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ABSTRACT

This study addresses the critical challenge of handling missing data in time series analysis, 
which is maintaining the accuracy and reliability of financial forecasting and other predictive 
models. The study aims to assess various imputation techniques’ and estimation methods’ 
performance. The purpose of using imputed data is to enhance the robustness and accura-
cy of time series analyses, especially when dealing with incomplete datasets. We compared 
eight different imputation methods to identify the most effective approach. We also compared 
the performance of the Transformer model, Autoregressive Integrated Moving Average, and 
Generalized Autoregressive Conditional Heteroskedasticity methods in time series analysis 
using both complete and imputed datasets. The study employed a comprehensive approach, 
utilizing the Transformer model, Autoregressive Integrated Moving Average, and General-
ized Autoregressive Conditional Heteroskedasticity for time series analysis. Eight imputation 
methods—last observation carried forward, next observation carried backward, mean impu-
tation, linear interpolation, seasonal decomposition, moving average, regression imputation, 
and Kalman filtering—were evaluated. Monte Carlo simulations and an application were con-
ducted on generated and real data-driven datasets with different proportions of missing data 
to assess the performance of these methods. The findings suggest that imputation techniques, 
such as mean imputation, considered conventional, and Kalman filtering, can significantly en-
hance the accuracy of time series models, particularly when integrated with innovative models 
like the Transformer. Moreover, the last observation carried forward, seasonal decomposition, 
and moving average did not provide better results in any scenario. Simulation-based synthetic 
data and application-based real data also revealed that the Transformer model outperformed 
traditional methods in scenarios with complete data (the original dataset) and new datasets 
generated through imputation at different rates. The results obtained from the real data-driv-
en application support the findings from the simulation results. In addition to the simulation 
findings, the application results show that mean imputation performs well in cases with low 
levels of imputation, while Kalman filtering proves more successful when imputing a high pro-
portion of missing data. This work goes beyond previous studies by systematically comparing 
a wide range of imputation methods within a unified framework, incorporating both tradi-
tional and modern time series models. A comprehensive evaluation of estimation techniques 
and imputation strategies applicable to time series analysis is presented, exploring appropriate 
combinations of estimation methods and imputation techniques.
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INTRODUCTION

In time series analysis, handling missing data is a crit-
ical challenge, as the accuracy and reliability of the results 
depend heavily on the effectiveness of imputation methods. 
These methods not only address gaps in the data but also 
improve the ability to predict future values. Traditional 
models like the Autoregressive Integrated Moving Average 
(ARIMA) [1] and Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) [2] have been extensively 
used for forecasting and are well-established in time series 
analysis. For instance, ARIMA is effective in modeling 
time series data by predicting future values based on past 
observations, but its performance can be compromised in 
the presence of missing data [3]. Similarly, GARCH mod-
els, known for their ability to model volatility, also struggle 
with incomplete datasets, potentially leading to biased esti-
mates and inaccurate forecasts [2].

To address these limitations, advanced imputation tech-
niques have been developed. Kalman filtering, a state-space 
model, has been successfully applied to estimate missing 
values by leveraging dynamic linear models [4]. Moreover, 
recent research has explored even more sophisticated 
imputation methods, such as the generalized m-parame-
ter Mittag-Leffler function, which has shown promise in 
handling complex differential and integral equations [5]. 
Despite these advancements, there is still a need for a sys-
tematic evaluation of how these methods perform in dif-
ferent scenarios, particularly when integrated with newer 
models like Transformers, which have shown significant 
potential in time series analysis [6].

Related Work
This section presents a comprehensive review of exist-

ing studies on imputation techniques and their application 
in time series analysis. ARIMA and GARCH models are 
widely used in time series forecasting due to their robustness 
and efficacy in handling various types of data. These mod-
els have been extensively applied across multiple domains. 
For instance, [7] employed GARCH models to capture the 
volatility in energy markets, demonstrating their ability to 
model fluctuations in energy prices effectively. Similarly, [8] 
utilized ARIMA and GARCH models for traffic modeling 
and prediction in telecommunication networks, emphasiz-
ing the models’ robustness in handling complex network 
traffic data. Furthermore, [9] illustrated the integration of 
ARIMA and GARCH models for forecasting the USD/EUR 
exchange rate, highlighting the enhanced prediction accu-
racy achieved through this combination.

The hybrid ARIMA-GARCH model is particularly 
effective in financial forecasting, where both linear patterns 
and volatility need to be accounted for. [10] demonstrated 
the superiority of this hybrid model in gold price forecast-
ing, where it significantly improved forecasting accuracy by 
addressing both linear trends and volatility. Additionally, 
comparisons between traditional time series models and 
machine learning models have garnered attention in the 

literature. Studies by [11,12], and [13] have highlighted the 
potential of neural network models in capturing complex 
patterns in data, particularly in finance and economics.

The Transformer model, a deep learning approach 
leveraging self-attention mechanisms, has gained prom-
inence in time series analysis due to its ability to capture 
long-term dependencies. Unlike traditional models like 
ARIMA and GARCH, which rely on past values and vari-
ances, the Transformer model utilizes self-attention to 
weigh the importance of different time steps. This makes it 
particularly effective for complex and irregular time series 
data [14,15]. However, the Transformer model is not with-
out limitations. One significant challenge is its computa-
tional inefficiency, especially concerning the self-attention 
mechanism, which scales quadratically with the length of 
the input sequence. This can become a bottleneck when 
dealing with long time series, leading to substantial time 
and memory complexity [3, 16]. Additionally, standard 
Transformers may struggle with capturing local dependen-
cies in time series data, which is crucial for accurate fore-
casting and anomaly detection.

Handling missing data is a critical aspect of time series 
analysis, as it directly impacts the accuracy and reliability 
of the results. Various imputation methods are employed 
to address this challenge, each with its strengths and 
limitations. Commonly used techniques include Last 
Observation Carried Forward (LOCF), Next Observation 
Carried Backward (NOCB), Mean Imputation, Linear 
Interpolation, Seasonal-Trend Decomposition using 
Regression (STR), Moving Average, Regression Imputation, 
and Kalman Filtering [17-20]. The choice of imputation 
method is critical in time series analysis, where preserving 
temporal dependencies and trends is essential.

Research by [21,22] emphasizes that assumptions of lin-
earity and stationarity in time series data may not always 
hold, making the selection of imputation methods even 
more crucial. More recent advancements in imputation 
methods are highlighted by [23], who introduced a modi-
fied genetic algorithm for the Travelling Salesman Problem, 
featuring novel crossover and mutation operators that 
could be adapted for time series imputation. Additionally, 
[24,25] presented numerical methods for solving complex 
differential equations, which could enhance imputation 
accuracy in datasets with unique structural characteristics. 
The dual hesitant fuzzy set theoretic approach in fuzzy reli-
ability analysis, as discussed by [26,27], offers a theoretical 
foundation that could further improve the accuracy and 
robustness of imputation methods, particularly in systems 
characterized by uncertainty.

In comparing the performance of ARIMA, GARCH, 
and Transformer models across different imputation sce-
narios, it is essential to consider how each method han-
dles missing data. Studies by [28,29] have shown that 
Transformer models generally outperform recurrent neu-
ral networks (RNNs) across different imputation methods, 
particularly with Stineman interpolation. This suggests 
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that while traditional models like ARIMA and GARCH are 
robust in many scenarios, Transformer models may offer 
superior performance in handling incomplete time series 
data, especially when advanced imputation techniques are 
applied.

In conclusion, the effectiveness of imputation methods 
in time series analysis depends on the specific characteris-
tics of the data and the research objectives. The methods 
reviewed in this section provide a comprehensive frame-
work for understanding the efficacy of different imputation 
techniques in various scenarios, particularly when applied 
to traditional time series models and Transformer models.

Although there is a wealth of research on time series 
forecasting and missing data imputation, several gaps 
remain. First, while traditional models like ARIMA and 
GARCH have been well-studied, their comparative per-
formance against modern models like Transformers, espe-
cially in the context of missing data, is not fully understood. 
Additionally, the effectiveness of various imputation tech-
niques when applied to these models has not been com-
prehensively evaluated, particularly across different levels 
of data completeness and sample sizes. This gap in the 
literature necessitates a thorough investigation into which 
imputation techniques best complement specific forecast-
ing models under varying conditions.

To address these gaps, this study systematically compares 
the performance of ARIMA, GARCH, and Transformer 
models in handling missing data across different scenarios. 
By evaluating eight different imputation methods—ranging 
from conventional techniques like mean imputation and 
linear interpolation to more advanced methods like Kalman 
filtering—this research aims to identify the most effective 
combinations of models and imputation techniques. The 
study employs a comprehensive simulation approach, ana-
lyzing different sample sizes and varying levels of missing 
data to provide a robust framework for selecting the most 
appropriate methods in time series forecasting.

This study advances the existing literature by offering 
a detailed, comparative analysis of traditional and mod-
ern time series models in conjunction with a wide range 
of imputation methods. By integrating advanced tech-
niques and considering various scenarios, this research not 
only fills critical gaps in the literature but also introduces 
a new framework for evaluating the effectiveness of dif-
ferent approaches to missing data in time series analysis. 
The findings have the potential to significantly improve the 
accuracy and reliability of time series forecasting, particu-
larly in fields where data completeness is a challenge.

For this purpose, the study examines eight imputation 
methods through a comprehensive simulation, considering 
three different sample sizes and varying imputation rates. 
This analysis provides valuable insights into possible combi-
nations of estimation methods and imputation techniques. 
The inclusion of advanced imputation techniques, such as 
those discussed by [5], [30,31], and [27], enriches the dis-
cussion by integrating novel approaches. Furthermore, the 

study compares different methods while also exploring the 
potential for transitioning from conventional to more sus-
tainable methods, as discussed by [32], suggesting new ave-
nues for enhancing imputation techniques using AI-based 
methods.

In the rest of the study, ARIMA and GARCH, which are 
traditional methods frequently used in time series analysis, 
and Transformer models, which are innovative methods, 
are presented in the Method section. Additionally, informa-
tion is provided about eight different imputation methods. 
The structural, metric, and scenario parameters of the sim-
ulation study and the information and steps for application 
are introduced in the Analysis section. In the Results sec-
tion, all findings are presented in detail for all cases. In the 
Conclusion section, the findings are discussed.

MATERIALS AND METHODS

This section outlines the methodologies employed in 
this study, including the models and imputation techniques 
used for analysis. 

Estimators
The ARIMA model and the GARCH model (are popular 

methods for time series forecasting and volatility modeling.
ARIMA is a widely used time series analysis model for 

forecasting and understanding time-dependent data. The 
ARIMA model is denoted as ARIMA (p, d, q), where p rep-
resents the autoregressive order, d represents the differenc-
ing order, and q represents the moving average order. The 
model’s equations involve the autoregressive terms, moving 
average terms, and the differencing operator, which are 
used to capture the temporal dependencies and trends in 
the data [33,34].

The ARIMA model equation can be represented in Eq.1:

  
(1)

where Yt is the value of the time series at time t. c is the 
constant term or intercept. ϕi (i = 1,2,…, p) are the autore-
gressive parameters representing the effect of past values 
on the current value. Yt-i are the lagged values of the time 
series. ϕj (i = 1,2,…, q) are the moving average parameters 
representing the effect of past errors on the current value. ϵt 
is the error term at time t, assumed to be white noise with 
mean zero and constant variance. The p and q parameters 
represent the order of the autoregressive and moving aver-
age components, respectively. The Integrated (l) compo-
nent indicates the number of differences needed to make 
the time series stationary.

GARCH is a model used to analyses and forecast the vol-
atility of time series data. The GARCH model is denoted as 
GARCH (p, q), where p represents the order of the GARCH 
terms, and q represents the order of the ARCH terms. The 
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model’s equations involve the conditional variance, which 
captures the time-varying volatility in the data [35]. 

The basic GARCH model equation can be represented 
in Eq.2:

  (2)

where σt
2 is the conditional variance of the time series at 

time t. ω is the constant term or intercept of the GARCH 
model. α1  is the coefficient of the lagged squared error 
term, representing the persistence of volatility shocks. ϵ2

t-1  
is the squared error term at time t - 1. β1 is the coefficient 
of the lagged conditional variance term, representing the 
decay of past volatility shocks. σ2

t-1
 is the conditional vari-

ance at time t - 1.
The Transformer model utilizes self-attention mecha-

nisms to capture dependencies across the entire sequence 
[6]. The equations for the Transformer model are:

  

(3)

where Z(l) represents the output of the l -th layer, and 
LayerNorm is a normalization layer, MultiHeadAttention 
is the multi-head attention mechanism, FeedForward is a 
feedforward neural network layer. These equations high-
light the fundamental elements of the Transformer model: 
the multi-head attention mechanism, which enables the 
model to attend to various segments of the input sequence, 
and the feedforward neural network, which processes the 
aggregated attention data. Layer Normalization is employed 
to normalize the inputs of each layer, aiding in the stabiliza-
tion and acceleration of deep neural network training.

The Transformer model is a type of neural network 
architecture that has been applied to time series analysis. It 
utilizes self-attention mechanisms to capture dependencies 
between different time steps in the data. The equations of 
the Transformer model involve the self-attention mecha-
nism, which allows the model to weigh the importance of 
different time steps when making predictions [6]. An adap-
tation of the Transformer model equation for time series 
analysis includes the following components: input repre-
sentation, positional encoding, transformer encoder, trans-
former decoder, and output layer.

Scaled dot-product Attention:

  
(4)

In the equation above: Q represents the query. K rep-
resents the key. V represents the value in the attention 
mechanism. dk is the dimension of the keys (KT: The trans-
pose of the key matrix K).

Positional Encoding for time series:

  

(5)

In the equations above: PE(pos,2i) and PE(pos,2i+1) rep-
resent the positional encoding for even and odd indices, 
respectively. pos represents the position. dmodel is the dimen-
sion of the model. 

Imputation Techniques
The imputation techniques utilized in the comparison 

study include:
a. Last Observation Carried Forward (LOCF): Fills miss-

ing values with the last observed value [36].
b. Next Observation Carried Backward (NOCB): Fills 

missing values with the next observed value [37].
c. Mean Imputation: Replaces missing values with the 

mean of the available data [37].
d. Linear Interpolation: Estimates missing values based on 

linear interpolation between adjacent data points [38].
e. Seasonal Decomposition: Decomposes the time series 

into seasonal and trend components, filling missing val-
ues based on the decomposition [39].

f. Moving Average: Fills missing values with the average of 
neighboring data points within a specified window [40].

g. Regression Imputation: Predicts missing values using 
regression analysis based on available data [41].

h. Kalman Filtering: Utilizes Kalman filter algorithms to 
estimate missing values based on observed data and sys-
tem dynamics [42].
These techniques offer diverse approaches to handling 

missing data in time series analysis, each with its strengths 
and limitations.

ANALYSIS

Simulation
An inclusive simulation study was conducted for the 

analysis of the study. Simulation inputs are presented in 
detail in Table 1. This detailed procedure outlines how 
to conduct the comparison of the specified models using 
various imputation methods on different types of data and 
sample sizes [43]. The RMSE (Root Mean Square Error) 
metric is used to evaluate the accuracy of each model under 
different conditions. RMSE is related to bias and variance in 
the context of model evaluation and is therefore considered 
the metric used in this study. With the abundance of sce-
narios and tables, all results are presented with RMSE for 
interpretability. The RMSE is represented as:
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(6)

where yi is the actual value. y ̂i is the predicted value. n is the 
number of observations.

The simulation procedure systematically evaluates the 
performance of eight imputation techniques and various 
estimation models across different scenarios, including the 
Transformer, ARIMA, and GARCH models. The analysis 
stages are as follows:
- A sample time series dataset is generated for each com-

bination of estimation model, imputation method, and 
sample sizes, with missing values introduced based on 
specified percentages and imputation methods. 

- The missing values are then imputed using the chosen 
method, and each model is trained and evaluated using 
the imputed data. 

- RMSE values are calculated for each model, with the pro-
cess repeated for 1000 iterations to capture variability. 

- The RMSE values are aggregated over the iterations to 
derive average RMSE values for each combination. 

- Finally, comparisons are made across different models, 
imputation methods, data cases, and sample sizes to 
determine their relative performance. 
All applications in this study were conducted in R using 

RStudio IDE. Steps of simulation is also shared in Table 2. 
This table outlines the simulation process, detailing each 
step and the corresponding operation performed. Tables 
3-7 are derived from the results of the simulation study and 
are discussed in detail in the Results section.

Application
In addition to the simulation study, an application based 

on real data was conducted to evaluate the practical per-
formance of different imputation methods and time series 
models. For this application, historical stock data for AAPL 
(Apple Inc.) was utilized. The analysis utilized data con-
sisting of 756 observations, covering approximately three 
years of time series data. Thus, a supportive approach was 
adopted in the simulation studies with sample sizes of 200, 
600, and 1000.

Table 1. Simulation arguments

Models to Compare Imputation 
Methods

Imputation 
Methods

Data 
Cases

Sample Evaluation 
Metric

Simulation 
Iterations

Transformer Model Last Observation 
Carried Forward 
(LOCF)

Seasonal 
Decomposition

Original 
Data

200 Root Mean 
Squared Error 
(RMSE)

1000 iterations

ARIMA (AutoRegressive 
Integrated Moving Average) 
Model

Next Observation 
Carried Backward 
(NOCB)

Moving Average 10% 
Imputed 
Data

600

GARCH (Generalized 
Autoregressive Conditional 
Heteroskedasticity) Model

Mean Imputation Regression 
Imputation

25% 
Imputed 
Data

1000

Linear 
Interpolation

Kalman Filtering 40% 
Imputed 
Data

Table 2. Simulation Steps

Steps Description Operation
1 Load Libraries `library(forecast)`, `library(fGarch)`, etc.
2 Set Parameters Iterations, repetitions, sample widths, imputation percentages, methods, 

model types
3 Generate Time Series Data `generate_time_series(n)`
4 Introduce Missing Values `introduce_missing_values(ts_data, missing_percentage)`
5 Impute Missing Values `impute_missing_values(ts_data, method)`
6 Train and Evaluate Models `train_and_evaluate_models(ts_data, model_type)`
7 Store Results Store RMSE values in the matrix
8 Calculate Average RMSE and Output Results `aggregate(RMSE ~ Sample_Width + Imputation_Percentage + 

Imputation_Method + Model_Type, data = results_df, FUN = mean)`
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The analysis began with loading essential R libraries. 
Historical adjusted closing prices were obtained. To simu-
late missing data based on randomness, function based on 
uniform distribution was applied, creating data gaps at lev-
els of 0%, 10%, 25%, and 40%. Eight imputation techniques 
were employed, such as LOCF, NOCB, mean imputation, 
linear interpolation, seasonal decomposition, moving aver-
age, regression imputation, and Kalman filtering. The data 
was then used to fit three models: The Transformer model, 
ARIMA, and GARCH. The performance of each model was 
assessed by calculating the RMSE for every combination of 
imputation method and missing data level. Results were sys-
tematically compiled into a table, presented as Table 8, and 
the findings are discussed in the results section. The appli-
cation provides insight into the extent to which the sim-
ulation results align with those obtained from real-world 

data analysis and highlights the implications of the study’s 
findings for practical applications.

RESULTS AND DISCUSSION

To analyses the results, we can examine the RMSE val-
ues for each combination of model, imputation method, 
and missing data percentage. 

Table 3 shows the analysis results for the case where the 
number of samples is 200. In terms of estimators, across 
all missing data percentages (0%, 10%, 25%, 40%), the 
Transformer model generally performs better than ARIMA 
and GARCH models in terms of RMSE. This suggests that 
the Transformer model is more effective in predicting time 
series data compared to traditional ARIMA and GARCH 
models. Regarding imputation methods, among the impu-
tation methods, the performance varies depending on the 

Table 4. Simulation RMSE Results for n=600*

n = 600 0% 10% 25% 40%

TraMod ARIMA GARCH TraMod ARIMA GARCH TraMod ARIMA GARCH TraMod ARIMA GARCH
LOCF 0.4665 0.8377 0.8264 0.5328 0.9532 1.0015 0.5330 0.9621 1.0170 0.5451 0.9926 1.0253
NOCB 0.4596 0.8377 0.8264 0.3784 0.9454 0.9714 0.3796 0.9492 0.9755 0.4864 0.9875 0.9883
Mean 0.4613 0.8377 0.8264 0.4619 0.8550 0.8587 0.4702 0.8624 0.8665 0.5045 0.8995 0.9193
Linear 0.4433 0.8377 0.8264 0.5564 0.8824 0.9696 0.5668 0.9060 0.9787 0.6051 0.9144 0.9826
Seasonal 0.4329 0.8377 0.8264 0.4117 0.8805 0.9364 0.4601 0.8912 0.9719 0.5281 0.9131 0.9887
MovAve 0.4307 0.8377 0.8264 0.4875 0.8614 0.8674 0.5334 0.8770 0.8903 0.5698 0.9056 0.9214
Regression 0.4327 0.8377 0.8264 0.4408 0.9627 1.0148 0.4487 0.9658 1.0375 0.4545 0.9996 1.0486
KalmFil 0.4371 0.8377 0.8264 0.5413 0.8590 0.8563 0.5556 0.8778 0.8734 0.5616 0.8810 0.8806
* LOCF: Last Observation Carried Forward, NOCB: Next Observation Carried Backward, Mean: Mean Imputation, Linear: Linear Interpolation, 
Seasonal: Seasonal Decomposition, MovAve: Moving Average Imputation, Regression: Regression Imputation, KalmFil: Kalman Filter Imputation; 
TraMod: Transformer Model, ARIMA: AutoRegressive Integrated Moving Average, GARCH: Generalized AutoRegressive Conditional 
Heteroskedasticity.

Table 3. Simulation RMSE Results for n=200*

n = 200 0% 10% 25% 40%

TraMod ARIMA GARCH TraMod ARIMA GARCH TraMod ARIMA GARCH TraMod ARIMA GARCH
LOCF 0.5314 0.9403 0.9328 0.5726 0.9953 1.0475 0.5952 0.9976 1.0910 0.6004 1.0119 1.0990
NOCB 0.5271 0.9403 0.9328 0.5109 0.9900 1.0108 0.6005 0.9922 1.0135 0.7010 0.9923 1.0246
Mean 0.5191 0.9403 0.9328 0.5074 0.9462 0.9475 0.5686 0.9462 0.9494 0.6429 0.9503 0.9740
Linear 0.5296 0.9403 0.9328 0.6148 0.9595 0.9888 0.6162 0.9684 1.0271 0.6457 0.9711 1.0505
Seasonal 0.5192 0.9403 0.9328 0.5577 0.9664 0.9956 0.5683 0.9671 1.0368 0.6043 0.9706 1.0445
MovAve 0.5298 0.9403 0.9328 0.5952 0.9509 0.9524 0.6055 0.9534 0.9661 0.6160 0.9593 0.9777
Regression 0.5217 0.9403 0.9328 0.4839 0.9997 1.0615 0.5423 1.0009 1.0889 0.6083 1.0202 1.1433
KalmFil 0.5299 0.9403 0.9328 0.5654 0.9456 0.9470 0.5727 0.9471 0.9566 0.5800 0.9547 0.9592
* LOCF: Last Observation Carried Forward, NOCB: Next Observation Carried Backward, Mean: Mean Imputation, Linear: Linear Interpolation, 
Seasonal: Seasonal Decomposition, MovAve: Moving Average Imputation, Regression: Regression Imputation, KalmFil: Kalman Filter Imputation; 
TraMod: Transformer Model, ARIMA: AutoRegressive Integrated Moving Average, GARCH: Generalized AutoRegressive Conditional 
Heteroskedasticity.
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combination of model and missing data percentage. For 
example, the Kalman filter, mean, and regression imputa-
tions tend to perform relatively well across different models 
and missing data percentages. However, the effectiveness of 
imputation methods can vary based on the specific charac-
teristics of the data and the modeling approach.

Table 4 shows the analysis results for the case where the 
number of samples is 600. Similar to the previous analysis, 
the Transformer model generally outperforms ARIMA and 
GARCH models across different missing data percentages 
(0%, 10%, 25%, 40%). This consistency suggests that the 
superiority of the Transformer model in predicting time 
series data is robust and not heavily influenced by miss-
ing data. The performance of imputation methods varies 
across different models and missing data percentages. For 
instance, Kalman filter, mean imputation, and NOCB impu-
tations show relatively stable performance across various 
scenarios, indicating their effectiveness in handling missing 
data in time series analysis. However, some methods like 
LOCF, linear interpolation, seasonal decomposition, mov-
ing average exhibit fluctuating performance depending on 
the combination of model and missing data percentage. As 
observed in the previous analysis, higher percentages of 
missing data lead to higher RMSE values across all models 
and imputation methods. This consistent trend emphasizes 
the detrimental effect of missing data on the accuracy of 
time series predictions.

Table 5 shows the analysis results for the case where 
the number of samples is 1000. The RMSE values for the 
Transformer model are consistently lower compared to 
ARIMA and GARCH models, indicating better predictive 
performance. For this scenario, some imputation methods, 
such as mean, and regression imputations show relatively 
stable performance across different scenarios. As observed 
in previous analyses, higher percentages of missing data 
lead to higher RMSE values across all models and impu-
tation methods. This trend underscores the importance of 

handling missing data effectively in time series analysis to 
maintain prediction accuracy.

To examine the estimation model, Table 6 provides 
useful summary information. The Transformer model has 
been combined to present the lowest RMSE value 5 times 
with regression imputation, 3 times with NOCB imputa-
tion and 1 time with Kalman filter. Therefore, regression 
imputation and NOCB imputation are compatible with 
the Transformer model. The ARIMA model has been 
combined to present the lowest RMSE value 7 times with 
mean imputation, 2 times with Kalman filter. Therefore, 
mean imputation and Kalman filter are compatible with the 
ARIMA model. The GARCH model has been combined to 
present the lowest RMSE value 5 times with Kalman filter 
imputation, 3 times with mean imputation and 1 time with 
linear interpolation. Therefore, Kalman filter and mean 
imputation are compatible with the ARIMA model.

To examine sample sizes, Table 7 provides useful sum-
mary information. LOCF was not applied to any of the data-
sets. NOCB was applied 2 times to the dataset with size 600 
and once to the dataset with size 1000 but was not applied 
to the dataset with size 200. Mean imputation was applied 3 
times to the dataset with size 200, 3 times to the dataset with 
size 600, and 4 times to the dataset with size 1000, indicat-
ing consistent usage across all dataset sizes. Linear interpo-
lation was applied once to the dataset with size 1000 and 
not to the datasets with sizes 200 or 600. Seasonal decom-
position and moving average were not applied to any of the 
datasets. Regression imputation was applied 2 times to the 
dataset with size 200, once to the dataset with size 600, and 
2 times to the dataset with size 1000, showing moderate 
usage. Kalman filter was applied 4 times to the dataset with 
size 200, 3 times to the dataset with size 600, and once to the 
dataset with size 1000, indicating frequent usage, especially 
for smaller datasets. In general, mean and Kalman filter 
imputation methods had high usage, NOCB and regression 
imputation had moderate usage, linear interpolation had 

Table 5. Simulation RMSE Results for n=1000*

n = 1000 0% 10% 25% 40%

TraMod ARIMA GARCH TraMod ARIMA GARCH TraMod ARIMA GARCH TraMod ARIMA GARCH
LOCF 0.3287 0.7119 0.6952 0.3741 0.8945 0.9362 0.4162 0.9164 0.9551 0.4729 0.9274 0.9644
NOCB 0.3427 0.7119 0.6952 0.2899 0.9038 0.8808 0.3229 0.9136 0.9193 0.3236 0.9175 0.9203
Mean 0.3337 0.7119 0.6952 0.3815 0.7459 0.7310 0.3953 0.7764 0.7774 0.4616 0.7805 0.7917
Linear 0.3534 0.7119 0.6952 0.3782 0.7601 0.5453 0.3934 0.8124 0.9309 0.8675 0.8171 0.8968
Seasonal 0.3672 0.7119 0.6952 0.3086 0.7979 0.7566 0.3712 0.8016 0.8816 0.3988 0.8098 0.9337
MovAve 0.3202 0.7119 0.6952 0.3124 0.7746 0.7987 0.4476 0.7886 0.8073 0.4637 0.800 0.8491
Regression 0.3657 0.7119 0.6952 0.2328 0.8866 0.9716 0.3147 0.9442 0.9831 0.3873 0.9515 1.0092
KalmFil 0.3257 0.7119 0.6952 0.4120 0.7689 0.7626 0.4930 0.7773 0.7802 0.5124 0.7814 0.7843
* LOCF: Last Observation Carried Forward, NOCB: Next Observation Carried Backward, Mean: Mean Imputation, Linear: Linear Interpolation, 
Seasonal: Seasonal Decomposition, MovAve: Moving Average Imputation, Regression: Regression Imputation, KalmFil: Kalman Filter Imputation; 
TraMod: Transformer Model, ARIMA: AutoRegressive Integrated Moving Average, GARCH: Generalized AutoRegressive Conditional 
Heteroskedasticity.
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low usage, and LOCF, seasonal decomposition, and mov-
ing average were not used. These observations can help in 
determining the most suitable imputation methods based 
on dataset size and missing data patterns. The frequency 
values   in Table 6 and Table 7 are presented comparatively 
in Figure 1.

The combination of two plots in Figure 1 offers a com-
prehensive overview of how imputation methods are dis-
tributed across both model types and dataset sizes. The 
consistent use of visual elements such as transparency for 
zero counts, color differentiation, and well-placed labels 
ensures clarity and readability, facilitating quick compari-
son across different categories. For instance, LOCF, Moving 
Average, and Seasonal Decomposition are absent in both 
figures, confirming they were not used for any dataset. On 
the other hand, it is seen that Kalman filtering and Mean 
methods dominate the process.

Considering the values of RMSE values in the table and 
the fact that there are many scenarios and combinations, 
graphs of imputation techniques and estimation methods 

for sample sizes of 200, 600 and 1000 are presented in 
Figures 2-4 for clarity. 

The Transformer model is superior to the ARIMA 
and GARCH models in complete data (original data) and 
missing data completion scenarios at all imputation rates. 
Moreover, the transformer model was able to provide a 
lower RMSE value than the original data in case of 10% 
imputation. This indicates the success of imputation tech-
niques in completing missing data at low imputation rates. 

Although the GARCH model had superior results com-
pared to the ARIMA model in the absence of imputation, in 
the case of imputation, the ARIMA model performed better 
than the GARCH model for all imputation rates. However, 
contrary to this general trend, the GARCH model outper-
formed ARIMA at all imputation rates when imputed with 
Kalman Filtering under the n = 600 scenario. The GARCH 
model again performed better than ARIMA when imputed 
with NOCB, Mean, Linear, Seasonal Decomposition, and 
Kalman filter imputation methods under the n = 1000 
scenario.

Table 7. Lowest RMSE (Best Combination) Counts according to the Sampe Sizes

200 600 1000 Comments
LOCF Not applied
NOCB 2 1 Moderately used, preferred in larger datasets
Mean 3 3 4 Consistently used across all dataset sizes
Linear 1 Limited use, only in the largest dataset
Seasonal Not applied
MovAve Not applied
Regression 2 1 2 Moderately used, shows balanced usage across sizes
KalmFil 4 3 1 Frequently used, especially in smaller datasets
* LOCF: Last Observation Carried Forward, NOCB: Next Observation Carried Backward, Mean: Mean Imputation, Linear: Linear Interpolation, 
Seasonal: Seasonal Decomposition, MovAve: Moving Average Imputation, Regression: Regression Imputation, KalmFil: Kalman Filter Imputation; 200, 
600, and 1000 represent sample sizes.

Table 6. Lowest RMSE (Best Combination) Counts according to the Estimation Methods

TraMod ARIMA GARCH Comments
LOCF No counts provided
NOCB 3 NOCB has 3 counts for TraMod
Mean 7 3 Mean has 7 counts for ARIMA and 3 for GARCH
Linear 1 Linear has 1 count for GARCH
Seasonal No counts provided
MovAve No counts provided
Regression 5 Regression has 5 counts for TraMod
KalmFil 1 2 5 Kalman Filter has 1 count for TraMod, 2 for ARIMA, and 5 for GARCH
* LOCF: Last Observation Carried Forward, NOCB: Next Observation Carried Backward, Mean: Mean Imputation, Linear: Linear Interpolation, 
Seasonal: Seasonal Decomposition, MovAve: Moving Average Imputation, Regression: Regression Imputation, KalmFil: Kalman Filter Imputation; 
TraMod: Transformer Model, ARIMA: AutoRegressive Integrated Moving Average, GARCH: Generalized AutoRegressive Conditional 
Heteroskedasticity.
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Figure 2. RMSE results for n=200.

Figure 1. Counts for model types and datasets.
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Figure 3. RMSE results for n=600.

Figure 4. RMSE results for n=1000.
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Figure 5. RMSE results for AAPL.

Table 8. RMSE Results for AAPL

n = 600 0% 10% 25% 40%

TraMod ARIMA GARCH TraMod ARIMA GARCH TraMod ARIMA GARCH TraMod ARIMA GARCH
LOCF 2.7378 2.7432 12.8822 2.8462 2.8486 12.8954 3.0179 3.0193 12.9557 3.2425 3.2465 12.9787
NOCB 2.7378 2.7432 12.8822 2.8327 2.8349 12.8901 2.9586 2.9694 12.9049 3.6613 3.7292 12.9798
Mean 2.7378 2.7432 12.8822 2.7783 2.7906 12.9274 3.0725 3.0753 12.9826 3.9062 3.9561 12.9901
Linear 2.7378 2.7432 12.8822 2.7818 2.7936 12.9147 2.8193 2.8219 12.9366 2.9175 2.9812 12.9518
Seasonal 2.7378 2.7432 12.8822 2.7822 2.7963 12.9710 2.8219 2.8891 12.9846 2.8378 2.9012 12.9977
MovAve 2.7378 2.7432 12.8822 2.7957 2.7973 12.9122 2.8416 2.8529 12.9309 2.8870 2.9666 12.9494
Regression 2.7378 2.7432 12.8822 2.7928 2.8028 12.9132 2.8699 2.9871 12.9296 2.8862 3.0780 12.9809
KalmFil 2.7378 2.7432 12.8822 2.8041 2.8818 12.9060 2.8144 2.8203 12.9371 2.8329 2.8929 12.9490
* LOCF: Last Observation Carried Forward, NOCB: Next Observation Carried Backward, Mean: Mean Imputation, Linear: Linear Interpolation, 
Seasonal: Seasonal Decomposition, MovAve: Moving Average Imputation, Regression: Regression Imputation, KalmFil: Kalman Filter Imputation; 
TraMod: Transformer Model, ARIMA: AutoRegressive Integrated Moving Average, GARCH: Generalized AutoRegressive Conditional 
Heteroskedasticity
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In the application, the Transformer model consistently 
outperforms the ARIMA and GARCH models across dif-
ferent imputation methods and missing data levels, high-
lighting its effectiveness in dealing with incomplete data. 

For low levels of missing data (10%), mean imputa-
tion performs best with both the Transformer model and 
ARIMA, suggesting that conventional imputation meth-
ods are effective when data completeness is relatively high. 
However, as the level of missing data increases to medium 
(25%) and high (40%) levels, Kalman Filtering emerges as 
the superior imputation method, providing the most accu-
rate results across all models. Specifically, at high levels of 
missing data, Kalman Filtering shows the best performance 
with the GARCH model. On the other hand, for lower and 
medium missing data levels, NOCB is particularly effective 
with the GARCH model, outperforming other imputation 
methods.

The results in Table 8 and their corresponding analy-
ses are more easily interpreted with the graphs in Figure 5. 
Figure 5 presents RMSE results for the estimation models 
and imputation techniques across different levels of missing 
data in the AAPL dataset. The missing data levels are repre-
sented as percentages (0%, 10%, 25%, 40%). The RMSE val-
ues are shown for three forecasting models: the Transformer 
model, ARIMA, and GARCH. These models are assessed 
using eight imputation methods: LOCF, NOCB, Mean, 
Linear Interpolation, Seasonal Decomposition, Moving 
Average, Regression, and Kalman Filtering.

In the case of imputing 10% and 25% missing data, the 
Transformer model and ARIMA produce close and con-
sistent RMSE values. The differences between imputation 
methods become more pronounced with higher missing 
data levels. However, this pattern exhibits more volatility 
for the GARCH model. Additionally, the results from the 
Transformer model and ARIMA show close alignment. 
Moreover, as the level of missing data increases (from 10% 
to 40%), there is a noticeable increase in RMSE across all 
models and imputation methods. This trend is consistent, 
demonstrating that higher missing data levels generally 
degrade model performance.

CONCLUSION

The results show that the choice of imputation tech-
nique significantly influences the accuracy of predictions in 
time series analysis. Techniques such as mean imputation 
and Kalman filter imputation have shown reliability and 
effectiveness across different model types, while methods 
like LOCF, seasonal decomposition, and moving average 
were less utilized, potentially due to their unsuitability for 
the given data. The Transformer model shows promise as a 
predictive modeling technique, consistently outperforming 
traditional ARIMA and GARCH models in various sce-
narios. The Transformer’s self-attention mechanism allows 
it to capture long-term dependencies more effectively 
than ARIMA and GARCH models. Results emphasize the 

importance of careful consideration when dealing with 
missing data and selecting appropriate imputation methods 
to enhance the accuracy of time series analysis.

Higher percentages of missing data imputation gener-
ally lead to higher RMSE values across all models and impu-
tation methods. This indicates that imputation rate can 
significantly affect the accuracy of time series predictions, 
regardless of the modeling approach used. The decrease 
in RMSE values as the number of samples increases is an 
important indicator of the consistency of the analyses, 
aligning theoretical expectations with empirical observa-
tions. Specifically, at low levels of missing data (10%), mean 
imputation is highly effective with both the Transformer 
model and ARIMA, suggesting that traditional imputation 
methods work well when data is mostly complete. However, 
as the proportion of missing data increases (25% and 40%), 
Kalman filtering becomes the superior method, yielding the 
most accurate predictions across all models. The GARCH 
model shows more volatility in performance compared to 
Transformer and ARIMA, with Kalman filtering partic-
ularly beneficial at high missing data levels. Interestingly, 
NOCB imputation performs well with the GARCH model 
at lower and medium missing data levels.

Despite the varied application of techniques, this study 
reflects an exploratory approach to determine the best 
imputation method for different model types and data-
sets. These insights can guide future imputation strategy 
choices, emphasizing techniques that proved useful and 
exploring underutilized methods to potentially enhance 
model performance.

The Transformer model’s superiority is evident across 
all scenarios, and Kalman filtering emerges as the most 
reliable imputation method as missing data levels increase. 
One potential limitation of this study is the computational 
complexity and scalability of the Transformer model. 
Transformer’s self-attention mechanism, while powerful, 
can be computationally intensive, making it less feasible 
for very large datasets or in resource-constrained environ-
ments. Future research should identify challenges with time 
counters and real root values;   and investigate optimizations 
and alternatives for the solution. Additionally, it would be 
beneficial to further explore and evaluate the performance 
of underutilized imputation methods, such as seasonal 
decomposition and moving average, to determine their 
potential effectiveness in different contexts. Investigating 
the impact of varying sample sizes on the robustness of 
imputation methods and predictive models can also pro-
vide deeper insights. 
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