
Sigma J Eng Nat Sci, Vol. 43, No. 1, pp. 133−147, February, 2025

Sigma Journal of Engineering and Natural Sciences
Web page info: https://sigma.yildiz.edu.tr

DOI: 10.14744/sigma.2025.00011

ABSTRACT

Multi-response experimental data, composed with more than one response variable, can be ex-
amined in three stages: modeling, optimization and decision making. In this study, these three 
stages were considered sequentially. Model parameters were estimated through Seemingly 
Unrelated Regression (SUR) method due to linear correlation between responses during the 
modeling stage. In the optimization stage, simultaneous optimization of predicted multiple re-
sponses were considered as a multi-objective optimization (MOO) problem. For this purpose, 
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Multi Objective Differential 
Evolution (MODE), were applied to obtain Pareto solution sets. In the decision making stage, 
compromise solution was chosen from the Pareto sets through various multi-criteria decision 
making (MCDM) methods. This study aims to compare performances of the NSGA-II and 
the MODE via various MCDM methods using three real data sets taken from different fields. 
The novelty of this paper is applying the MCDM methods to the Pareto solution set to choose 
a compromise solution by taking into account the Entropy weights of responses primarily. Af-
terwards, closeness of the compromise solution to the ideal solution using the mean absolute 
error (MAE) and the root mean square error (RMSE) metrics is calculated for decision making 
on the performance of the MOO methods. The results showed that compromise solution of 
the MODE is closer to the ideal solution than the NSGA-II according to the MAE and RMSE 
metrics. As a result, the MODE outperforms the NSGA-II.
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INTRODUCTION

Experimental data, which consist of input and response 

variables, can be produced by experimental design with 

measurements in many field of science and engineering. 
If the experimental data contains more than one response 
variable, it is called multi-response experimental data. 
Generally, the multi-response experimental data sets can 
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be examined in three basic steps: (i) modeling, (ii) opti-
mization, and (iii) decision making. In modeling stage, 
functional relationship between the responses and input 
variables are obtained by applying multivariate multiple lin-
ear regression analysis. Parameters of mathematical model 
are estimated by using Ordinary Least Squares (OLS) 
method to create predicted response models in polynomial 
type. During the modeling stage, it is necessary to define 
whether the responses are linearly correlated. In this case, 
Seemingly Unrelated Regression (SUR) method should be 
used to predict response functions by taking into account 
the linear relationship between the responses.

The SUR method was first introduced by Zellner [1] 
for the analysis of multi-response experimental data sets in 
which the responses are correlated. Liu [2] showed that the 
SUR estimators have smaller variance than the OLS esti-
mators in case the experimental data size is large enough. 
Multi-response studies on the SUR are available in the lit-
erature [3-6].

Optimization is as important as the modeling stage 
during the analyses of multi-response experimental data 
set. For this purpose, predicted response functions are con-
sidered as objective functions and optimized simultane-
ously. Simultaneous optimization of the predicted response 
functions is achieved in multi-objective perspective, called 
multi-objective optimization (MOO). There are several 
studies for incorporating the MOO approach into the solu-
tion of multi-response problems [2,7-12]. As a result of the 
MOO, it is not possible to obtain a single optimal solution 
for all objective functions. In this case, Pareto solution set 
is found which has many non-dominated alternative solu-
tions. It is possible to get the Pareto solution set through 
mathematical programming methods [13]. However, these 
methods tend to obtain elements of the Pareto solution set 
one at a time. In recent years, multi-objective metaheuris-
tic (MOM) methods are frequently applied to solve the 
MOO problems [14]. In this study, population-based MOM 
methods are preferred to use since these methods can gen-
erate the Pareto solution set in a single run. Two popula-
tion-based MOM methods, (i) NSGA-II and (ii) MODE, 
are applied for obtaining the Pareto sets. The NSGA-II and 
MODE, also called Artificial Intelligence Optimization 
Algorithms, have stochastic search mechanism with genetic 
operators [15,16]. There have been several studies about the 
NSGA-II for the optimization of multi-response problems 
[17-21]. Some applications of the MODE for optimization 
stage of multi-response problems can be seen in the stud-
ies of [22,23]. There are different studies for comparison of 
these two algorithms [24-28]. 

In decision making stage, it is necessary to decide for a 
compromise solution among the Pareto solutions which are 
non-dominated to each other. Multi-criteria decision mak-
ing (MCDM) methods are preferable to choose a compro-
mise solution from Pareto solution set. The Pareto solution 
set is considered as decision matrix that is a tool to evalu-
ate and to select the best alternative considering different 

criteria for the MCDM. The application of the MCDM to 
the multi-response problems can be handled in several 
studies: TOPSIS and AHP [20]; TOPSIS [29]; EDAS [30]; 
AHP and VIKOR [31]; SAW, WASPAS, TOPSIS, EDAS, 
VIKOR, MOORA, COPRAS, PIV, and PSI [32]; CODAS 
[33]; GRA [34]; COPRAS [35,36]; TOPSIS and GRA [37]; 
TOPSIS, VIKOR, MOORA, and AHP [38]; WASPAS and 
EDAS [39]. Further, combined MCDM methods are applied 
to multi-response studies, e.g. PSI-TOPSIS and PSI-EDAS 
[8]; GRA-TOPSIS [40]; AHP-TOPSIS-VIKOR [41].

The main aim of this study is to make comparison for 
the optimization performances of the NSGA-II and MODE 
by using various MCDM methods which are TOPSIS, 
COPRAS, WASPAS, EDAS, CODAS, GRA and MABAC. At 
first, Entropy method is applied to the response variables 
of the experimental data sets to define the weights objec-
tively. Then, MCDM methods are applied to the Pareto sets 
to define a compromise solution considering the weights. 
The closeness of the compromise solution and the ideal 
solution vectors are calculated with respect to MAE and 
RMSE metrics. Finally, the MOM method with the small-
est MAE and RMSE metric values is considered to have the 
best performance.

The paper is organized as follows. In Section 2, multi-re-
sponse experimenal data set and the SUR modeling are 
introduced briefly. In Section 3, structure of the MOO 
problem is defined and algorithmic steps of the NSGA-II 
and MODE are explained. In Section 4, considered MCDM 
methods are discussed for decision making. In Section 
5, numerical example is carried out for three experimen-
tal data sets from different fields of engineering, chemis-
try, and food. The obtained results are also discussed in 
detailed. Finally, conclusion is given in Section 6.

MODELING OF MULTI-RESPONSE 
EXPERIMENTAL DATA WITH THE SUR

An experiment in which a number of responses are 
measured simultaneously for each setting of a group of 
input variables is called multi-response experiments [42]. 
The multi-response experimental data set with n observa-
tions, p input variables, and r response variables is shown 
in Table 1. 

Table 1. Multi-response experimental data set

No  Input Variables  Response Variables

X1 X2 … Xp Y1 Y2 … Yr

1 x11 x12 … x1p y11 y12 … y1r

2 x21 x22 … x2p y21 y22 … y2r

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝

n xn1 xn2  … xnp yn1 yn2 … ynr
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Correlation of the responses should be considered to 
perform the functional relationship between the responses 
and input variables. If the responses are linearly correlated, 
the SUR method is proper to consider the linear correlation 
during modeling stage. Functional relationship between the 
response variables and input variables is expressed by linear 
regression model. The response model can be written as 

  (1)

In Equation (1),  is a  vector of responses,  is 

a design matrix of dimension  is a  vector 

of regression coefficients and  is a  vector of errors, 

. The assumptions of the response model are 

 and . 
Parameter estimation with the SUR method consists of 

three main steps as follows [9]:
Step 1: The predicted response model ( ) is obtained 

individually by using OLS method and residuals ( ) are 
calculated.

Step 2: The residual covariance matrix, , for 
the responses is obtained. Calculate the covariance matrix 
components, .

Step 3: The estimator vector of  for the SUR is calcu-
lated as

  (2)

The predicted response model can be written in polyno-
mial form according to parameter estimates as

   
(3)

MULTI-OBJECTIVE OPTIMIZATION FOR 
MULTI-RESPONSE PROBLEM 

Optimization of multi-response problem can be consid-
ered as a multi-objective optimization (MOO) problem.

Mathematical formulation of the MOO problem can be 
written as

  

(4)

In Equations (4),  is input variable vec-
tor and S is constraint set. Each predicted response model 

, is considered as an objective function, 

. Solution set of the MOO problem, is called 
Pareto solution set. The Pareto solution set is obtained by 
using two population-based MOM methods, NSGA-II and 
MODE, which are quite successful to find Pareto solutions 
in a single run without getting stuck local solutions. 

Fast non-dominanted sorting and crowding distance 
approaches are two main principles for obtaining Pareto 
solution set by the MOM methods. The former ensures 
that solutions are sorted by separating them into surfaces 
according to their dominance as Rank-1, Rank-2, and etc. 
as shown in Figure 1, while the latter provides the measure-
ment of the distances between the solutions on each surface 
and each other as illustrated in Figure 2. 

Figure 1. Surfaces determined by the fast non-dominated 
sorting.

Figure 2. Crowding distances on the surfaces.
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Non-dominated Sorting Genetic Algorithm-II (NSGA-II)
The NSGA-II introduced by Deb et al. [43], is based on 

genetic operators. Simulations involving difficult problems 
have also shown that solutions are well spread and conver-
gence is strong. 

Step 1: Determine the tuning parameters, population 
size ( ), maximum generation number ( ), genetic 
operators which are selection, crossover and mutation. 
Generate initial population (P) with size  randomly and 

.
Step 2: Create a new generation population (Q) with 

size  by applying genetic operators to P.
Step 3: Combine parent and new generation popula-

tion, .
Step 4: Obtain and sort non-dominated surface.
Step 5: Calculate crowding distances of the solutions on 

each surface. Sort surfaces in ascending order and crowd-
ing distances within the surface in descending order.

Step 6: Carry out crossover and mutation operators. 
Create new generation solutions (Q) according to cross-
over and mutation rates. Update number of generation,

.
Step 7: If number of generations is not reached, Return 

to Step 2, otherwise algorithm is terminated.

Multi Objective Differential Evolution (MODE)
The MODE proposed by Souza et al. [23], is an exten-

sion of the Differential Evolution (DE) algorithm developed 
by Storn and Price [44], for the single objective algorithm 
to multi-objective optimization. The MODE is a preferred 
method for difficult problems due to its ease of application. 

Step 1: Determine the tuning parameters, number of 
variables (D), population size ( ), maximum gener-
ation number ( ), scaling vector (F) and crossover 
ratio (CR). 

Step 2: Determine initial population. 
 

: The lower and upper bounds of the 
variables

: Randomly selected chromosomes from the pop-
ulation ( )

 : jth gene of ith chromosome in G generation
Step 3: Compute mutation operator.

 
 : Mutated intermediate chromosome

Step 4: Carry out crossover operator.

 
: Chromosome formed after crossover

Step 5: Perform selection.

 

Step 6: Repeat Step 3–Step 5 until the  is reached.
Step 7: Apply non-dominated sorting.
Step 8: Calculate crowding distance. 
Step 9: Sort surfaces in ascending order, crowding dis-

tances within the surface in descending order [16,22]. 

MULTI-CRITERIA DECISION MAKING METHODS 
FOR PARETO SOLUTION SET

Multi-Criteria Decision Making (MCDM) methods can 
be classified into three categories as sum-based, max/min 
value-based and range-based normalization techniques. In 
this study, TOPSIS and COPRAS for sum-based category; 
WASPAS, EDAS and CODAS for max/min value-based 
category; GRA and MABAC for range-based category are 
considered. These MCDM methods are applied to Pareto 
solution set to choose a compromise solution. The obtained 
Pareto solution set is considered as a decision matrix, 

, , . Each row of the decision 
matrix indicates non-dominated solution, called alternative 
and each column of the decision matrix indicates objective 
function value, called criteria. 

The criteria may not be of equal importance. The impor-
tance of the criteria is expressed by weights. In this study, 
the weight of the criteria , is calculated by 
using Entropy method which is one of the MCDM methods. 
The Entropy method is applied to response values which is 
presented as in Table 1. The weight vector of the criteria 
is represented as, , for each MCDM 
method. Entropy method is widely used for determining 
weights for MCDM problems. Mathematical theory of the 
Entropy was proposed by Shannon [45]. Subjective, objec-
tive, and integral weighting methods are the three main 
weighting methods. Objective entropy weighting method 
is applied to evaluate weights for MCDM. Advantage of 
the Entropy method is that it avoids subjective evaluations 
of decision makers in finding criterion weights, therefore 
increasing the objectivity of comprehensive evaluation 
results which are reliable and effective [21,46,47].

The algorithmic steps of the MCDM, called TOPSIS, 
COPRAS, WASPAS, EDAS, CODAS, GRA and MABAC, 
can be seen below, respectively.

Technique for Order Preference by Similarity to Ideal 
Solution (TOPSIS)

The TOPSIS method developed by Hwang and Yoon 
[48] defines a closeness coefficient to determine ranking 
order of all alternatives by calculating distances to both 
the positive ideal solution and negative ideal solution 
simultaneously. 

Algorithm of the TOPSIS method for Pareto solution 
set of multi-response problems are given as follows:

Step 1: Construct decision matrix as, , 
, .

Step 2: Obtain weight vector of the criteria as, 
, by Entropy method.
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Step 3: Determine normalized decision matrix, 
 by using

  

(5)

In Equation (5), B and C denote benefit criteria and cost 
criteria, respectively.

Step 4: Construct weighted normalized decision matrix 
values of  as follows:

  (6)

Step 5: Determine positive ideal solution  
and negative ideal solution  as follows:

  
(7)

  
(8)

Step 6: Compute distances  and  from  and  of 
each alternative by following, 

  
(9)

  
(10)

Step 7: Calculate closeness coefficients of each alterna-
tives as follows:

  
(11)

Step 8: Rank the alternatives according to descending 
order of  [49,50].

Complex Proportional Assessment (COPRAS)
The COPRAS method, developed by Zavadskas et al. 

[51], has noticeable advantages among the other methods. 
Calculation time is very short and it can be easily imple-
mented to any program source code. 

Algorithm of the COPRAS method for Pareto solution 
set of multi-response problems are given as follows:

Step 1: Construct decision matrix as, , 
, .

Step 2: Obtain weight vector of the criteria as, 
, by Entropy method.

Step 3: Determine normalized decision matrix, 
, , , by using

  
(12)

Step 4: Construct weighted normalized decision matrix 
values of  as follows:

  (13)

Step 5: Compute  and  values of each alternative 
as follows:

  
(14)

  
(15)

Step 6: Compute relative importance values  of each 
alternative by using:

  

(16)

Step 7: Calculate performance index  of each alterna-
tive by using as follows:

Step 8: Rank the alternatives according to descending 
order of  [51]. 

Weighted Aggregated Sum Product Assessment 
(WASPAS)

The WASPAS method combines weighted sum model 
(WSM) and weighted product model (WPM). Due to its 
mathematical simplicity and capability, WASPAS provides 
more accurate results as compared to WSM and WPM 
methods. 

Algorithm of the WASPAS method for Pareto solution 
set of multi-response problems are given as follows:

Step 1: Construct decision matrix as,  , 
, .

Step 2: Obtain weight vector of the criteria as, 
, by Entropy method.

Step 3: Determine normalized decision matrix, 
, , , by using
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(17)

Step 4: Calculate total relative importance of each alter-
native based on WSM method, as follows:

  
(18)

Step 5: Calculate total relative importance of each alter-
native based on WPM method, as follows:

  
(19)

Step 6: Compute joint generalized criterion of weighted 
aggregation of additive and multiplicative methods for each 
alternative by:

  (20)

Step 7: Rank the alternatives according to decreasing 
values of  [52].

Evaluation Based on Distance from Average Solution 
(EDAS)

The EDAS method introduced by Keshavarz-Ghorabaee 
et al. [53] uses average solution for appraising the alterna-
tives. Two measures which called positive distance from 
average (PDA) and negative distance from average(NDA) 
are considered for the appraisal which are calculated 
according to type of criteria, benefit or cost.

Algorithm of the EDAS method for Pareto solution set 
of multi-response problems are given as follows:

Step 1: Construct decision matrix as, , 
, .

Step 2: Obtain weight vector of the criteria as, 
, by Entropy method.

Step 3: Determine average values of the criteria, 
 by, 

  
(21)

Step 4: Compute positive distance from average (PDA) 
and negative distance from average (NDA) of each alterna-
tive with respect to each criteria as,

  

(22)

  

(23)

Step 5: Calculate  and  values of each alternative 
as follows, 

  
(24)

  
(25)

Step 6: Calculate normalized  and  values of 
each alternative as follows, respectively:

  
(26)

  
(27)

Step 7: Calculate the assessment score  of each alter-
native as follows:

  (28)

Step 8: Rank the alternatives according to decreasing 
values of  [53].

Combinative Distance-based Assessment (CODAS)
The CODAS method was introduced by Keshavarz-

Ghorabaee et al. [54] as an efficient method to solve 
MCDM problems. It is used to obtain the desirability of 
attributes by a ranking which is estimated by two measures, 
Euclidean distance and Taxicab distance, from a negative 
ideal solution.

Algorithm of the CODAS method for Pareto solution 
set of multi-response problems are given as follows:

Step 1: Construct decision matrix as, , 
, .
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Step 2: Obtain weight vector of the criteria as, 
, by Entropy method.

Step 3: Determine normalized decision matrix, 
, , , by using

  

(29)

Step 4: Construct weighted normalized decision matrix 
values of  as follows:

  (30)

Step 5: Determine negative ideal solution  
as follows:

  (31)

Step 6: Compute Euclidean distance (Ei) and Taxicab 
distance (Ti) of each alternative from the negative ideal 
solution by using,

  
(32)

  
(33)

Step 7: Define relative assessment matrix,  
as follows:

  (34)

In Equation (34),  indicates a threshold function 
according to the threshold parameter  set by decision 
maker, defined as

  
(35)

Step 8: Calculate assessment score  of each alterna-
tive as follows:

  
(36)

Step 9: Rank the alternatives according to decreasing 
values of  . The alternative with the highest 
assessment score is the most desirable alternative [54].

Grey Relational Analysis (GRA)
Grey system theory developed by Deng [55] deals with 

poor, incomplete, and uncertain information. The GRA 
method based on grey system theory is appropriate for 
solving MCDM problems with complicated interrelation-
ships between multiple factors and variables. 

Algorithm of the GRA method for Pareto solution set of 
multi-response problems are given as follows:

Step 1: Construct decision matrix as, , 
, .

Step 2: Obtain weight vector of the criteria as, 
, by Entropy method.

Step 3: Determine normalized decision matrix, 
, by using

  

(37)

Step 4: Construct absolute value matrix of  
as follows:

  (38)

In Equation (38), 

Step 5: Compute grey relational coefficient matrix as, 
 by following:

  
(39)

In Equation (39),  defines distinguishing coeffi-
cient, , and  

Step 6: Calculate grey relational degree  of each alter-
native by using:

  
(40)

Step 7: Rank the alternatives according to descending 
order of  [42,55,56].

Multi-Attributive Border Approximation Area 
Comparison(MABAC)

The MABAC method, developed by Pamucar and 
Ćirović [57], is based on distance of the criterion function 
of each alternative from the border approximation area. 

Algorithm of the MABAC method for Pareto solution 
set of multi-response problems are given as follows:

Step 1: Construct decision matrix as, , 
, .
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Step 2: Obtain weight vector of the criteria as, 
, by Entropy method.

Step 3: Determine normalized decision matrix, 
, by using

  

(41)

Step 4: Construct weighted normalized decision matrix 
values of  as follows:

  (42)

Step 5: Compute Border Approximation Area for each 
criterion as,  by:

  
(43)

Step 6: Calculate distance of the alternative from border 
approximation area for matrix elements (Q) as follows: 

  (44)

Step 7: Determine belonging of each alternative  to 
approximation area ( ,  or ) as follows:

  

(45)

In Equation (45),  indicates border approximation 
area,  indicates upper approximation area which contains 
the ideal alternative ( ) while  indicates lower approxi-
mation area which contains the anti-ideal alternative( ).

Step 8: Compute final values of the criterion function  
for each alternative which is based on the sum of the distance 
of the alternatives from the border approximation areas as:

  
(46)

Step 9: Rank the alternatives according to decreasing 
values of . The alternative with the highest 
assessment score is the most desirable alternative [57].

NUMERICAL EXAMPLES

Three real data sets related to multiple-response exper-
iments are given to illustrate for the performance compar-
ison of the NSGA-II and MODE. These are (i) engineering 
data set, (ii) chemistry data set, and (iii) food data set. 

Modeling stage was achieved by using the SUR method 
since responses are correlated for each data set. Pareto solu-
tion sets are obtained by using the NSGA-II and MODE 
in the optimization stage. In decision making stage, com-
promise solutions are determined via seven MCDM meth-
ods. The MAE and RMSE metrics are calculated to evaluate 
these compromise solutions as follows:

  (47)

  
(48)

R 3.6.1 and MATLAB R2021b were used in all steps and 
computations.

Example 1 (Engineering data set)
Engineering data set which consist of three input and 

two response variables is shown in Table 2 [5]. The input 
variables are number of wings (X1), wing height (X2) and 
wing thickness (X3). The response variables are friction 
coefficient multiplied by the Nusselt number (Y1) and the 
Reynolds number (Y2), wanted to be maximized and mini-
mized, respectively. The experimental data set is composed 
with Box-Behnken design. It should be noted that input 
variables are given by coded values in Table 2. The coded 
levels of the input variables and corresponding real values 
are presented in [5]. 

Table 2. Engineering data set

Input variables Response variables

No X1 X2 X3 Y1 Y2

1 -1 -1 0 7 15
2 +1 -1 0 4 11
3 -1 +1 0 18 26
4 +1 +1 0 11 18.5
5 -1 0 -1 12.6 19
6 +1 0 -1 8 14.8
7 -1 0 +1 12.6 19.7
8 +1 0 +1 8.5 15
9 0 -1 -1 6.5 13.7
10 0 1 -1 15.8 22.7
11 0 -1 1 8.45 15.7
12 0 1 1 16.6 23.8
13 0 0 0 12.2 19
14 0 0 0 12.4 18.4
15 0 0 0 12.8 18.9
16 0 0 0 12.3 18.1
17 0 0 0 12.5 18.6
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The normality assumption for the responses was 
checked. It was seen that the responses were normally 
distributed (p-value of Y1= 0.52 >0.05, p-value of Y2= 
0.57>0.05). Pearson correlation coefficient between the 
responses is calculated as 0.98 which is statistically sig-
nificant. Due to relationship between the responses, pre-
dicted response models were obtained by SUR method. In 
order to obtain predicted response model with the SUR, 
variance-covariance matrix estimation is calculated from 
residuals of OLS response estimations. Predicted response 
models are written as 

  (49)

  
(50)

According to ANOVA results belonging to  (p-value 
= 0.0001<0.05) and  (p-value = 0.0001<0.05), models 
obtained by the SUR method were found to be statistically 
significant. Predicted response models are considered as 
objective functions,  f1 and f2. Ideal solution vector is calcu-
lated as  by optimizing objec-
tive functions f1 and f2, individually. The MOO problem 
can be given as follows:

  

(51)

The MOO is achieved through the NSGA-II and 
the MODE. The tuning parameters of the NSGA-II are 

 and the tuning parameters of the 
MODE are . Pareto 
solutions are obtained by the NSGA-II and the MODE as 
shown in Figure 3. Size of Pareto solution set is 53 which is 
number of Rank-1 non-dominated solutions. 

Entropy method was applied to obtain weights of 
the response variables Y1 and Y2 through experimental 
response values given in Table 2. The weight vector is calcu-
lated as . Each MCDM method 
was applied to Pareto solutions to determine compromise 
solutions. The closeness of the compromise solution to the 

Table 3. Compromise solutions of NSGA-II and MODE with metrics for engineering data set

MCDM X f Metrics

x1 x2 x3 f1 f2 MAE RMSE

NSGA-II

TOPSIS 0.982 0.941 0.652 17.781 20.443 5.8106 5.6006
COPRAS 0.962 0.991 0.881 18.105 20.955 5.9047 5.8527
WASPAS 0.962 0.991 0.881 18.105 20.955 5.9047 5.8527
EDAS 0.962 0.991 0.881 18.105 20.955 5.9047 5.8527
CODAS 0.824 1 0.970 18.194 21.632 6.1985 6.1910
GREY 0.824 1 0.970 18.194 21.632 6.1985 6.1910
MABAC 0.962 0.991 0.881 18.105 20.955 5.9047 5.8527

MODE

TOPSIS 1 0.931 0.015 17.469 19.982 5.7361 5.3788 
COPRAS 1 1 -0.378 17.616 20.211 5.7772 5.4885 
WASPAS 1 1 -0.378 17.616 20.211 5.7772 5.4885 
EDAS 1 1 -0.378 17.616 20.211 5.7772 5.4885 
CODAS 1 1 -0.378 17.616 20.211 5.7772 5.4885 
GREY 1 1 -0.378 17.616 20.211 5.7772 5.4885 
MABAC 1 1 -0.378 17.616 20.211 5.7772 5.4885 

6 8 10 12 14 16 18 20
8

10

12

14

16

18

20

22
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Figure 3. Pareto solutions obtained with the NSGA-II and 
the MODE for engineering data set.
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ideal solution is calculated by the MAE and RMSE metrics 
as given in Table 3. It was seen that compromise solution 
with the smallest MAE and RMSE values belongs to MODE. 
This compromise solution was chosen by TOPSIS method. 
These results show that the MODE can find a better com-
promise solution closer to ideal solution than NSGA-II.

Example 2 (Chemistry data set)
Chemistry data set which consist of three input and 

two response variables is shown in Table 4 [12]. The input 
variables are temperature (X1), pressure (X2) and co-sol-
vent (X3). The response variables are extraction efficiency 
of carotenoids (Y1) and the extraction efficiency of chloro-
phylls (Y2) which are wanted to be maximized. The experi-
mental data set is composed with the Box-Behnken design. 
Coded values and real values for chemistry data set are 
shown in [13]. 

The normality assumption for the responses was 
checked. It was seen that the responses were normally dis-
tributed (p-value of Y1= 0.55 > 0.05, p-value of Y2= 0.67> 
0.05). Pearson correlation coefficient between the response 
variables is determined as 0.56 and it is found to be statisti-
cally significant. Due to relationship between the responses, 
predicted response models were used by SUR method. In 
order to achieve predicted response model with the SUR, 
variance-covariance matrix estimation is calculated from 
the residuals of the OLS response estimations. 

The predicted response models can be written as

  
(52)

  
(53)

According to ANOVA results belonging to  (p-value 
= 0.009 < 0.05) and  (p-value = 0.002 < 0.05), models 
obtained by the SUR method were found to be statistically 
significant.  Ideal solution vector is calculated as 

. MOO problem is presented 
in Equation (54) as follows:

  
(54)

The MOO is achieved through the NSGA-II and 
the MODE. The tuning parameters of the NSGA-II are 

 and the tuning parameters of the 
MODE are . Pareto 
solutions obtained with the NSGA-II and MODE for chem-
istry data set are illustrated in Figure 4. 

Entropy method was applied to obtain weights of 
the response variables Y1 and Y2 through experimental 
response values given in Table 4. The weight vector is calcu-
lated as . Each MCDM method 
was applied to Pareto solutions to determine compromise 
solutions. The closeness of the compromise solution to the 
ideal solution is calculated by the MAE and RMSE metrics 
as given in Table 5. It was seen that compromise solution 
with the smallest MAE and RMSE values belongs to the 
MODE. This compromise solution was chosen by COPRAS 
method. These results show that the MODE can find a bet-
ter compromise solution closer to ideal solution than the 
NSGA-II.
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Figure 4. Pareto solutions obtained with the NSGA-II and 
MODE for chemistry data set.

Table 4. Chemistry data set

Input variables Response variables

No X1 X2 X3 Y1 Y2

1 +1 +1 0 0.206 2.122
2 0 -1 +1 0.107 1.888
3 -1 0 -1 0.138 1.519
4 0 -1 -1 0.159 1.750
5 -1 +1 0 0.123 1.468
6 0 +1 +1 0.196 2.473
7 +1 -1 0 0.185 1.612
8 +1 0 -1 0.167 1.956
9 0 0 0 0.244 2.113
10 0 0 0 0.238 1.987
11 -1 -1 0 0.058 1.348
12 -1 0 +1 0.014 1.485
13 +1 0 +1 0.098 2.286
14 0 +1 -1 0.251 1.992
15 0 0 0 0.226 2.031
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Example 3 (Food data set)
Food data set which consist of three input variables 

and two response variables for 17 observations is shown 
in Table 6 [58]. The input variables are temperature (X1), 
washing time (X2) and washing rate (X3). The response 
variables are thiobarbituric acid number (Y1) and percent 
cooking loss (Y2) which are wanted to be maximized. The 

experimental data set is composed with Central Composite 
Design (CCD). Real values and coded values of input vari-
ables are shown in [58].

The normality assumption for the responses was 
checked. It was seen that one of the responses was normally 
distributed (p-value of Y1= 0.01 < 0.05, p-value of Y2= 
0.41> 0.05). However, it was assumed that the Y1 has nor-
mally distributed. Then, Pearson correlation between the 
response variables is determined as 0.68 and it is found to 
be statistically significant. The predicted response models 
obtained by the SUR method can be written as

  
(55)

  
(56)

According to ANOVA results for  (p-value = 0.001< 
0.05) and  (p-value = 0.001< 0.05), models obtained by the 
SUR method were found to be statistically significant. Ideal 
solution vector is calculated as . 
MOO problem is presented in Equation (57) as follows:

  
(57)

The MOO is achieved through the NSGA-II and 
the MODE. The tuning parameters of the NSGA-II are 

 and the tuning parameters of the 
MODE are . Pareto 

Table 6. Food data set

Input variables Response variables

No X1 X2 X3 Y1 Y2

1 -1 -1 -1 29.31 29.50
2 +1 -1 -1 39.32 19.40
3 -1 +1 -1 25.16 25.70
4 +1 +1 -1 40.81 27.10
5 -1 -1 +1 29.82 21.40
6 +1 -1 +1 32.20 24.00
7 -1 +1 +1 22.01 19.60
8 +1 +1 +1 40.02 25.10
9 -1.682 0 0 33.00 24.20
10 +1.682 0 0 51.59 30.60
11 0 -1.682 0 20.35 20.90
12 0 +1.682 0 20.53 18.90
13 0 0 -1.682 23.85 23.00
14 0 0 +1.682 20.16 21.20
15 0 0 0 21.72 18.50
16 0 0 0 21.21 18.60
17 0 0 0 21.55 16.80

Table 5. Compromise solutions of NSGA-II and MODE with metrics for chemistry data set

MCDM X f Metrics

x1 x2 x3 f1 f2 MAE RMSE

NSGA-II

TOPSIS 0.998 0.999 -0.173 0.398 2.332 0.2193 0.2190 
COPRAS 0.999 0.999 -0.399 0.400 2.276 0.2476 0.2470 
WASPAS 0.999 0.999 -0.348 0.400 2.288 0.2416 0.2410 
EDAS 0.999 0.999 -0.348 0.400 2.288 0.2416 0.2410 
CODAS 0.999 0.999 -0.348 0.400 2.288 0.2416 0.2410 
GREY 0.999 0.999 -0.348 0.400 2.288 0.2416 0.2410 
MABAC 0.999 0.999 -0.348 0.400 2.288 0.2416 0.2410 

MODE

TOPSIS 1 1 -0.274 0.4000 2.306 0.2326 0.2320
COPRAS 0.897 1 1 0.2870 2.762 0.0598 0.0560
WASPAS 1 1 -0.415 0.4010 2.273 0.2496 0.2485
EDAS 1 1 -0.415 0.4010 2.273 0.2496 0.2485
CODAS 1 1 -0.415 0.4010 2.273 0.2496 0.2485
GREY 1 1 -0.415 0.4010 2.273 0.2496 0.2485
MABAC 1 1 -0.274 0.4010 2.306 0.2331 0.2320
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solutions obtained with the NSGA-II and the MODE for 
chemistry data set are illustrated in Figure 5. 

Entropy method was applied to obtain weights of 
the response variables Y1 and Y2 through experimental 
response values given in Table 4. The weight vector is calcu-
lated as . Each MCDM method 
was applied to Pareto solutions to determine compromise 
solutions. The closeness of the compromise solution to the 
ideal solution is calculated by MAE and RMSE metrics as 
given in Table 7. It was seen that compromise solution with 
the smallest MAE and RMSE values belongs to MODE. This 
compromise solution was chosen by EDAS method. These 

results show that the MODE can find a better compromise 
solution closer to ideal solution than the NSGA-II.

CONCLUSION

In this study, analysis of multi-response experimental 
data was achieved in three basic stages, modeling, optimi-
zation and decision making. The SUR method was used for 
modeling of the responses since the responses were linearly 
correlated. The predicted response models were considered 
as objective functions. Ideal solution vector is provided by 
optimizing objective functions individually. Multi-response 
problem was handled as a MOO problem considering the 
objective functions simultaneously. The NSGA-II and the 
MODE, two commonly used MOM methods, were applied 
to obtain Pareto solution sets which were the solution of the 
MOO problem. 

In multi response studies each response may have dif-
ferent importance. Thus, in this study, Entropy method 
was applied to obtain weights of the response variables 
objectively over experimental results for each dataset. Each 
MCDM method, considering weights, was applied to the 
Pareto solutions to determine a compromise solution. The 
main aim of this study is to compare the performance of the 
NSGA-II and MODE. For this purpose, firstly, the MCDM 
methods applied to the Pareto sets to define a compromise 
solution. Secondly, closeness of the compromise solution 
and the ideal solution vectors were calculated with respect 
to MAE and RMSE metrics. Three data sets related to engi-
neering, chemistry and food fields were considered for 

Table 7. Compromise solutions for NSGA-II and MODE with metrics for food data set

MCDM X f Metrics

x1 x2 x3 f1 f2 MAE RMSE

NSGA-II

TOPSIS -0.653 1.681 1.599 16.162 17.562 0.5970 0.5439
COPRAS -0.647 1.682 1.681 16.072 17.765 0.6535 0.6426
WASPAS -0.647 1.682 1.681 16.072 17.765 0.6535 0.6426
EDAS -0.624 1.682 1.680 16.054 17.843 0.6835 0.6815
CODAS -0.617 1.682 1.681 16.052 17.864 0.6930 0.6920
GREY -0.617 1.682 1.681 16.052 17.864 0.6930 0.6920
MABAC -0.647 1.682 1.681 16.072 17.765 0.6535 0.6426

MODE

TOPSIS -0.616 1.682 1.622 16.1240 17.6960 0.6450 0.6091
COPRAS -0.628 1.682 1.682 16.0510 17.8410 0.6810 0.6805
WASPAS -0.628 1.682 1.682 16.0510 17.8410 0.6810 0.6805
EDAS -0.667 1.682 1.381 16.4370 17.0480 0.4775 0.3437
CODAS -0.628 1.682 1.682 16.0510 17.8410 0.6810 0.6805
GREY -0.628 1.682 1.682 16.0510 17.8410 0.6810 0.6805
MABAC -0.628 1.682 1.682 16.0510 17.8410 0.6810 0.6805
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Figure 5. Pareto solutions obtained with the NSGA-II and 
MODE for food data set.
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application. Calculation results show that the compromise 
solution of the MODE is closer to the ideal solution than 
the compromise solution of the NSGA-II. The MODE has 
the smallest MAE and RMSE values according to the at least 
one of the MCDM methods, for instance TOPSIS for engi-
neering data set, COPRAS for chemistry data set, EDAS for 
food data set. Accordingly, the MODE performs better than 
NSGA-II to find Pareto solution set that contains a compro-
mise solution closer to the ideal solution.
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