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ABSTRACT

Identification of the fracture mechanism in weld joints is essential for ensuring weld quality, 
reduce weld defects, along with enhancing the welding process. Therefore, an attempt is made 
to use image processing techniques such as wavelet transformation, Gray-Level Co-occur-
rence Matrix (GLCM), and Local Binary Pattern (LBP) to develop an automatic identification 
system for brittle, elongated, and equiaxed ductile fracture modes in weld joints. The GLCM 
technique employ Haralick functions, while the LBP and wavelet transform techniques use 
histograms and Gabor filters, respectively for extracting features in the fracture images. Classi-
fication based on textural features (granular or fiberous) was performed using support vector 
machine. LBP achieved superior accuracy of 96%, followed by GLCM. Further research could 
explore real-time implementation and expand the dataset to enhance the system’s robustness 
and applicability.
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INTRODUCTION

Welding, an indispensable process in industries, 
encompass a wide array of processes tailored to suit spe-
cific applications viz., automotive, aerospace, construction, 
and manufacturing. The welding methodologies such as arc 
welding, gas welding, resistance welding, or laser welding, is 
chosen based on material, design, and environmental con-
ditions [1]. The efficient welding operation hinge upon the 
meticulous optimization of parameters to attain enhanced 
weld quality, weld strength, and structural integrity thereby 
defects and production costs are reduced [2]. The intricate 

relationship between welding parameters and weld strength 
is dictated by the nature of failure. The failure mechanisms, 
failure modes, and the impact of welding parameters are 
determined by analyzing the fracture images [3]. 

In this consequence, automatic categorization of the 
fracture mode is significant, and is characterized by the 
nature of texture formed on the surface. The most prevalent 
fracture modes in the weld joints subjected to monotonic 
loading are brittle (B), elongated ductile (El) and equiaxed 
(EQ) ductile [3]. The brittle fracture displays a smooth and 
flat texture that appears to be glossy or shiny. Meanwhile, 
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the ductile fracture exhibits a rough fibrous texture and 
a stable propagation of grains. The fiberous grains with 
spherical or cuboidal shapes without any discernible elon-
gation along any axis are equiaxed ductiles, whereas the 
grains that are elongated along any axis are termed as elon-
gated ductile. However, categorization of fracture modes in 
scanning electron microscope (SEM) images is tedious, as 
they are uneven, and contain variable illumination levels 
across the image [4]. Traditionally, visual inspection which 
is simple and quick is employed to classify the fracture 
modes. However, it is prone to bias and hence unsuited for 
quantitative analysis. In this context, the use of image pro-
cessing techniques is an effective approach to automatically 
detect and classify the fracture modes [5]. 

The integration of neural network based artificial intel-
ligence (AI) techniques revolutionized welding by enabling 
predictive modeling, process control, and defect detection 
with higher accuracy [6]. Neural network based techniques 
aids in analyzing datasets comprising welding parameters, 
material properties, and defect characteristics and facilitates 
real time decision making and adaptive control. Recently, 
researchers adopted convolutional neural networks (CNNs) 
and other deep learning architectures, capable of identi-
fying and classifying defects such as porosity, cracks, and 
weld discontinuities in real time [7]. The relevant research 
pertaining to the application of image processing on frac-
ture analysis is summarized in the next section.

Related Work
In an earlier study, Weng attempted to mathematically 

define fractures by edge detection [8]. In this context, Souza 

et al. introduced the machine learning algorithm (GLCM) 
to identify the ferritic steel morphologies in the low carbon 
steel weld fusion zone [9]. Meanwhile, Dutta et al. success-
fully extended the GLCM technique to identify fracture 
modes in austenitic stainless steel based on texture varia-
tion [10]. In another study, Naik and Kiran employed the 
LBP technique to develop a mechanism for automatic iden-
tification of fracture surfaces [4]. Lu et al. recently com-
pared experimental and analytical fracture classification 
methods in metals and found that the analytical method 
(Ridgelet-Kernel Principal Component Analysis) extracts 
non-linear data more effectively [11]. In a different attempt 
of classifying three cast iron (malleable, white, and ductile) 
grades using GLCM and LBP techniques, Gajalakshmi et al. 
advocated the LBP method for superior classification [12]. 

To successfully detect friction stir welding defects such 
as voids, cracks, grooves, flash, and keyholes, Ranjan et 
al. utilized the image pyramid and image reconstruction 
techniques [13]. They deployed support vector machines, 
neural networks and k-NN in weld radiography images. 
Likewise, Moreno et al. used the random forest method to 
successfully classify porosity in aluminum metallographic 
images [14]. The salient research contributions in weld 
defects using image processing techniques are summarized 
in Table 1.

Although image processing was applied in the past to 
identify defects and classify fractures in metals, studies on 
the detection and classification of fractures in weld joints are 
scarce. Hence, weld fracture images of similar and dissim-
ilar alloys are classified using machine learning techniques 

Table 1. Methodologies and research gaps in weld defect analysis

Authors Methods Approaches Difficulties
Valentin et al. [15] GLCM and LBP in weld defect 

detection
Identified weld defects with 95% accuracy. 
GLCM provided better discrimination of 
defect textures. 

Limited focus on analyzing 
the effect of various wavelet 
functions on noise reduction

Bastidas-Rodriguez 
et al. [16]

Fracture analysis of metal 
structures Using GLCM and 
wavelet transform

Wavelet transform enhanced the ability to 
detect micro-cracks

Limited analysis

Jayasudha and 
Lalithakumari [17]

Weld defect detection using 
GLCM and Wavelet Transform

Successfully detected weld defects with 93% 
accuracy. Wavelet captured subtle variations 
in texture.

Role of LBP in feature 
extraction is not explored

Patil and Thote [18] Analysis of microstructure 
defects in welds using GLCM 
and wavelet transform

 Identified microstructural defects in welds 
with 92% accuracy. 

Limited investigation into 
the effect of varying GLCM 
parameters on feature 
extraction 

Prasad et al. [19] Weld defect detection using 
GLCM and LBP features 
enhanced by wavelet transform

Detected weld defects with 94% accuracy. 
Combined GLCM and LBP features provided 
better discrimination of defect patterns. 
Wavelet transform improved image clarity.

Lack of investigation into 
the effect of different wavelet 
thresholding techniques on 
noise reduction

Karthikeyan et al. 
[20]

Texture Analysis of Weld 
Fractures using GLCM, LBP, 
and Wavelet Transform

Integrated GLCM, Combined use of GLCM, 
LBP, and Wavelet transform provided 
superior texture characterization.

Limited exploration of the 
computational efficiency of the 
combined feature extraction 
methods
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such as Wavelet transform, GLCM, and LBP, and the results 
are presented. 

Wavelet transformation captures both global and local 
texture features effectively making it suitable for identifying 
subtle defects such as cracks, pores, and weld bead irreg-
ularities. Moreover, wavelet-based features are robust to 
noise and illumination variations, ensuring reliable defect 
detection in challenging environments. Likewise, GLCM 
is a texture analysis method that characterizes the spatial 
relationships of pixel intensities in an image. By quantifying 
the occurrence of pairs of pixel intensity values at specified 
spatial offsets, GLCM generates a comprehensive set of sta-
tistical features that encapsulate textural properties such 
as contrast, homogeneity, and entropy. These features are 
particularly valuable for discriminating between different 
materials and surface textures, making GLCM well-suited 
for defect detection in welding images. By encoding the 
local texture variations into binary patterns, LBP facilitates 
the extraction of discriminative texture features robust to 
changes in illumination and noise. In the context of defect 
detection in welding images, LBP offers several advantages, 
including computational efficiency, simplicity of imple-
mentation, and insensitivity to image transformations [12].

MATERIALS AND METHODS

• Two hundred images of each fracture mode are collected 
from Annamalai University, India to create a dataset.

• In addition, the fracture images of tensile (ASTM E-8), 
and ram tensile (MIL-J-24445A standard) and the shear 
(ASTM B 898 standard), and Charpy impact (ASTM 
E23-16b standard) obtained from our previous explo-
sive cladding [21-23] and laser butt welding [24, 25] are 
added to the dataset.

• The sample fracture images comprising brittle, elon-
gated, and equiaxed ductile are depicted in Fig.1 (a-i). 
In weld joints, brittle fractures have a distinct shiny, flat 
surface that often demonstrates distinct signs of crack 
propagation. The stretched appearance of elongated 
ductile fractures in the direction of applied force indi-
cates plastic deformation before collapse. The shape 
of an equiaxed ductile fracture is more uniform and 
rounded, indicating that deformation occurred uni-
formly in all directions [26-28]. 

• Machine learning techniques which involve three steps 
viz., fracture image collection, feature extraction, and 
classification, are implemented on the acquired fracture 
images [29]. 

• Subsequently, the fracture images are converted into a 
gray scale images to increase the contrast, during the 
preliminary pre-processing stage. 

• In addition, random variations in pixel values in the 
image are removed and resized to 240 X 240 pixels. 

• Finally, feature extraction using the wavelet trans-
form, GLCM, and LBP techniques is implemented by 

a Matlab 2020b code performed in a Intel Core-i5 per-
sonal computer.

• The fractures in the weld fractograph images are char-
acterized by the prevalence of different textures viz. 
progressive or radial or river-like ones. 

• Subsequently, a Support Vector Machine (SVM) is 
employed to categorize the extracted features and the 
classification performance is measured using a confu-
sion matrix and F-score.

• The methodology adopted in the present study is sche-
matically shown in Fig.2 and the description of the 
attempted feature extraction algorithms is given below.

Wavelet Transform
A sinusoidal signal with a specific frequency and ori-

entation modulated by a Gaussian wave is the basis of a 2D 
Gabor filter. A bank of Gabor filters with various orienta-
tions is used to analyze the texture or to extract features 
from an image. Real and imaginary sections of the filter are 
used to represent orthogonal directions. The two sections 
may be combined into a complex number or utilized sep-
arately [30].

Gray Level Co-Occurrence Matrix
The Grey Level Co-occurrence Matrix (GLCM) exe-

cutes an operation following the second-order statistics in 
the images, to identify the textural relationship between 
a pair of pixels. GLCM analyzes different combinations 
of pixels and establishes the frequency of the pixel pairs 
based on brightness [15-19]. Based on the gray value of 
the image, the GLCM characteristics are displayed as a 
matrix having a similar number of rows and columns. The 
components of the matrix depend on the frequency of 
the two specific pixels and pixel pairs differ with respect 
to their neighborhood. Depending on the gray value of 
the rows and columns, the values of the matrix hold the 
second-order statistical probability values. The transient 
matrix is quite large if the intensity values are larger [20]. 
GLCM features such as autocorrelation, contrast, cor-
relation, cluster prominence, cluster shade, dissimilar-
ity, energy, entropy, homogeneity, maximum probability, 
sum of squares, sum average, sum variance, sum entropy, 
difference variance, difference entropy, information mea-
sure of correlation, inverse difference normalized, and 
inverse difference moment normalized are used in this 
study. These features are used to construct a GLCM fea-
ture matrix that can successfully represent an image with 
fewer parameters.

Rotation Invariant and Histogram Fourier LBP 
LBP describes the texture of an image based on the sign 

variations between neighboring and center pixels. A binary 
code is generated for each pixel in the image by threshold-
ing its neighbor with the central pixel value, termed binary 
patterns. The neighboring pixel becomes “1” if its value is 
greater than or equal to the threshold value and “0” if its 
value is lower. Subsequently, the frequency values of binary 
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patterns are calculated using the histogram. Each pattern 
indicates a potential binary pattern detected in the image. 
The number of pixels utilized in the LBP computation 
determines the number of histograms [19].

SVM for Classification
Support vector machine (SVM), a supervised machine 

learning algorithm, classifies the image by training and test-
ing of data, and plays a vital role in image classification. A 
classification task involves training and testing of data that 
contain some data instances. Each instance in the train-
ing set contains one target value and several features. The 
objective of SVM is to produce a model that predicts the 
target value of data instances in the testing set, with features 
alone as input [31]. Target values or known labels indicate 
whether the system is performing satisfactorily or not, 
which points to a desired response, validating the accuracy 
of the system, or be used to help the system to learn and 
perform in a desired way.

Performance Measurement
The correlation between the predicted and the actual 

image that occurs is reported as either positive (P) or 
negative (N). The three weld fracture modes viz., brittle, 
elongated ductile, and equiaxed ductile are distinguished 
by labels G1, G2, and G3 respectively. In addition to the 
above two classifications, a true positive (TP) is counted if 
the model predicts the positive, a false negative (FN) is an 
outcome where the model predicts the negative correctly. A 
true negative (TN) is counted if the occurrence is negative 
and is designated as such; a false positive (FP) is counted if 
the model incorrectly predicts the positive class. The mea-
surement parameters such as precision (closeness of two or 
more measurements to each other), accuracy (closeness of 
the measured value with the true value), recall (marginal 
mean consistency error), specificity (probability of a neg-
ative result, conditioned on the individual truly being neg-
ative.) and F-score (a measure of a model’s accuracy on a 
dataset) are calculated by [12].

Figure 1. Weld fracture images (a) Brittle (b) Equiaxed ductile and (c) Elongated ductile.
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RESULTS AND DISCUSSION

Feature Extraction by Wavelet Transform
The feature identifies textures in an image based on the 

prevailing overall or average spatial relationship among the 
pair of pixels in the gray tones at a certain distance and angle 
[32]. By requantizing the original image into a gray image, 
a feature with 32 levels is created. Identical to the original 
images, wavelet transform creates pixels with a coefficient 
of 240x240. The coefficients in the matrix determine the 
continuity of pixels at angles 0, 45, 90, and 135 degrees. The 
feature extraction in wavelet transform is implemented by 
determining the difference of mean value in each row of the 
image. If the difference in mean value is less than 5, conti-
nuity prevails and hence is marked as “1”. If the mean value 
is greater than 5, it is set to zero, indicating the absence of 
continuity. The features extracted by wavelet transform in 
brittle, equiaxed ductile and elongated ductile weld fracture 
are shown on the left side of the fracture images in Figs.3-5.

Wavelet Transform captures the continuity of pixels and 
highlights the variations prevailing in the mean values of 
the gray image and also analyzes the coefficients at differ-
ent angles (Brittle fracture: 1818028, 3453311, 4512326, 
3930515, 2188499, 188028, 3453311, 452326, 3930515). 
This method is capable of distinguishing brittle, equiaxed 
ductile, and elongated ductile fractures, providing valuable 
information about fracture morphology based on micro-
structural features.

Feature Extraction by GLCM
In GLCM, the pre-processed gray image is segmented 

by edge detection and thresholding. Subsequently, bound-
aries are thinned and the GLCM values are calculated at 
four different angles (00, 450, 900 and 1350) by the gray 
co-matrix function, which represents the horizontal inti-
macy between pixels. The four key Haralick [33] features 
viz., energy, entropy, correlation, and contrast, displayed 
on the 3 x 3 sample matrix [21:25 1:5] extracted from each 
image are shown on the sides of the microstructure in 

Figure 2. Methodology.

Figure 3. Features extracted from a brittle weld fracture image.
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Figs.3-5 (Elongated ductile: 0.025206, 3.758964, 10674.77, 
23.44534,.496931, 8.869748, 51.1394, 2.602962, 3.863541). 
The variation in correlation, energy, entropy, and dissimi-
larity features exhibit slight variations across the three weld 
fracture modes. Hence, the additional thirteen Haralick fea-
tures such as normalization energy, sum of variance, infor-
mation measure of correlation, sum variance, sum average, 
different variance, inverse different moment, and difference 
entropy attributes are calculated to characterize the image 
textures and to prepare a feature set of the weld fracture 
modes. A deeper analysis of texture variations across dif-
ferent fracture modes is rendered possible by additional 
computation of Haralick features, which increases the dis-
criminative ability of GLCM.

Feature Extraction by LBP
In LBP, a circle is placed on the input gray image and the 

values of the center pixel are compared with the surrounding 
eight pixels prevailing at an equal angle of 45 degrees (left-
top, left-middle, left-bottom, right-top, etc.). If the value of 
the neighboring pixel is larger or equal to the central pixel, 
“1” is marked, otherwise, “0.” Thereby, eight decimal values 

are obtained from each circle of an input image, yielding 
238 X 238 values. The binary code obtained is considered 
as the binary pattern. After obtaining the binary values, 
the generated circle is moved from one region to another 
with the aid of the bit shift function. The mean value of the 
binary code obtained in the whole image (Equiaxed dimple: 
0.09286, 0.002242, 0.044742, 0.002149, 0.069487, 0.064296, 
0.003799, 0.009393, 0.001123) is shown on the right side 
of the fractographs (Figs.3-5). If there are no more than 
two 0-1 or 1-0 transitions, LBP is referred to as uniform. 
Uniform patterns are more stable and less susceptible to 
noise, hence yielding credible estimates from small num-
bers of samples [34]. Ojala et al. [35] categorized texture 
based on the neighboring eight and sixteen pixels, observed 
90% and 70% uniform patterns, respectively. However, the 
pixels having more than two transitions (non-uniform pat-
terns) and groups are not considered in this study.

After obtaining values from the whole image, a histo-
gram is computed based on the values obtained on the whole 
image. The histogram highlights the frequency of binary 
patterns in the chosen image. To increase the extraction 

Figure 5. Features extracted from equiaxed ductile weld fracture image.

Figure 4. Features extracted from an elongated ductile weld fracture image.
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speed and performance and to reduce the dimensionality 
consistent patterns are used to describe textures.

After execution, the original weld fracture image is 
rotated by 90o, and the same steps are repeated to acquire 
an additional 59 uniform pattern image features. The Fast 
Fourier Transform (FFT) determines the 38 most significant 
features, after removing repetitive and insignificant charac-
teristics that describe the image texture. The integration of 
FFT further enhances the feature extraction by identifying 
the most significant patterns in the fracture image [36]. By 
focusing on repetitive and high-impact characteristics, FFT 
streamlines the feature vector and reduces dimensionality, 
facilitating more efficient classification of weld fracture 
modes. This highlights the importance of feature selection 
in optimizing the performance of support vector machines 
(SVM).

Training and Evaluation
The weld fractures are represented as Grade 1 for brittle 

(weld fracture without appreciable prior plastic deforma-
tion), Grade 2 for elongated ductile (formation and collec-
tion of microvoids along the granular boundary of the alloy), 
Grade 3 for equiaxed ductile (spherical depressions that 
coalesce normal to the loading axis). The SVM classifier is 
trained via the features obtained from the wavelet, GLCM, 
and LBP techniques utilizing the SVMTorch tool employing 
the leave-one-out (LOO) algorithm in the K-fold strategy. 
As suggested by Di Martino and Sessa [37], three alternative 
combinations of training and testing were performed using 
threefold methods. Eighty percent of the 600 images in the 
database are utilized for training, while the remaining 20% 
are used for testing. After training and testing, the effective-
ness of the model is assessed by evaluating its accuracy.

The confusion matrix, which requires two dimensions, 
was employed for determining the values of FP, TP, TN, 
and FN. The first dimension is the actual grade determined 
by human experts (as established by manual inspection), 
and the other is the outcome of the prediction. A test set 
of features that were left out of the training set is used to 
assess the classifier’s performance. So, the classifier runs 
five times using the K-fold approach, taking 120 images 

from the database each time. The overall accuracy of the 
model is determined as the average of the cross-validations. 
The confusion matrix (Table 2) illustrates the classification 
effectiveness of the developed approach concerning each 
weld fracture mode.

The ability to identify weld fracture modes plays a vital 
role in ensuring structural reliability and safety of the weld 
joints.The proposed feature extraction methods provide 
new insights into the different weld fracture images and has 
its own merits and demerits. The optimal feature extraction 
method is chosen based on its classification accuracy. 
However, other criteria such as ease of use, interpret the 
results, efficiency, and processing times have to be consid-
ered as well.

The wavelet transform predicts 75, 74 and 76 percent of 
the 600 images classified into the three weld fracture modes 
(Table 3: G1, G2, and G3). Due to skewed image representa-
tion and inadequate feature extraction to detect microscopic 
changes, brittle fracture is erroneously identified as ductile 
fracture. The inability of the model to capture the subtle 
differences between elongated and an equiaxed ductile 
fracture is the reason for the misclassification of elongated 
ductile images as equiaxed ductile fractures. In the wavelet 
transform, about 25% of the images were incorrectly cate-
gorized. The lower performance of wavelet transform is due 
to the slower shift sensitivity, poor directionality and lack of 
phase information. Meng et al [38] while performing image 
reconstruction observed similar results. The classification 
performance of the GLCM and LBP techniques, however, 
is higher than 90%. The F-score of the GLCM technique 
is 97, 94 and 94 percent in the detection and classification 
of three weld fracture modes, respectively. With respect to 
the GLCM’s prediction performance, roughly 3% of brittle 
weld fractures are incorrectly identified as equiaxed duc-
tiles or elongated ductile weld fracture modes, whereas 
6% of equiaxed ductiles are incorrectly identified as brittle 
weld fractures or elongated ductile weld fracture modes. 
Moreover, LBP’s classification performance (Table 3) is 
more accurate because it yields 97, 95, and 97 percent accu-
rate predictions, due to its robustness to gray scale changes. 

Table 2. Performance of weld fracture mode classification

Feature technique Prediction/Actual B El EQ
Wavelet B (G1) 170 20 10

El (G2) 15 165 20
EQ(G3) 15 15 170

GLCM B (G1) 190 5 5
El (G2) 7 187 6
EQ(G3) 3 8 189

LBP B (G1) 194 3 2
El (G2) 6 190 5
EQ(G3) 0 7 193
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The higher accuracy of LBP is consistent with the studies 
of Garg and Dhiman [39]. The misclassification reduces to 
3% and 5% respectively as the prediction of the brittle and 
elongated ductile is more accurate (97.0%). LBP captures 
texture variations at a finer scale, particularly in regions 
with complex microstructures. The emphasis on uniform 
patterns improves the robustness of texture analysis, mak-
ing LBP a valuable tool for detecting subtle changes in weld 
fracture textures. The sample of accurate classification and 
misclassification, performed by the human expert, in each 
fracture mode is presented in Fig. 6.

After the confusion matrix, the classification perfor-
mance is measured by parameters such as accuracy, F-score, 
precision, recall, and specificity [40]. The performance of 
weld fracture mode classification using wavelet, GLCM, and 
LBP are displayed in Table 2 and Table 3. The accuracy of 
classification by wavelet, GLCM and LBP are 85%, 90%, and 
96% respectively (Fig.7a). In addition, the processing time of 
wavelet, GLCM, and LBP are (<0.5 s), as shown in Fig.7b. 
The closer predictions make the machine learning models to 
be used during weld joints fracture mode classification. By 
leveraging the complimentary abilities of GLCM, LBP, and 
wavelet transform, researchers can create robust models in 
the near future. These developments will eventually increase 

Table 3. Performance metrics

Feature technique Grade Precision Recall Specificity F-score
Wavelet B (G1) 73 73 74 75

El (G2) 76 76 75 74
EQ(G3) 78 78 78 76

GLCM B (G1) 97 98 98 97
El (G2) 93 94 97 94
EQ(G3) 94 95 98 94

LBP B (G1) 99 99 98 97
El (G2) 94 94 97 95
EQ(G3) 95 95 96 97

Figure 6. Classified and misclassified fracture images.

Figure 7. (a) Accuracy and (b) computational time of pro-
posed techniques.
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safety and dependability in engineering systems by having a 
substantial impact on quality control, defect identification, 
and failure analysis in welding applications.

CONCLUSION 

Three distinct kinds of fracture modes in weld joints 
are classified using machine learning techniques: Wavelet, 
GLCM, and LBP. GLCM and LBP techniques determine the 
weld fracture mode in a weld joint with an efficiency of 90% 
and 95% respectively. Of the two techniques, LBP is supe-
rior owing to its ability to capture fine texture variations in 
complex microstructures. The F-score of wavelet transform 
ranges between 74 and 76, the same for the GLCM and 
LBP techniques are higher than 90, indicating their effec-
tiveness. The computational time for LBP is much less and 
holds the potential for automating the process. 

The future scope can be expanded by considering 
potential avenues for developing methods for real-time 
implementation of the classification algorithm and allowing 
for automated detection and classification of weld fracture 
modes during welding process. Create frameworks to inte-
grate algorithm into the workflow processes. Collaborate 
with industry to validate the performance of the classifica-
tion algorithm in real-world scenarios.

NOMENCLATURE 

B Brittle
EI elongated ductile
EQ equiaxed ductile
FN False Negative
FP False Positive
G1 brittle
G2 elongated ductile
G3 equiaxed ductile
GLCM Grey Level Co-occurrence Matrix
NN k-Nearest Neighbor
LBP Local Binary Pattern
LOO Leave-One-Out
N Negative
P Positive
SDSS Super Duplex Stainless Steel
SEM Scanning Electron Microscope
SVM Support Vector Machine
TN True Negative
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