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ABSTRACT

The complementarity problems is getting a lot of attention because it is connected to re-
al-world problems in scientific computing and engineering. It shows up in various situations 
like linear and quadratic programming, two person games, circuit simulation, optimal stop-
ping in Markov chains, contact problems with friction, finding a Nash-equilibrium in bima-
trix games. The linear complementarity problems (LCP) and absolute value equations (AVE) 
have an equivalence relation; that is, the AVE can be transformed into an LCP and vice versa. 
The relationship between LCP and AVE enables the conversion of one problem into another, 
offering different perspectives for analysis and solution. This equivalence aids in theoretical 
understanding and the development of numerical methods applicable to both mathematical 
formulations. In the present study, we discuss the unique solvability of the LCP and the hori-
zontal linear complementarity problems (HLCP). Some superior unique solvability conditions 
are obtained for LCP and HLCP. The unique solvability of the n-absolute value equations 
𝐴𝑛𝑥 − 𝐵𝑛|𝑥 | = 𝑏 is also discussed. Some examples are highlighted for improving the current 
conditions of unique solutions for absolute value equations.
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INTRODUCTION

A linear complementarity problems (LCP) is presented 
in the following form:

𝑧 ≥ 0, 𝑤 ≥ 	0, 𝑤 	= 𝑞 + 𝑀𝑧 , 	𝑤 𝑇𝑧 = 0, (1)

where 𝑧 , 𝑤 , 𝑞 	∈ ℝ𝑚 and 𝑀 ∈ ℝ𝑚×𝑚 where q and M are 
known. Generally, this problem is denoted as LCP(q, M).

This problem has numerous applications, such as, lin-
ear programming, quadratic programming, economies 
with institutional limitations on prices, circuit simulation, 
and game theory problems [1-3, 4]. Over the years, various 
numerical methods have been developed and suggested [5, 
6]. For an extensive and comprehensive discussion of the 
complementarity theory, please refer to references [1, 4].
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For given 𝑀1, 	𝑀2	∈ 	ℝ𝑚×𝑚 and 𝑞 ∈ ℝ𝑚, the horizontal lin-
ear complementarity problems (HLCP) consists of finding 
a pair of vectors (𝑧 , 𝑤 ) ∈ 	ℝ𝑚	x	ℝ𝑚 such that

 𝑀1𝑤 − 𝑀2𝑧 = 𝑞 , 𝑧 	≥ 0, 	𝑤 ≥ 0, 𝑤 𝑇𝑧 = 0. (2)

Generally, It is denoted by 𝐻𝐿𝐶𝑃(𝑀1, 	 𝑀2, 	 𝑞 ) . The 
HLCP is widely acknowledged as the extension of the LCP. 
Moreover, by taking 𝑀1	= 	 𝐼 (Identity matrix), the HLCP 
converts into the LCP. One may refer [7] for an algorithm 
to reduce HLCP into LCP. The HLCP has applications in 
multiple fields, including hydrodynamic lubrication, struc-
tural mechanics, mechanical and electrical engineering, 
and transportation science (see [8, 9]).

The issue of unique solvability in both HLCP and 
LCP is addressed in several references, including [10-13]. 
Regarding the unique solution of the LCP(q, M), we have 
the following results (if any one of them is satisfied, then 
LCP(q, M) has a unique solution):
(i) σmin(𝐼 − 𝑀) − 1(𝐼 + 𝑀) >	1	[11];
(ii) ||(𝐼 + 𝑀) − 1(𝐼 − 𝑀) || <	1	[11, 14];
(iii) σmax(𝐼 − 𝑀) <	σmin(𝐼 + 𝑀) [14];
(iv) 𝜌((𝐼 + 	𝑀) − 1(𝐼 − 𝑀) ) <	1	[11];
(v) the LCP(q, M) has a unique solution if and only if 

matrix M is a P- matrix (A square matrix A is called a 
P-matrix if all its principal minors are positive) [1, 12]. 

The following conditions are discussed for the unique 
solvability of the 𝐻𝐿𝐶𝑃(𝑀1, 	𝑀2, 	𝑞 )  (if any one of them is 
satisfied, then 𝐻𝐿𝐶𝑃(𝑀1, 	𝑀2, 	𝑞 )  has a unique solution):
(i) σmax(𝑀1	− 	𝑀2) 	<	σmin(𝑀1	+ 	𝑀2) 	[14];
(ii) ||(𝑀1	+ 	𝑀2) − 1(𝑀1	− 	𝑀2) ||	<	1	[14];
(iii) (𝑀1	+ 	𝑀2) 𝑇(𝑀1	+ 	𝑀2) 	− 	||(𝑀1	+ 	𝑀2) ||2𝐼 is positive 

definite matrix [14].
Furthermore, various numerical methods for HLCP are 

explored, as exemplified by Mezzadri et al. [9, 15-16], who 
present techniques such as splitting methods [15], modu-
lus-based matrix splitting methods [9], and modulus-based 
nonsmooth Newton’s method [16]. The one-layer neural 
network approach [17], homotopy approach [18], and inte-
rior point method [19] have been studied as well for the 
solution of the HLCP.

In this article, we further discussed the unique solvabil-
ity of the LCP(q, M) and 𝐻𝐿𝐶𝑃(𝑀1, 	𝑀2, 	𝑞 ) . Some of our 
conditions are superior to the conditions mentioned above.

An absolute value equation is a mathematical equation 
that contains one or more unknown variables enclosed 
within an absolute value. Further, in various research works, 
the following type of absolute value equations (AVE) has 
gained significant attention from numerous researchers due 
to its extensive applications in various fields of optimization.

	 𝐴𝑥 − 	𝐵|𝑥 | = 𝑏,  (3)

where 𝐴, 𝐵 ∈ 	ℝ𝑚×𝑚 and 𝑏, 𝑥 ∈ 	ℝ𝑚. For a matrix 𝐴 ∈ ℝ𝑚×𝑚 
and a vector 𝑥 ∈ ℝ𝑚, 	|𝐴| and |𝑥 | denote the component-wise 
absolute value of the matrix and the vector, respectively. 
When 𝐵 = 𝐼 in (3), Equ. (3) reduces to the following AVE

	 𝐴𝑥 − 	|𝑥 | = 𝑏. (4)

The AVE (4) is discussed in detail [20-21]. Further, 
when 𝐴 = 𝐼 in (3), Equ. (3) reduces to the following AVE

	 𝑥 − 𝐵|𝑥 | = 𝑏,  (5)

which has been discussed in [22-24].
Rohn [25] first considered the AVE (3) and provided 

the alternative theorem for the unique solvability of the 
AVE (3). Mangasarian, as demonstrated in his work [21], 
that the task of solving the AVE is a problem within the 
class of NP-hard problems. Mangasarian et al. [20] showed 
that AVE (4) is equivalent to a bilinear programming. 
Mangasarian [26] transformed the LCP (1) into an AVE 
represented as (𝑀 + 𝐼) 𝑧 + 𝑞 = |(𝑀	− 𝐼) 𝑧 + 𝑞 |. A more 
equivalent relation between AVE and LCP/HLCP can be 
shown in [10, 11, 20, 27]. Kumar et al. [28], as discussed 
in their paper, explored various extensions of the AVE and 
provided characterization for its unique solvability. Several 
bounds for the solutions of the AVE under various assump-
tions were presented by Hladík [29]. In the study by Hladík 
[30], an investigation was carried out into the topologi-
cal attributes of the solution set of the AVE. This analysis 
included aspects such as convexity, boundedness, connect-
edness, the presence of a finite number of solutions, and the 
non-negativity of solutions of the AVE.

Over the past few years, research on the AVE has pre-
dominantly revolved around two key areas: the devel-
opment of numerical techniques (for example, Picard’s 
method [14], interior point method [10], two-step iterative 
method [31], generalized Newton method [32], iterative 
methods [33-34]) for solving the AVE and theoretical anal-
ysis (see, e.g., [20-22, 28, 35-40]).

The AVE is significant because it can be applied to var-
ious domains of mathematics and applied sciences (see, 
e.g., [10-11, 14, 41-46]). For instance, the LCP, bimatrix 
games, mixed-integer programming, system of linear inter-
val matrix, the boundary value problems, convex quadratic 
optimization, absolute value matrix equations and the 
hydrodynamic equation can be formulated as AVE.

Mangasarian et al. [20], discussed the following singular 
value condition

	 1	<	σmin(𝐴) ,  (6)

for the unique solvability of the AVE (4). Further, Rohn 
[38] extended the condition (6) for the AVE (3) and pro-
vided the following condition for the unique solvability of 
the AVE (3)

	 σmax(|𝐵|) < σmin(𝐴) . (7)

In 2019, Wu et al. [47] replaced condition (7) with the 
following superior condition

	 σmax(𝐵) < σmin(𝐴) ,  (8)



Sigma J Eng Nat Sci, Vol. 43, No. 1, pp. 160−167, February, 2025162

which also ensure the unique solvability of the AVE (3). 
Further, Wu et al. [48], provided the following singular 
value condition to check the unique solution of the AVE (3)

	 σmax(𝐴− 1𝐵) < 1. (9)

In the literature, different types of generalizations of the 
AVE are considered by researchers. For instance, the new 
generalized absolute value equation (NGAVE) 𝐴𝑥 − 	|𝐵𝑥 |
= 	𝑏 is considered by Wu [49] and provides necessary and 
sufficient conditions for the unique solvability of NGAVE. 
Zhou et al. [50] first analyzed the new class of AVE 𝐴𝑥 − 	
𝐵|𝐶𝑥 | = 𝑏 and provided unique solvability conditions. 
Inspired by different generalizations of the AVE, we further 
considered the following generalization of the AVE

	 𝐴𝑛𝑥 − 𝐵𝑛|𝑥 | = 𝑏,  (10)

where 𝐴, 𝐵 ∈ 	ℝ𝑚×𝑚 and 𝑏, 𝑥 ∈ 	ℝ𝑚 and 𝑛 ∈ 𝑁 (set of natu-
ral numbers), which we call an n-absolute value equations 
(n-AVE). Clearly, for n=1, the AVE (10) converts into the 
AVE (3) and for 𝐵= 𝐼 (or 𝐴= 𝐼), the AVE (10) converts into 
the AVE (4) (or AVE (5). We are interested in how singular 
value conditions can be used to determine the unique solv-
ability of the AVE (10).

The further main reason to consider the AVE (10) is 
that Kumar et al. [28] show that under different transfor-
mations, the AVE (4) preserves the unique solvability, but 
other transformations, such as squaring the matrix may 
result in a loss of unique solvability [28, Corollary 2 and 
Example 1]. The AVE (3) not preserve the unique solvabil-
ity under the matrix transposition, that is 𝐴𝑥 − 	𝐵|𝑥 | = 𝑏	
can be uniquely solvable for each 𝑏 ∈ ℝ𝑚, but 𝐴𝑇𝑥 − 𝐵𝑇|𝑥 |
= 	𝑏 need not [28, Example 2]. So here we provide some 
conditions for the unique solvability of the AVE (3) under 

the multiplying same matrix n times; that is, we focus on 
the unique solvability of the AVE (10).

The key contributions of this paper are outlined as 
follows:
1. Analysed the new type of AVE, and unique solvability 

conditions are discussed. 
2. New unique solvability conditions are suggested for the 

HLCP and LCP.
A summary of the findings presented in this paper is 

outlined in Table 1.

Notations
For a matrix 𝐴 ∈ ℝ𝑚×𝑚, we use 𝜌(𝐴) , σmax(𝐴) and 

σmin(𝐴) to denote the spectral radius, maximum singular 
value and minimum singular value of the matrix 𝐴, respec-
tively. The identity matrix of size 𝑚 × 𝑚 is denoted by 𝐼. 
𝐷𝑖𝑎𝑔(𝑎𝑖) , 𝐷𝑖𝑎𝑔𝑚𝑖𝑛(𝑎𝑖) , and 𝐷𝑖𝑎𝑔𝑚𝑎𝑥 (𝑎𝑖) 	denotes respec-
tively diagonal elements, minimum diagonal elements and 
maximum diagonal elements of matrix 𝐴. For matrix 𝐴, 𝐴𝑇 
denotes the transpose of 𝐴 and det(𝐴) shows the determi-
nant of the matrix 𝐴.

The rest of the paper is organized as: some definitions 
and results are recalled for further uses in Section (2). The 
Section (3) contains three subsections, where we discussed 
the unique solvability conditions for the n-AVE, LCP and 
HLCP. In Section (4), we conclude our discussion with an 
open problem.

PRELIMINARIES

Here, we revisit and recall some definitions and results.
Definition 2.1. [13] Let ℳ	= {𝑀1, 	𝑀2} denote the set of 

matrices with 𝑀1, 	𝑀2	∈ 	ℝ𝑚×𝑚. A matrix 𝑅 ∈ ℝ𝑚×𝑚 is called 
a column representative of ℳ, if 𝑅 .𝑗	∈ 	{(𝑀1) .𝑗, 	(𝑀2) .𝑗}, j=1, 
2,..., n, where 𝑅 .𝑗, (𝑀1) .𝑗, and (𝑀2) .𝑗 denote the 𝑗𝑡ℎcolumn of 
R, 𝑀1 and 𝑀2, respectively.

Table 1. Summary of the results presented in the paper

Class Statement Description
n-AVE Lemma 3.1

Theorem 3.3
Theorem 3.6
Corollary 3.12
Theorem 3.13

Equivalent relation between n-AVE and HLCP/LCP
Unique solvability conditions for n-AVE
Unique solvability conditions for n-AVE
Equivalent relation between n-AVE (10) and AVE (3)
Unique solvability conditions for n-AVE

LCP Proposition 3.14
Theorem 3.15
Theorem 3.16
Theorem 3.17
Theorem 3.19

Equivalent relation between LCP and AVE
Unique solvability conditions for LCP
Unique solvability conditions for LCP
Unique solvability conditions for LCP
Unique solvability conditions for LCP

HLCP Proposition 3.21
Theorem 3.22
Theorem 3.24
Theorem 3.25
Theorem 3.26
Theorem 3.27

Equivalent relation between HLCP and AVE
Unique solvability conditions for HLCP
Unique solvability conditions for HLCP
Unique solvability conditions for HLCP
Unique solvability conditions for HLCP
Unique solvability conditions for HLCP
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Definition 2.2. [13] The set ℳ holds the column 
W-property if the determinants of all column representa-
tive matrices of ℳ are positive.

Theorem 2.1. [13] For ℳ	= {𝑀1, 	𝑀2} be a set of matri-
ces in ℝ𝑚×𝑚, then the following statements are equivalent:-
(i) The HLCP (2) has a unique solution;
(ii) ℳ has the column W-property;
(iii) 𝑀1 is invertible and ℳ− 	= 	{𝐼, 𝑀1

− 1𝑀2} has the column 
W-property;

(iv) det	(𝑀1𝐷1	+ 	𝑀2𝐷2	) 	≠	0	for arbitrary nonnegative diag-
onal matrices 𝐷1, 	𝐷2	∈ 	ℝ𝑚×𝑚 with Diag (𝐷1	+ 	𝐷2) 	>	0.

Lemma 2.2. [48] If σmin(𝐴 + 𝐼) >	2, then AVE (4) has a 
unique solution for each 𝑏 ∈ ℝ𝑚.

Lemma 2.3. [48] If σmin(𝐵− 1𝐴) > 1 or σmax(𝐴− 1𝐵) < 1, 
then AVE (3) has a unique solution for each 𝑏 ∈ ℝ𝑚.

Lemma 2.4. [34] If det	(𝐴) ≠ 0 and min{σmax(𝐴− 1) , 
𝜌(𝐴− 1) }	<	1	then AVE (4) has a unique solution for each 
𝑏 ∈ ℝ𝑚.

Lemma 2.5. [48] If det	(𝐴) ≠ 0 and 𝜌(𝐴− 1𝐵𝐷− ) 	<	1	or 
𝜌(𝐵𝐷− 𝐴− 1) 	<	1	 for any diagonal matrix 𝐷− 	∈ 	[− 𝐼, 𝐼], then 
AVE (3) has a unique solution for each 𝑏 ∈ ℝ𝑚.

Lemma 2.6. [48] The AVE (3) has a exactly one solution 
for each 𝑏 ∈ ℝ𝑚 if and only if 𝐴− 𝐵𝐷−  is nonsingular, for any 
diagonal matrix 𝐷− 	∈ 	[− 𝐼, 𝐼].

RESULTS AND DISCUSSION

In this section, based on the relation among the AVEs, 
HLCP and LCP, we obtain necessary and sufficient condi-
tions for unique solution of Equ.(10), Equ.(1) and Equ.(2), 
respectively.

Unique Solvability of the n-AVE
In the following Lemma, n-AVE (10) equivalently can 

be written into HLCP and LCP forms.
Lemma 3.1. The n-AVE (10) is can be written as the 

following HLCP form

	 𝑃𝑥 + 	− 	𝑄𝑥 − 	= 	𝑏, 𝑥 + 	≥ 	0, 	𝑥 − 	≥ 	0, 	(	𝑥 + ) 𝑇(	𝑥 − ) 	= 	0, 	 (11) 

where 𝑃 = 𝐴𝑛	− 	𝐵𝑛, 	𝑄 = 𝐴𝑛	+ 	𝐵𝑛.
If the matrix 𝐴𝑛	− 	𝐵𝑛 is invertible, then n-AVE (10) can 

be written into the following LCP

	 𝑥 + 	= 	(𝐴𝑛	− 	𝐵𝑛) − 1(𝐴𝑛	+ 	𝐵𝑛) 	𝑥 − 	+ 	(𝐴𝑛	− 	𝐵𝑛) − 1𝑏, (12)

where 𝑥 + 	= 	(|𝑥 | + 𝑥 ) /2 and 𝑥 − 	= 	(|𝑥 | − 𝑥 ) /2.
Proof. Let 𝑥 + 	= 	(|𝑥 | + 𝑥 ) /2 and 𝑥 − 	= 	(|𝑥 | − 𝑥 ) /2. Then

	 𝑥 = 𝑥 + 	− 	𝑥 −  and |𝑥 | = 𝑥 + 	+ 	𝑥 − . (13)

Now with the help of Equ. (13), n-AVE (10) can be writ-
ten as

	 (𝐴𝑛	− 	𝐵𝑛) 𝑥 + 	− 	(𝐴𝑛	+ 	𝐵𝑛) 𝑥 − 	= 	𝑏, 𝑥 + 	≥ 	0, 
	 𝑥 − 	≥ 	0, 	(	𝑥 + ) 𝑇(	𝑥 − ) 	= 	0,  (14)

which is a required HLCP (11).
If the matrix (𝐴𝑛	− 	𝐵𝑛) is invertible, then Equ. (14) can 

be written as

	 𝑥 + 	= 	(𝐴𝑛	− 	𝐵𝑛) − 1(𝐴𝑛	+ 	𝐵𝑛) 	𝑥 − 	+ 	(𝐴𝑛	− 	𝐵𝑛) − 1𝑏, (15)

which is a required LCP (12).
The following result is needed for Theorem 3.3.
Lemma 3.2. If matrices 𝐴 and 𝐵 of real entries satisfy 

the condition σmax(𝐵𝑛) 	<	σmin(𝐴𝑛) 	then matrix (𝐴𝑛	− 	𝐵𝑛) 	
is invertible.

Proof. Given 𝜆𝑚𝑎𝑥 ((𝐵𝑛) 𝑇𝐵𝑛) 	<	𝜆𝑚𝑖𝑛((𝐴𝑛) 𝑇𝐴𝑛) .
This implies 𝑥 𝑇(𝐵𝑛) 𝑇(𝐵𝑛) 𝑥 < 𝑥 𝑇(𝐴𝑛) 𝑇(𝐴𝑛) 𝑥 for 

all non-zero 𝑥 ∈ ℝ𝑚. Let us assume that, (𝐴𝑛	− 	𝐵𝑛) 	 is 
singular.

Then, there exists a non-zero vector x such that (𝐴𝑛	− 	𝐵𝑛) 
𝑥 = 0.

Now 𝑥 𝑇(𝐴𝑛	+ 	𝐵𝑛) 𝑇(𝐴𝑛	− 	𝐵𝑛) 𝑥 = 𝑥 𝑇(𝐴𝑛	+ 	𝐵𝑛) 𝑇0.
This implies 𝑥 𝑇[(𝐴𝑛) 𝑇(𝐴𝑛) 	− 	(𝐴𝑛) 𝑇(𝐵𝑛) 	+ 	(𝐵𝑛) 𝑇	(𝐴𝑛) 	

− 	(𝐵𝑛) 𝑇(𝐵𝑛) ]𝑥 = 0.
This implies 𝑥 𝑇(𝐴𝑛) 𝑇(𝐴𝑛) 𝑥 − 𝑥 𝑇(𝐴𝑛) 𝑇(𝐴𝑛) 𝑥 + 𝑥 𝑇(𝐵𝑛) 𝑇(𝐴𝑛) 

𝑥 − 𝑥 𝑇(𝐵𝑛) 𝑇(𝐵𝑛) 𝑥 = 0.
This implies 𝑥 𝑇(𝐴𝑛) 𝑇(𝐴𝑛) 𝑥 =  𝑥 𝑇(𝐵𝑛) 𝑇(𝐵𝑛) 𝑥 .
Which is a contradiction. So (𝐴𝑛	− 	𝐵𝑛) 	is nonsingular.
Theorem 3.3. If matrices 𝐴 and 𝐵 of real entries satisfy 

the condition σmax(𝐵𝑛) 	<	σmin(𝐴𝑛) . Then n-AVE (10) has a 
unique solution for any 𝑏 ∈ ℝ𝑚.

Proof. From Lemma 3.1, the n-AVE (10) can be written 
as the following LCP form:

𝑥 + 	= 	(𝐴𝑛	− 	𝐵𝑛) − 1(𝐴𝑛	+ 	𝐵𝑛) 	𝑥 − 	+ 	(𝐴𝑛	− 	𝐵𝑛) − 1𝑏.

By Lemma (3.2), (𝐴𝑛	− 	𝐵𝑛) − 1 exists.
For the unique solution of n-AVE (10), we will show 

that matrix 𝑥 + 	= 	(𝐴𝑛	− 	𝐵𝑛) − 1(𝐴𝑛	+ 	𝐵𝑛) 	is a P-matrix. Since 
σmax(𝐵𝑛) 	<	σmin(𝐴𝑛) 	for non-zero vector 𝑥 ∈ ℝ𝑚.

Then 𝑥 𝑇(𝐴𝑛) (𝐴𝑛) 𝑇𝑥 ≥ 𝜆𝑚𝑖𝑛(𝐴𝑛) (𝐴𝑛) 𝑇	 >	 𝜆𝑚𝑎𝑥 (𝐵𝑛) 
(𝐵𝑛) 𝑇	≥ 	𝑥 𝑇(𝐵𝑛) (𝐵𝑛) 𝑇𝑥 .

This implies 𝑥 𝑇(𝐴𝑛) (𝐴𝑛) 𝑇𝑥 > 𝑥 𝑇(𝐵𝑛) (𝐵𝑛) 𝑇𝑥 .
This implies 𝑥 𝑇[(𝐴𝑛) (𝐴𝑛) 𝑇	−  (𝐵𝑛) (𝐵𝑛) 𝑇]𝑥 > 0.
This implies 𝑥 𝑇[(𝐴𝑛) (𝐴𝑛) 𝑇	−  (𝐵𝑛) (𝐵𝑛) 𝑇	+ 	(𝐵𝑛) (𝐴𝑛) 𝑇	− 	(𝐴𝑛) 

(𝐵𝑛) 𝑇]𝑥 >0.
This implies 𝑥 𝑇[𝐴𝑛{(𝐴𝑛) 𝑇	− 	(𝐵𝑛) 𝑇}	+ 	𝐵𝑛{(𝐴𝑛) 𝑇	− 	(𝐵𝑛) 𝑇}]

𝑥 >0.
This implies 𝑥 𝑇[(𝐴𝑛	+ 	𝐵𝑛) ((𝐴𝑛) 𝑇	− 	(𝐵𝑛) 𝑇) ]𝑥 > 0.
By choosing [(𝐴𝑛) 𝑇	− 	(𝐵𝑛) 𝑇]𝑥 = 𝑦, we get 𝑦𝑇(𝐴𝑛	− 	𝐵𝑛) − 1 

(𝐴𝑛	+ 	𝐵𝑛) 𝑦> 0.
This implies that matrix (𝐴𝑛	 − 	 𝐵𝑛) − 1(𝐴𝑛	 + 	 𝐵𝑛) 	 is a 

P-matrix.
Remark 3.4. The converse of Theorem 3.3 is not true in 

general. Let see the following example.
Example 3.1. Consider the matrices A and B
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Here n-AVE (10) for 𝑛 = 1 𝑎𝑛𝑑 2, have a unique 
solutions respectively 𝑥 = [6.6667, − 38.3334]𝑇 and 
𝑥 = [11.1429, 5.8571]𝑇 for 𝑏 = [5, − 5]𝑇, but condition 
σmax(𝐵𝑛) 	<	σmin(𝐴𝑛) 	does not hold for 𝑛 = 1 𝑎𝑛𝑑 2. As 
σmin(𝐴) = 1.0, σmax(𝐵) = 1.0132, σmin(𝐴2) 	 = 	 1.0	 and 
σmin(𝐵2) 	= 	1.01233.

Remark 3.5. Choosing 𝑛 = 1, Theorem 3.3 will become 
the main result in [48] and here no need to consider the 
nonsingularity of (𝐴 − 𝐵) separately.

The Theorem 3.6 is the particular case of Theorem 3.3.
Theorem 3.6. If A and B are diagonal matrices such that 

𝐷𝑖𝑎𝑔(𝑏𝑖) 	>	0	for all i and 𝐷𝑖𝑎𝑔𝑚𝑖𝑛(𝑎𝑖) 	>	𝐷𝑖𝑎𝑔𝑚𝑎𝑥 (𝑏𝑖) 	then 
n-AVE (10) and AVE (3) have a unique solution for any 
𝑏 ∈ ℝ𝑚.

Proof. We know that, in diagonal matrix each diago-
nal element are singular value of that matrix. Condition 
𝐷𝑖𝑎𝑔(𝑏𝑖) 	>	0	ensure that matrix B has non-zero singular 
values and condition 𝐷𝑖𝑎𝑔𝑚𝑖𝑛(𝑎𝑖) 	>	𝐷𝑖𝑎𝑔𝑚𝑎𝑥 (𝑏𝑖) 	 implies 
to conditions (7), (8) and σmax(𝐵𝑛) 	<	σmin(𝐴𝑛) .

This completes the proof.
By fixing 𝑛= 1 and appropriate choices of 𝐵 in Theorem 

3.3, we get the following corollaries.
Corollary 3.7. If matrices 𝐴 and 𝐵 of real entries sat-

isfy the condition σmax(𝐵) < σmin(𝐴) then AVE (3) has a 
unique solution for any 𝑏 ∈ ℝ𝑚.

Corollary 3.8. If matrices 𝐴 and 𝐵 of real entries and 
either 𝐵 ≥ 0 or 𝐵 ≤ 0 satisfy the condition σmax(|𝐵|) <
σmin(𝐴) then AVE (3) has a unique solution for any 𝑏 ∈ ℝ𝑚.

Corollary 3.9. If matrices 𝐴 of real entries satisfy the 
condition 1	<	σmin(𝐴) then AVE (4) has a unique solution 
for any 𝑏 ∈ ℝ𝑚.

Remark 3.10. Corollary 3.7 is the main result of [47]. 
Corollary 3.8 is the variation of the main result of Theorem 
2 in [38] and Corollary 3.9 is the main result of Proposition 
3(i) in [20].

Remark 3.11. If we take 𝐵= 0 (zero matrix), 𝑛= 1 then 
Theorem 3.3 turns into the fundamental theorem of the lin-
ear system. i.e., “The linear system 𝐴𝑥 = 	𝑏	has a unique 
solution for any 𝑏 ∈ ℝ𝑚, where A is nonsingular [1, 4].”

By the simple property of the idempotent matrices, we 
get the following result.

Corollary 3.12. If matrices 𝐴 and 𝐵 are idempotent 
then n-AVE (10) and AVE (3) are equivalent and conditions 
(8) and σmax(𝐵𝑛) 	<	σmin(𝐴𝑛) 	are also equivalent.

Based on Theorem 2.1, we have the following result for 
n-AVE (10).

Theorem 3.13. The following statements are equivalent:-
(i) The n-AVE (10) has a unique solution for any 𝑏 ∈ ℝ𝑚;
(ii) {𝐴𝑛	− 	𝐵𝑛, 	𝐴𝑛	+ 	𝐵𝑛} has the column W-property;
(iii) (𝐴𝑛	− 	𝐵𝑛) 	is invertible and {𝐼, (𝐴𝑛	− 	𝐵𝑛) − 1	(𝐴𝑛	+ 	𝐵𝑛) }	

has the column W-property;
(iv) det((𝐴𝑛	− 	𝐵𝑛) 	𝐷1	+ 	(𝐴𝑛	+ 	𝐵𝑛) 	𝐷2	) 	≠	0	for arbitrary 

nonnegative diagonal matrices 𝐷1, 	 𝐷2	 ∈ 	 ℝ𝑚×𝑚 with 
Diag(𝐷1	+ 	𝐷2 ) > 0.

Proof. By Lemma 3.1, HLCP (11) is equivalent to the 
n-AVE (10), then by Theorem 2.1 our results holds.

Unique Solvability of the Linear Complementarity 
Problems

In this subsection, we discuss the unique solvability 
conditions for the LCP.

Proposition 3.14. The LCP (1) is can be written as the 
following AVE form

	 (𝐼 + 𝑀) 𝑠 − (𝐼	− 𝑀) |𝑠 | = − 𝑞 (16)

and, if the matrix (𝐼 − 𝑀) is invertible, then (16) converted 
into the following AVE form

 (𝐼 − 𝑀)−1(𝐼 + 𝑀)𝑠  − |𝑠 | = −(𝐼 − 𝑀)−1 𝑞  (17)

where z	= 	|s|	+ 	s	and	w	= 	|s|	− 	s.
Theorem 3.15. If 𝜎𝑚𝑖𝑛((𝐼 − 𝑀) − 1(𝐼 + 𝑀) + 	𝐼	) > 2, 

then LCP (1) has a unique solution.
Proof. Since LCP (1) is equivalent to the AVE (17), then 

our result is directly hold by Lemma 2.2.
Theorem 3.16. If matrix (𝐼 + 𝑀) is nonsingular and 

min{𝜌(|(𝐼 + 	𝑀) − 1(𝐼 − 𝑀) |) , 𝜎𝑚𝑎𝑥 ((𝐼 + 𝑀) − 1(𝐼 − 𝑀) ) } <	1 
satisfy, then LCP (1) has a unique solution.

Proof. Since LCP (1) is equivalent to the AVE (17), then 
our result is directly hold by Lemma 2.4.

Theorem 3.17. If det (𝐼 + 𝑀) ≠	0	and 𝜌{(𝐼 + 	𝑀) − 1 

(𝐼 − 𝑀) 𝐷− }	<	1	for any diagonal matrix 𝐷− 	∈ 	[− 𝐼, 𝐼], then the 
LCP (1) has a unique solution.

Proof. Since LCP (1) is equivalent to the AVE (16), then 
by Lemma 2.4, our result is holds.

Remark 3.18. Our condition 𝜌{(𝐼 + 	𝑀) − 1(𝐼 − 𝑀) 𝐷− }	<	
1 is superior than the condition 𝜌{|(𝐼 + 	𝑀) − 1(𝐼 − 𝑀) |} <	
1 of [11, Theorem 3.1]. Because (𝐼 + M) − 1(𝐼 − 𝑀) 𝐷− 	≤ 	|(𝐼
+ 	𝑀) − 1(𝐼 − 𝑀) | 𝐷− |	≤ 	|(𝐼 + 𝑀) − 1(𝐼 − 𝑀) |.

Theorem 3.19. The LCP (1) has a unique solution if and 
only if matrix (𝐼 + 𝑀) − 	(𝐼 − 𝑀) 𝐷−  is nonsingular for any 
diagonal matrix 𝐷− 	∈ 	[− 𝐼, 𝐼].

Proof. Since LCP (1) is equivalent to the AVE (16), then 
by Lemma 2.6, our result is holds.

Remark 3.20. Based on the fact, “The LCP(q, M) has a 
unique solution if and only if M is a P-matrix”, we can say 
that, if matrix M fulfills the criteria outlined in Theorems 
3.15, 3.16, 3.17, and 3.19, it can be classified as a P-matrix.

Unique Solvability of the Horizontal LCP
In this subsection, we discuss the unique solvability 

conditions for the HLCP.
Proposition 3.21. The HLCP (2) is can be written as the 

following AVE form

 (𝑀1 + 𝑀2)𝑠  − (𝑀1 − 𝑀2)|𝑠 | = −𝑞  (18)

and, if the matrix (𝑀1	− 	𝑀2) 	is invertible, then (18) con-
verted into the following AVE form

 (𝑀1 − 𝑀2)−1(𝑀1 + 𝑀2)𝑠  + |𝑠 | = − (𝑀1 − 𝑀2)−1𝑞  (19)
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where 𝑧 = |𝑠 | + 	𝑠 	and w = |𝑠 | − 𝑠 .
Theorem 3.22. If 𝜎𝑚𝑖𝑛((𝑀1	− 	𝑀2) − 1(𝑀1	+ 	𝑀2) ) 	>	1 

or 𝜎𝑚𝑎𝑥 ((𝑀1	+ 	𝑀2) − 1(𝑀1	− 	𝑀2) ) 	<	1,  then HLCP (2) 
has a unique solution.

Proof. The HLCP (2) is equivalent to the AVE (18), 
then we can apply Lemma (2.3). So our result is hold.

Remark 3.23. This condition is slightly superior than 
the condition 𝜎𝑚𝑖𝑛(𝑀1	+ 	𝑀2) 	>	𝜎𝑚𝑎𝑥 (𝑀1	+ 	𝑀2)  of [14] 
because 

Theorem 3.24. If 𝜎𝑚𝑖𝑛((𝑀1 − 	𝑀2) − 1(𝑀1 + 	𝑀2) 	+ 	𝐼) >2, 
then HLCP(2) has a unique solution.

Proof. The HLCP (2) is equivalent to the AVE (19), 
then we can apply Lemma (2.2). So our result is hold.

Theorem 3.25. If matrix (𝑀1	+ 	𝑀2) 	 is nonsingular 
and min{𝜌(|(𝑀1	+ 	𝑀2) − 1(𝑀1	− 	𝑀2) |) , 	𝜎𝑚𝑎𝑥 ((𝑀1	+ 	𝑀2) − 1 

(𝑀1	− 	𝑀2) ) }	<	1	satisfy, then HLCP (2) has a unique solution.
Proof. The proof is directly hold by the AVE (19) and 

Lemma (2.4).
Based on Lemma (2.5) and Lemma (2.6) with AVE (18), 

we get the following necessary and sufficient conditions for 
the unique solution of HLCP (2).

Theorem 3.26. The HLCP(2) has a unique solution if 
and only if matrix (𝑀1	+ 	𝑀2) 	− 	(𝑀1	− 	𝑀2) 𝐷

−  is nonsingu-
lar for any diagonal matrix 𝐷− 	∈ 	[− 𝐼, 𝐼].

Theorem 3.27. If 𝑑 𝑒𝑡(𝑀1	+ 	𝑀2) 	≠	0	and 𝜌{(𝑀1	+ 	𝑀2) − 1 

(𝑀1	− 	𝑀2) 𝐷
− }	<	1	for any diagonal matrix 𝐷− 	∈ 	[− 𝐼, 𝐼], then 

the HLCP (2) has a unique solution.
Now, we discuss the following examples:
Example 3.2. Consider the matrices A and B as follows

with m=50 and n=25, the result is as follows: 𝜎𝑚𝑎𝑥 (𝐵) 25	= 	
0.00242976	<	1	= 	𝜎𝑚𝑖𝑛(𝐴) 25.

This fulfills the condition specified in Theorem 3.3. 
Consequently, the AVE (10) possesses a unique solution for 
each b.

Example 3.3. Let see the Example (3.1) again, where A 
and B is given below

Clearly, 𝜎𝑚𝑖𝑛(𝐴) = 0, 𝜎𝑚𝑎𝑥 (𝐵) = 1.0132, 𝜎𝑚𝑎𝑥 (|𝐵|) =  
1.16	and 𝜎𝑚𝑎𝑥 (𝐴− 1𝐵) = 1.0132,  𝜎𝑚𝑖𝑛(𝐴− 1𝐵) = 0.7896.

Here AVE (3) has unique solution x = [6.6667, 	
− 38.3334]𝑇 for the 𝑏= [5, − 5]𝑇, but conditions (7) , (8) and 
(9) are not satisfying. Also n-AVE (10) for n=2 has unique 
solution x = [11.1429, 	 5.8571]𝑇 for the 𝑏 = [5, − 5]𝑇, 
but condition, 	𝜎𝑚𝑎𝑥 (𝐵2) 	<	𝜎𝑚𝑖𝑛(𝐴2) 	is not satisfying. In the 
future, it is possible to modify these conditions.

CONCLUSION

The research of the unique solution is a vital branch of 
theoretical analysis of the LCP, HLCP and AVE. Due to the 
numerous applications of the LCP and HLCP in different 
fields, the study of unique solvability has been given a lot of 
attention. By equivalence relation between LCP and AVE, 
the study of the unique solvability conditions of the AVE is 
also interesting. In the literature, many unique solvability 
conditions are established for AVE/HLCP/LCP (see, e.g., 
[7, 11, 14, 20-21, 25, 29, 38-40, 48-49]). Some conditions 
did not satisfy some instances (see Example 3.1), so revision 
is needed for such conditions.

In this study, we have obtained the unique solvability 
condition for LCP (1), HLCP (2), and n-AVE (10). This is a 
generalization of the works that were previously established 
in [20, 38, 47-48] for AVE. We obtained unique solvabil-
ity results for LCP and HLCP, which are superior to those 
of Achache et al. [14] and Li et al. [11]. By using Example 
(3.3), we raise an open problem for the future: “Can existing 
conditions be revised for the unique solution of AVE (3)?” 
Further investigation is necessary for this. Furthermore, 
future research on numerical methods for LCP, HLCP, and 
n-AVE offers intriguing and promising avenues to explore.

The following is the outline of the findings of this paper:
1. The unique solvability conditions for n-AVE are 

discussed.
2. New unique solvability conditions have been sug-

gested for the HLCP and LCP.
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