proposed computational approach 
tests, particularly CAT1 and PB, demonstrate robust per-
formance in various simulated scenarios and a real-world 
application involving antidote treatment on mice. These 
findings highlight the efficacy of the proposed tests in han-
dling skewed distributions, emphasizing their potential in 
addressing Behrens-Fisher-type problems in non-normal 
settings.

ACKNOWLEDGEMENTS 

This study is supported by the Eskisehir Technical 
University Scientific Research Projects Commission under 
grant No. 20DRP047.

AUTHORSHIP CONTRIBUTIONS

Authors equally contributed to this work.

DATA AVAILABILITY STATEMENT

The authors confirm that the data that supports the 
findings of this study are available within the article. Raw 
data that support the finding of this study are available from 
the corresponding author, upon reasonable request.

CONFLICT OF INTEREST

The author declared no potential conflicts of interest 
with respect to the research, authorship, and/or publication 
of this article.

ETHICS

There are no ethical issues with the publication of this 
manuscript.

REFERENCES

 [1] Weerahandi S. ANOVA under unequal error vari-
ances. Biometrics 1995;51:589–599. [CrossRef]

 [2] Krishnamoorthy K, Lu F, Mathew T. A parametric 
bootstrap approach for ANOVA with unequal vari-
ances: Fixed and random models. Comput Stat Data 
Anal 2007;51:5731–5742. [CrossRef]

 [3] Li X, Wang J, Liang H. Comparison of several means: 
A fiducial based approach. Comput Stat Data Anal 
2011;55:1993–2002. [CrossRef]

 [4]  Gokpinar EY, Gokpinar F. A test based on the com-
putational approach for equality of means under the 
unequal variance assumption. Hacettepe J Math Stat 
2012;41:605–613.

 [5] Gokpinar EY, Gokpinar F. Testing the equality 
of several log-normal means based on a compu-
tational approach. Commun Stat Simul Comput 
2017;46:1998–2010. [CrossRef]

 [6] Jafari AA, Abdollahnezhad K. Testing the equality 
means of several lognormal distributions, Commun 
Stat Simul Comput 2017;46:2311–2320. [CrossRef]

 [7] Weerahandi S, Krishnamoorthy K. A note recon-
ciling ANOVA tests under unequal error variances. 
Comput Stat Data Anal 2019;55:1993–2002. [CrossRef]

 [8] Chen HJ. A new range statistic for comparisons of 
several exponential location parameters. Biometrika 
1982;69:257–260. [CrossRef]

 [9] Singh N. The likelihood ratio test for the equality 
of location parameters of exponential populations 

Figure 1. The PDFs of remission times of the poisons.

https://doi.org/10.2307/2532947
https://doi.org/10.1016/j.csda.2006.09.039
https://doi.org/10.1016/j.csda.2010.12.009
https://doi.org/10.1080/03610918.2015.1030413
https://doi.org/10.1080/03610918.2015.1041976
https://doi.org/10.1080/03610926.2017.1419264
https://doi.org/10.1093/biomet/69.1.257


Sigma J Eng Nat Sci, Vol. 43, No. 1, pp. 73−87, February, 2025 87

based on Type II censored samples. Technometrics 
1983;25:193–195. [CrossRef]

[10] Kambo NS, Awad AM. Testing equality of location 
parameters of k exponential distributions. Commun 
Stat Theory Methods 1985;14:567–583.

[11] Hsieh HK. An exact test for comparing location 
parameters of k exponential distributions with 
unequal scaled based on Type II censored data. 
Technometrics 1986;28:157–164. [CrossRef]

[12] Vaughan DC, Tiku ML. Testing the equality of loca-
tion parameters of exponential populations from 
censored samples. Commun Stat Theory Methods 
1993;22:2567–2581. [CrossRef]

[13] Tiku ML, Vaughan DC. Testing equality of location 
parameters of two exponential distributions from 
censored samples. Commun Stat Theory Methods 
1991;20:929–944. [CrossRef]

[14] Ananda MMA, Weerahandi S. Testing the difference 
of two exponential means using generalized p-val-
ues. Commun Stat Simul Comput 1996;25:521–532. 
[CrossRef]

[15] Wu SF. One stage multiple comparisons with the 
control for exponential mean lifetimes based on 
doubly censored samples under heteroscedasticity. 
Commun Stat Simul Comput 2021;50:1473–1483. 
[CrossRef]

[16] Malekzadeh A, Jafari AA. Inference on the equality 
means of several two-parameter exponential dis-
tributions under progressively Type II censoring, 
Commun Stat Simul Comput 2020;49:3196–3211. 
[CrossRef]

[17] Johnson NL, Kotz S. Continuous Univarite 
Distributions. Boston: Houghton Miffin Company; 
1970.

[18] Raiz M, Kumar A, Mishra VN, Rao N. Dunkl 
analogue of Schurer-Beta operators and their 
approximation behaviour. Math Found Comput 
2022;5:315–330. [CrossRef]

[19] Rajawat RS, Singh KK, Mishra VN. Approximation 
by modified Bernstein polynomials based on real 

parameters. Math Found Comput 2024;7:297–309. 
[CrossRef]

[20] Cochran WG. Problem arising in the analysis of 
a series of similar experiments. J Royal Stat Soc 
1937;4:102–118. [CrossRef]

[21] Tsui KW, Weerahandi S. Generalized p-value in 
significance testing of hypothesis in the presence of 
nuisance parameters. J Am Stat Assoc 1989;84:602–
607. [CrossRef]

[22] Pal N, Lim WK, Ling CH. A computational 
approach to statistical inferences. J Appl Probab Stat 
2007;2:13–35.

[23] Zheng M. Penalized maximum likelihood estima-
tion of two-parameter exponential distributions. 
Minnesota, USA: The Faculty of Graduate School of 
the University of Minnesota; 2013.

[24] Cavus M, Yazici B, Sezer A. Penalized power 
approach to compare the power of the tests when 
Type I error probabilities are different. Commun 
Stat Simul Comput 2021;50:1912–1926. [CrossRef]

[25] Cavus M, Yazici B. Doex: One-way heteroscedastic 
ANOVA tests. R package: ver.1.3, 2020.

[26] Cavus M, Yazici B. Testing the equality of nor-
mal distributed and independent groups’ means 
under unequal variances by doex package. The R J 
2021;12:134–154. [CrossRef]

[27] Box GEP, Cox DR. An analysis of transformation. J 
Royal Stat Soc 1964;26:211–252. [CrossRef]

[28] Cavus M, Yazici B, Sezer A. Modified tests for com-
parison of group means under heteroskedasticity 
and non-normality caused by outlier(s). Hacettepe 
J Math Stat 2017;46:493–510. [CrossRef]

[29] Cavus M, Yazici B, Sezer A. Analyzing regional 
export data by the modified generalized F-test. Int J 
Econ Administr Stud 2018:541–552.

[30] Cavus M, Yazici B, Sezer A. Penalized power 
approach to compare the power of the tests when 
Type I error probabilities are different. Commun 
Stat Simul Comput 2021;50:1912–1926. [CrossRef]

https://doi.org/10.1080/00401706.1983.10487852
https://doi.org/10.1080/00401706.1986.10488117
https://doi.org/10.1080/03610928308831169
https://doi.org/10.1080/03610929108830540
https://doi.org/10.1080/03610919608813327
https://doi.org/10.1080/03610918.2019.1584302
https://doi.org/10.1080/03610918.2018.1538452
https://doi.org/10.3934/mfc.2022007
https://doi.org/10.3934/mfc.2023005
https://doi.org/10.2307/2984123
https://doi.org/10.1080/01621459.1989.10478810
https://doi.org/10.1080/03610918.2019.1588310
https://doi.org/10.32614/RJ-2021-008
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://doi.org/10.15672/HJMS.2017.417
https://doi.org/10.1080/03610918.2019.1588310

