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ABSTRACT

We consider an initial-boundary value problem for a fourth-order nonlinear parabolic equa-
tion with constant coefficients. Our primary focus lies in establishing a priori estimates for the 
solution to this equation, with a particular emphasis on its continuous dependence on both 
the initial data and parameters. Using energy estimates, we establish the continuous depen-
dency for both the solution and its gradient concerning the fourth-order nonlinear parabolic 
equation.
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INTRODUCTION 

Fourth-order nonlinear parabolic equations have been 
used in various scientific fields, such as material science 
and fluid dynamics.

For instance, Cahn-Hilliard equations, introduced by 
John W. Cahn and John E. Hilliard in 1958 [1], have been 
used to study phase separation in binary alloys. These equa-
tions are employed for studying the evolution of a homo-
geneous mixture of two components over time to form 
distinct phases. The basic idea behind the Cahn-Hilliard 
equations is to observe how thermodynamic forces when 
introduced to a system with a flow structure, lead to the 
formation of distinct phases. It can be described as a mass 
balance law with a phase flux 𝒥 and a mobility function 
M(ϕ) that characterizes the rate at which the system can 
change, as follows:

  
(1)

where ϕ represents concentration, the term  represents 
the chemical potential, which drives the phase separation.

The Cahn-Hilliard equation [1] is a specific example of 
a fourth-order parabolic partial differential equation that 
describes the evolution of the concentration over space 
and time. In particular, Calderon and Kwembe [2] worked 
with Cahn-Hilliard equations and used these equations for 
image analysis. Elliott, Songmu, and Garcke, in papers [3], 
[4], also have worked on the existence and stability of solu-
tions to Cahn-Hilliard equations.

Thin film equations represent another example of 
fourth-order nonlinear parabolic equations, and they have 
been studied to analyze the motion of a very thin layer of 
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viscous incompressible fluids along an inclined plane, such 
as coating, draining of foams, and the movement of contact 
lenses.

A common form of the thin film equation is the 
fourth-order degenerate parabolic equation and can be 
described as follows (see [5,6]):

  
(2)

 

where h= h(x,t) represents the height of the thin film, and 
M is the mobility function that characterizes how fast the 
film evolves. One of the studies related to thin film equa-
tions is the work by Xu and Zhou [7] and [8]. Their paper 
has examined the existence and stability of solutions to thin 
film equations.

On the other hand, in the differential equation

of the motion for the evolution of the surface profile u(x,t), 
Zangwill [9] used non-equilibrium current  Jne in a power 
series involving the surface slope ∇u and various powers 
and derivatives thereof to model epitaxial roughening in 
several different cases, also look at [10]. Here, the Gaussian 
random variable η(x,t) describes the fluctuations in the 
average deposition flux. Moreover, Ortiz et al. [11] pro-
posed a continuum model for epitaxial thin film growth, 
which accounts for nucleation and the transition to island 
growth and for the subsequent roughening and coarsening 
of the surface profile. They modify and present the model 
in [9] from different aspects.

One of the recent works on thin equations is by King 
[12]. He characterized nonnegative solutions of general-
ized thin equations and used moving boundary conditions. 
Specifically, King et al. [13] used a fourth-order parabolic 
equation to model epitaxial nanoscale thin film growth, 
which had another major interest among researchers in 
material science recently. They worked on the existence, 
uniqueness, and regularity of solutions to the equation in a 
suitable function space.

The model was derived by the following fourth-order 
nonlinear evolution equation in [13]:

  (3)

where α, β, γ are positive constants and g(x,t) denotes the 
deposition flux. Physical interpretations of special deriv-
atives of the height u(x,t) of a film in epitaxial growth in 
equation (3) are as following:
• γΔu is diffusion due to evaporation–condensation [14, 

15],
• αΔ2u is capillarity-driven surface diffusion [15,16],
• β∇ .(|∇u|2∇u) is hopping of atoms [10].

Liu [17] then studied the regularity of solutions for the 
fourth-order parabolic equation. He worked on the prob-
lem in King’s paper for a one-dimensional case.

The model was worked considering different versions 
in [18] and [19]. For example, Polat [18] established a finite 
time blow-up result for a thin-film equation including a 
diffusion term, a fourth-order term, and a nonlocal source 
term under the periodic boundary conditions. Bertsch et al. 
[20] also examined how a thin layer of liquid moves over a 
dry surface due to capillary forces, especially when the liq-
uid only partially wets the surface. The behavior of the liq-
uid film was described by a class of fourth-order degenerate 
equations. They proved the existence of the weak solutions 
to this equation in their paper.

There are studies on the model with variable exponents 
looking at the behavior of solutions asymptotically. For 
example, Zhang and Zhou [21] established the existence, 
uniqueness, and long-time behavior of weak solutions 
for the initial-boundary value problem of a fourth-order 
degenerate parabolic equation with the variable exponent 
of nonlinearity. Antontsev and Shmarev [22] also worked 
on the finite time blow-up phenomenon of the solutions to 
the nonlinear parabolic problem of fourth order with vari-
able exponents of nonlinearity and their equation includes 
coefficients depending on both x and t. These coefficients 
are assumed to be bounded from below and above. On the 
other hand, Shangerganesh et al. [23] used difference and 
variations methods to study the existence and uniqueness 
of weak solutions to fourth-order parabolic equations with 
variable exponents.

Other studies consider coefficients depend on time. 
Philippin and Piro [24] work on the finite time blow-up phe-
nomenon of the solutions to the nonlinear parabolic prob-
lem of the fourth order with time-dependent coefficients.

Recent studies on models with constant exponents vary. 
For instance, Zhang et al. [25] studied a fourth-order par-
abolic equation modeling epitaxial thin film growth, and 
Han [26] in his paper focused on the solutions to an initial 
boundary value problem for a fourth-order parabolic equa-
tion with a general nonlinearity. They obtained the decay 
estimate of weak solutions and provided upper and lower 
estimates for the blow-up time. Additionally, Jansen et al. 
[27] analyzed the long-time behavior of positive weak solu-
tions to quasilinear doubly degenerate parabolic problems. 
These problems are of fourth order and involve models for 
power law fluids and Ellis-fluids. You can also refer to the 
work on a double degenerate fourth-order parabolic equa-
tion with a nonlinear second-order diffusion by Liang et 
al. [28]. They studied the existence of weak solutions for 
the boundary degeneracy problem. Some related numerical 
studies on fourth-order parabolic equations can be found 
in references such as [29-34] and will not be discussed 
further in this paper. There is a vast body of work on the 
existence and uniqueness of solutions to various specific 
types of fourth-order nonlinear parabolic equations; see 
[35-37]. Many of these works employ numerical methods 
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and regularization techniques to establish existence and 
uniqueness. In contrast, we focus on establishing con-
tinuous dependence and a priori estimates using energy 
estimates.

We study on the following initial-boundary value prob-
lem of fourth-order nonlinear parabolic equation for u(x,t):

  (4)

  (5)

  (6)

where α, β and γ are positive constants, Ω is a bounded 
domain in ℝn with a smooth boundary ∂Ω and p > 1.

In this current work, we consider coefficients as pos-
itive constants. We study the continuous dependence of 
solutions of the homogeneous Dirichlet problem for the 
parabolic equation (4) above.

We employ the notation

 

where

 

Let W° 1,p(Ω) be the space of functions in W1,p(Ω) with 
vanishing traces on the boundary. For any 1 ≤ p ≤ n, we 
denote its Sobolev conjugate exponent by p*, i.e., .

We recall Sobolev-Poincaré’s inequality.

  (7)

where the positive constant Cp depends on p, n and the 
domain Ω.

Throughout this paper, we assume that

  (8)

This paper is organized as follows. In section 2, we 
derived a priori estimates on ∇u and Δu that will be used 
in our subsequent analysis. Section 3 proves the continu-
ous dependence of the solutions on the coefficient α while 
sections 4 and 5 work on the case of β and γ-dependency, 
respectively.

A Priori Estimates
Lemma 1. Let u(x,t) be solution of (4), (5) and (6). Then 

one has

  (9)

where A1, A2 > 0 depends on the parameters of the fourth 
order parabolic equation (4) and the initial value f.

Proof. Multiplying (4) by u and integrating over Ω, using 
integration by parts, we have

  (10)

Now multiplying (4) by ut and integrating over Ω, we 
obtain

  
(11)

Adding (10) and (11), we have

  (12)

where 
Integrating (12) in t, we can derive that

  (13)

Thus

  
(14)

which, by defining  and , implies 
(9). 

Continuous Dependence On α 
In this section, we will investigate how the solution of 

the system (4), (5) and (6) depends on the coefficient α of 
the term Δu. For this purpose, assume that u is the solution 
to the following problem:

  (15)

  (16)

  (17)

and v be the solution for

  (18)

  (19)

  (20)

Define w = u - v, and α- = α1- α2. Then w is the solution of

  
(21)

  (22)

  (23)
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Theorem 2. Assume (8). One has

  (24) 

where constants M3 > 0 and A3 > 0 depends on initial data 
(17), (20), and parameters of (21).

Proof. Multiplying equation (21) by wt, integrating over 
Ω, and using the integration by parts, we find that

  
(25)

where . Then

  
(26)

Applying Cauchy-Schwarz and Cauchy’s inequalities to 
the first term on the right-hand side of (26), we have the 
following:

   (27)

For the second term on the right-hand side of (26), by 
Mean Value Theorem and Generalized Hölder’s inequality 
for powers , 2 and n, we obtain

  

(28)

Now, under the assumption , applying Hölder’s 
inequality to the right-hand side of (27) yields

  

(29)

where C1 > 0 is a constant depends on n, p and the space. 
Now, applying Sobolev’s Inequality and then using (9), we 
can write

  

(30)

where  and C2, C3 are Sobolev con-
stants. Lastly by Cauchy’s inequality, we have

  
(31)

where . Combining (26), (27), (31), we have

  (32) 

where . Solving differential equation 
(32) yields the desired result (24).

Continuous dependence on β
In this section, we establish the continuous dependence 

of the solution of problem (4), (5) and (6) on the coefficient 
β of the term ||Δ2u||. Let u and v be solutions of the follow-
ing problems:

  (33)

  (34)

  (35)

and

  (36)

  (37)

  (38)

respectively. Define w = u - v, and β- = β1- β2. So w is the 
solution of

  (39)

  (40)

  (41)

Theorem 3. For the solution w of problem (39),(40) and 
(41), one has 

  
(42)

Proof. Multiplying (39) by w and integrating over Ω, we 
have

  
(43)

Then we can write (43) as following,

  
(44)

Estimating first term on the right-hand side of (44) by 
Cauchy-Schwarz and ε-Cauchy inequalities, we have
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  (45)

Following the same steps with Theorem 2, we have the 
following estimate for the second term on the right-hand 
side of (44),

  
(46)

Combining (44), (45) and (46), we have

  

(47)

Choosing  and assuming that α > M2, we have

  (48)

Solving this inequality, we get (42).

Continuous Dependence On γ
Let u and v be solutions of the following problems:

  (49)

  (50)

  (51)

and

  (52)

  (53)

  (54)

respectively. Define w = u - v, and γ- = γ1- γ2. So w is the 
solution of

  (55)

  (56)

  (57)

Theorem 4. Assume (8). One has

  (58) 

where A4 depends on initial data (51), (54) and parameters 
of (55).

Proof. Multiplying (55) by wt and integrating over Ω, we 
obtain

  

(59)

Then we can write (59) as

  

(60)

where . Similar to (31), we 
can estimate the first term on the right-hand side of (60) 
as following

  
(61)

where M4 depends on γ1, Sobolev constants and other 
parameters of equation (55). Next, we estimate the second 
term on the right-hand side of (60). We will use Young’s 
inequality with ε = 1:

  
(62)

Now under the condition that , we use the 
Holder’s inequality on the first term of the right-hand side 
of (62) and so we can use Sobolev-Poincaré’s inequality (7) 
to obtain

  
(63)

with C5 > 0 depends on Sobolev constant and the space Ω.
Then combining (60), (61), (63) together with (9), we 

have

  (64)

where . Then, by solving (64), we get 
(58).

CONCLUSION 

In this paper, we have shown that the fourth-order 
nonlinear parabolic equation (4), with three parameters 
α, β and γ, has solutions that depend continuously on 
these parameters. Our investigation primarily focuses on 
a homogeneous Dirichlet problem, and our analysis relies 
on energy estimates for the derivatives of the solutions. 
This analysis depends on a priori estimates for ∇u and Δu. 
While our findings significantly contribute to understand-
ing the behavior of solutions to the given equation, they 
come with certain limitations and can serve as an outline 
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for future research in this field. For instance, we have 
focused on Dirichlet boundary conditions, but exploring 
different conditions, such as Neumann or Robin types, 
could provide valuable insights. Additionally, future stud-
ies could further investigate the sensitivity of solutions to 
variations in the parameters α, β and γ. For example, one 
could discuss the structural stability concerning these coef-
ficients. Furthermore, integrating numerical simulations 
or experimental validation could strengthen the validity of 
our conclusions and offer practical insights for real-world 
applications.
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