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ABSTRACT

In the current paper, estimation of the unknown parameters of the Gompertz distribution is 
considered using different methods of estimation based on simple random sampling (SRS), 
ranked set sampling (RSS), and folded ranked set sampling (FRSS). Methods of estimation 
will be considered including maximum likelihood (ML) and Bayes estimation. A compre-
hensive Monte Carlo simulation study is carried out to compare the resultant estimators via 
their biases and relative efficiencies (RE). A real data example is presented for illustration. The 
uniqueness of this study is that there is no parameter estimation study based on RSS and FRSS 
under the Gompertz distribution in the literature. The results indicate that FRSS outperforms 
both estimators and all sampling schemes in terms of bias. According to the relative efficiency, 
the ML and Bayes estimators are quite competitive.
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INTRODUCTION 

Ranked set sampling (RSS) is a sampling scheme com-
monly used as an efficient alternative to simple random 
sampling (SRS) to estimate the population parameters in 
situations where actual measurements of study variables 
are expensive, difficult, or time-consuming. Furthermore, 
RSS is a practical sampling technique for improving the 
precision and increasing the efficiency of estimators of the 
population parameters. Therefore, RSS technique is used in 
many different fields such as medical, biological, ecological, 
physical, and social sciences. 

The procedure of using RSS is as follows:

• m sets of size m are selected from the population based 
on SRS.

• The m units of each sample are ranked visually or using 
auxiliary information with respect to the variable of 
interest.

• The smallest observation unit from the first set was 
chosen. From the second set, the second smallest obser-
vation unit was chosen. The procedure was continued 
until the element with the largest rank from the mth sam-
ple was chosen.

• Repeat steps 1-3 r times (cycles) until obtaining a sam-
ple of size n=mr. These n-measured units constitute the 
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ranked set sample, which is denoted by X(i)j; i=1, 2,…, 
m; j=1, 2,…, r.
Bani-Mustafa et al. [1] suggested the folded ranked set 

sampling (FRSS). This sampling scheme can be summa-
rized in the following. In (FRSS) m random samples should 
be selected for each of size m, where m is typically small to 
reduce ranking error. FRSS scheme consists of the following 
steps:
• Select [(m + 1)/2] random samples each of size m. 
• Rank the units within each sample with respect to a 

variable of interest by a visual inspection or using aux-
iliary information.

• Select the 1st and the mth units from the first sample for 
actual measurement.

• Select the first 2nd and the (m − 1)th units of the second 
sample for the actual measurement. 

• The procedure is continued until the mth unit is selected 
from the sample.

• The cycle may be repeated r times to obtain the desired 
sample size.

Suppose that the cycle is repeated once, selected FRSS 
for different sample sizes is shown in Figure 1.

This article is concerned with the ML and Bayes estima-
tors of the unknown parameters of Gompertz distribution 
based on SRS, RSS, and FRSS. The Gompertz distribution 
was introduced by Gompertz [2] for modeling human 
mortality and fitting actuarial tables. This distribution is 
a generalization of exponential distribution and is associ-
ated with some well-known distributions such as exponen-
tial, Weibull, Gumbel, double exponential, or generalized 
logistic, (see Willekens [3]). Gompertz distribution is a very 
flexible distribution that can be skewed left and right by 
adjusting the parameters, (see Pollard and Valkovics [4]). 

The probability density function (pdf) and cumulative 
distribution function (cdf) are given, respectively, by

  (1) 

and

  (2) 

Figure 1. Selection scheme of FRSS for different sample sizes.

Figure 2. The graphs of density for different values of the parameters.
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where λ is the shape parameter and β is the scale parame-
ter. The Gompertz distribution will tend to an exponential 
distribution when λ → 0. The pdf graphs of the Gompertz 
distribution for different shape and scale parameters are 
given in Figure 2.

Literature Review
The RSS was first suggested by McIntyre [5] as an effi-

cient alternative to simple random sampling (SRS). Takahasi 
and Wakimoto [6] proved that RSS mean is an unbiased 
estimator for the population mean with a smaller variance 
compared to the SRS mean. Dell and Clutter [7] showed 
that RSS is more efficient than SRS whether the ranking is 
perfect or not. Various modification of the RSS have been 
suggested in the statistic literature, see extreme ranked set 
sampling (ERSS) by Samawi et al. [8], median ranked set 
sampling (MRSS) by Muttlak [9], double ranked set sam-
pling (DRSS) by Al-Saleh and Al-Kadiri [10], moving ERSS 
(MERSS) by Al-Saleh and Al-Hadrami [11], bivariate ERSS 
(BERSS) by Al-Saleh and Samawi [12], L RSS (LRSS) by 
Al-Nasser [13], robust ERSS (RERSS) by Al-Nasser and 
Mustafa [14], folded RSS (FRSS) by Bani-Mustafa et al. [1].

Parameter estimation for any statistical distribution 
based on RSS and its modifications have been very attrac-
tive in recent years. The literature review about the param-
eter estimation based on the RSS schemes is summarized 
in Table 1.

In addition, RSS and its modifications can also be used 
in multi-criteria decision-making problems. Some recently 
proposed alternative techniques are Interval-valued Q-Rung 
Orthopair Hesitant fuzzy sets by Özlü [32], single-valued 

neutrosophic type-2 hesitant fuzzy sets (SVNT2HFS) by 
[33], Q-rung orthopair probabilistic hesitant fuzzy hybrid 
aggregating operators by Özlü [34], new q-rung orthopair 
fuzzy Aczel–Alsina weighted geometric operators by Özlü 
[35], and bipolar valued probabilistic hesitant fuzzy sets 
(BVPHFSs) by Özlü et al. [36].

Motivation and Contribution
The following contributions were made in this article.

• The most important reason for using FRSS design in 
this article is that it has been never preferred for param-
eter estimation studies in the literature.

• In addition, the Gompertz distribution is almost never 
used in estimation based on RSS and its modifications.

• It is clear from the literature on RSS sampling tech-
niques and all their modifications that they waste sam-
pling units; the FRSS design was preferred to overcome 
this problem in data collection. Because the purpose of 
RSS designs is to estimate the population mean and to 
reduce the amount of wasted sampling units. 

• The shape and scale parameters of Gompertz distribu-
tion are estimated under SRS, RSS, and FRSS schemes. 

• The estimation is made using ML and Bayesian estima-
tion methods.

• The Bayes estimators under squared error loss func-
tion are discussed assuming gamma priors for both the 
shape and scale parameters. 

• We evaluated the performance of ML and Bayes esti-
mators through an extensive Monte Carlo simulation 
study. We compared the biases, mean square errors 
(MSEs), and relative efficiencies of estimators under 

Table 1. The summarize of the literature about parameter estimation based on the RSS schemes

Author RSS scheme Distribution Estimation method
Stokes [15] RSS Bivariate normal ML
Shaibu and Muttlak [16] ERSS, Median RSS Normal, exponential, gamma ML
Modares and Zheng [17] RSS Bivariate normal, bivariate extreme value ML
Abu-Deyyah and Al-Sawi [18] Moving ERSS Exponential ML
Helu et al. [19] RSS, Modified RSS Weibull ML, Mom, Bayes
Al-Omari and Al-Hadhrami [20] ERSS Modified Weibull ML
Omar and Ibrahim [21] RSS, Median RSS, ERSS Pareto ML, Mom, MML, Ad hoc
Hassan [22] RSS Exponentiated exponential ML, Bayes
Hussian [23] RSS Kumaraswamy ML, Bayes
Khamnei and Abusalah [24] RSS Generalized logistic ML
Dey et al. [25] RSS, Median RSS, Modified RSS Rayleigh ML, Bayes
Esemen and Gürler [26] RSS, Median RSS, ERSS Generalized Rayleigh ML
He et al. [27] RSS Log-logistic ML
Samuh et al. [28] RSS, Median RSS, ERSS Weibull-Pareto ML
Taconeli and Giolo [29] RSS Power Lindley, weighted Lindley ML
Joukar et al. [30] RSS, Maximum RSS Exponential-Poisson ML, Bayes
Khamnei et al. [31] RSS Exponentiated Pareto ML
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SRS, RSS, and FRSS with different sample sizes and 
parameter values. 

• An illustrative example is given in order to evaluate and 
compare the performances of the proposed estimators.

• The results also showed that FRSS design is more accu-
rate and effective than the SRS and RSS designs in esti-
mating the parameters of the Gompertz distribution. 
The remainder of this article is organized as follows. ML 

and Bayesian methods of estimation of unknown parame-
ters are respectively discussed based on SRS, RSS, and FRSS 
in Sections 2 and 3. Section 4 presents a Monte Carlo sim-
ulation study to compare the performances of the proposed 
estimators and sampling schemes. In Section 5, a real data 
example is given to illustrate the computations of our pro-
posed estimators. The final Section briefly displays sum-
mary and conclusion of the findings.

MAXIMUM LIKELIHOOD ESTIMATION (MLE)

MLE Based On SRS
Let X1, X2, ..., Xn be independent and identically distrib-

uted random variables from Gompertz distribution with 
pdf given in Eq. (1). The likelihood function of λ and  β is 
given by

and the log-likelihood function is

  (3) 

The normal equations become:

  
(4)

 

  (5) 

Obviously, there is no closed-form solution for the 
two non-linear equations (4) and (5), therefore numerical 
methods must be applied to solve these equations.

MLE Based On RSS
Let {X(i)j, i = 1, 2,…, m; j = 1, …, r} be a ranked set 

sample of size n=mr drawn from the Gompertz distribu-
tion where m is the set size and r is the number of cycles, 
respectively. The likelihood function of the RSS sample for 
Gompertz data is given by:

  
(6)

 

where . Then, the log-likelihood function is

  

(7)

 

and the likelihood normal equations become

 

We will use numerical methods to solve these equations.

MLE Based On FRSS

The required FRSS will be Let 

 . The 

likelihood function of the FRSS sample for Gompertz data 

is given by 

  

(8)

where . The log-likelihood 

function is then given by

  

(9)

 

and the likelihood normal equations become
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The solutions are not in closed form, to obtain estimates 
for λ and β, the normal equations are needed to solve them. 

BAYESIAN ESTIMATION

Bayes Estimation Based On SRS
The Bayes estimators of shape parameter λ and scale 

parameter β are considered to be random variables with a 
joint prior distribution. It is assumed that λ and β have the 
following gamma prior distributions;

  (10) 

where λ, β > 0 all the hyperparameters a, b, c, and d are 
assumed to known and non-negative. Using the priors 
given in Eq. (10), the joint posterior distribution of (λ, β) 
can be expressed as

 

where

 Then the Bayes estimation of λ and β are obtained by 
maximization of the joint posterior density function

 

with respect to the parameters λ and β.

Bayes Estimation Based On RSS
Let λ and β be independent random variables with prior 

gamma distributions given in Eq. (10) and the likelihood func-
tion given in Eq. (6), we get the joint posterior pdf of λ and β by

 

where

and 

 

Then the Bayes estimation of λ and β are obtained by 
maximization of the joint posterior density function

  (12)

with respect to the parameters λ and β.

Bayes Estimation Based On FRSS
The Bayes estimators of λ and β are obtained similar to 

the procedure used in subsections (3.1) and (3.2). Based on 
prior distributions presented in Eq. (10) and the likelihood 
function presented in Eq. (8), the joint posterior distribu-
tion of (λ, β) is 

 

where

 

Then the Bayes estimation of λ and β are obtained by 
maximization of the joint posterior density function

  (13)

with respect to the parameters λ and β.

SIMULATION STUDY

It is very difficult to compare the theoretical perfor-
mances of the MLE and Bayes estimators proposed in the 
previous sections. Therefore, we carry out a simulation study 
in order to compare the performance of MLE and Bayes esti-
mators based on SRS, RSS, and FRSS approaches. The com-
parison study is made based on biases and relative efficiency. 
The Monte Carlo simulation study is made using MATLAB 
software and is based on 10.000 replications for different set 
sizes, different numbers of cycles, and different parameter 
values. The simulation procedures are described as follows.
1. Generate SRS samples of size n=12,24,36 and also RSS 

and FRSS samples are generated in the number of cycles 
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Table 2. Biases of the estimator of λ

SRS RSS FRSS
λ; β n m; r

1.0;1.0 12 0.4952 0.4993 3;4 0.4176 0.4224 0.4022 0.4002
4;3 0.3922 0.3939 0.3997 0.3962
6;2 0.3398 0.3404 0.3382 0.3368

24 0.2399 0.2291 3;8 0.2077 0.2039 0.2036 0.1983
4;6 0.1967 0.1912 0.1888 0.1916
6;4 0.1797 0.1724 0.1722 0.1718

36 0.1534 0.1485 3;12 0.1507 0.1343 0.1279 0.1330
4;9 0.1318 0.1269 0.1272 0.1207
6;6 0.1150 0.1114 0.1116 0.1191

1.5;0.5 12 0.4033 0.3899 3;4 0.3282 0.3281 0.3223 0.3182
4;3 0.2960 0.2913 0.3020 0.3226
6;2 0.2628 0.2565 0.2608 0.2527

24 0.1824 0.1816 3;8 0.1569 0.1597 0.1551 0.1526
4;6 0.1408 0.1498 0.1500 0.1577
6;4 0.1286 0.1254 0.1263 0.1242

36 0.1136 0.1177 3;12 0.1012 0.1063 0.1000 0.1024
4;9 0.1033 0.0966 0.1004 0.0997
6;6 0.0885 0.0843 0.0867 0.0887

0.5;1.5 12 0.5655 0.5720 3;4 0.4915 0.4911 0.4997 0.4831
4;3 0.4906 0.4768 0.4854 0.4743
6;2 0.4143 0.4241 0.4054 0.4069

24 0.2793 0.2597 3;8 0.2412 0.2409 0.2368 0.2359
4;6 0.2325 0.2257 0.2320 0.2237
6;4 0.2025 0.2169 0.2110 0.2146

36 0.1775 0.1725 3;12 0.1611 0.1667 0.1540 0.1581
4;9 0.1530 0.1553 0.1591 0.1502
6;6 0.1453 0.1427 0.1436 0.1389

1.0;0.1 12 0.1764 0.1765 3;4 0.1426 0.1391 0.1350 0.1388
4;3 0.1253 0.1277 0.1299 0.1305
6;2 0.1081 0.1065 0.1067 0.1116

24 0.0828 0.0842 3;8 0.0679 0.0642 0.0675 0.0694
4;6 0.0615 0.0614 0.0645 0.0664
6;4 0.0516 0.0556 0.0548 0.0534

36 0.0525 0.0507 3;12 0.0469 0.0406 0.0432 0.0417
4;9 0.0415 0.0395 0.0440 0.0421
6;6 0.0324 0.0381 0.0353 0.0364

0.1;1.0 12 0.3354 0.3569 3;4 0.2966 0.3018 0.2844 0.3094
4;3 0.2833 0.2936 0.2852 0.2849
6;2 0.2609 0.2573 0.2572 0.2572

24 0.1544 0.1604 3;8 0.1492 0.1469 0.1418 0.1463
4;6 0.1468 0.1426 0.1344 0.1413
6;4 0.1294 0.1308 0.1289 0.1262

36 0.1062 0.1048 3;12 0.1002 0.0972 0.0966 0.0949
4;9 0.0945 0.0944 0.0961 0.0937
6;6 0.0906 0.0894 0.0891 0.0874

3.0;0.01 12 0.3876 0.3944 3;4 0.3036 0.2923 0.2989 0.3056
4;3 0.2607 0.2739 0.2838 0.2902
6;2 0.2317 0.2269 0.2218 0.2239

24 0.1959 0.1870 3;8 0.1489 0.1473 0.1402 0.1397
4;6 0.1303 0.1331 0.1325 0.1368
6;4 0.1037 0.1145 0.1116 0.1032

36 0.1209 0.1262 3;12 0.0901 0.0893 0.0927 0.0995
4;9 0.0791 0.0828 0.0911 0.0858
6;6 0.0735 0.0752 0.0720 0.0736
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Table 3. Biases of the estimator of β

SRS RSS FRSS
λ; β n m;r

1.0;1.0 12 0.0975 0.0956 3;4 0.0869 0.0884 0.0748 0.0701
4;3 0.0924 0.0853 0.0718 0.0706
6;2 0.0861 0.0846 0.0724 0.0685

24 0.0570 0.0517 3;8 0.0467 0.0487 0.0452 0.0435
4;6 0.0498 0.0504 0.0387 0.0394
6;4 0.0503 0.0460 0.0407 0.0427

36 0.0436 0.0421 3;12 0.0318 0.0304 0.0291 0.0295
4;9 0.0354 0.0324 0.0284 0.0198
6;6 0.0324 0.0330 0.0250 0.0301

1.5;0.5 12 0.0417 0.0484 3;4 0.0347 0.0355 0.0327 0.0315
4;3 0.0364 0.0341 0.0230 0.0293
6;2 0.0369 0.0326 0.0291 0.0287

24 0.0302 0.0307 3;8 0.0189 0.0218 0.0161 0.0173
4;6 0.0183 0.0200 0.0146 0.0158
6;4 0.0189 0.0188 0.0155 0.0137

36 0.0196 0.0169 3;12 0.0109 0.0133 0.0107 0.0120
4;9 0.0154 0.0133 0.0100 0.0104
6;6 0.0148 0.0128 0.0112 0.0126

0.5;1.5 12 0.1799 0.1684 3;4 0.1452 0.1445 0.1450 0.1372
4;3 0.1653 0.1566 0.1329 0.1245
6;2 0.1488 0.1478 0.1242 0.1683

24 0.0870 0.0925 3;8 0.0799 0.0839 0.0759 0.0795
4;6 0.0834 0.0848 0.0685 0.0672
6;4 0.0797 0.0851 0.0738 0.0775

36 0.0678 0.0793 3;12 0.0561 0.0629 0.0550 0.0523
4;9 0.0592 0.0571 0.0532 0.0466
6;6 0.0620 0.0594 0.0538 0.0543

1.0;0.1 12 0.0062 0.0054 3;4 0.0045 0.0040 0.0038 0.0043
4;3 0.0045 0.0055 0.0036 0.0034
6;2 0.0050 0.0054 0.0038 0.0041

24 0.0034 0.0037 3;8 0.0026 0.0023 0.0021 0.0033
4;6 0.0027 0.0031 0.0022 0.0025
6;4 0.0026 0.0030 0.0020 0.0026

36 0.0024 0.0026 3;12 0.0020 0.0011 0.0012 0.0011
4;9 0.0023 0.0017 0.0017 0.0016
6;6 0.0014 0.0023 0.0015 0.0018

0.1;1.0 12 0.1223 0.1194 3;4 0.1133 0.1144 0.1016 0.1091
4;3 0.1108 0.1189 0.0973 0.0942
6;2 0.1093 0.1129 0.0975 0.1014

24 0.0739 0.0681 3;8 0.0617 0.0618 0.0539 0.0596
4;6 0.0662 0.0653 0.0500 0.0545
6;4 0.0640 0.0631 0.0531 0.0547

36 0.0476 0.0462 3;12 0.0433 0.0436 0.0402 0.0413
4;9 0.0450 0.0456 0.0381 0.0391
6;6 0.0460 0.0459 0.0395 0.0416

3.0;0.01 12 0.0023 0.0023 3;4 0.0014 0.0015 0.0013 0.0013
4;3 0.0015 0.0012 0.0014 0.0010
6;2 0.0010 0.0009 0.0010 0.0010

24 0.0010 0.0010 3;8 0.0007 0.0007 0.0007 0.0007
4;6 0.0006 0.0005 0.0007 0.0006
6;4 0.0005 0.0003 0.0005 0.0006

36 0.0006 0.0007 3;12 0.0005 0.0005 0.0004 0.0002
4;9 0.0005 0.0004 0.0005 0.0005
6;6 0.0002 0.0002 0.0003 0.0003
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Table 4. The efficiencies of the estimators

RSS FRSS
λ; β n m;r

1.0;1.0 12 3;4 1.2958 1.2742 5.6584 1.7599 1.4789 1.3779 5.2510 1.5737
4;3 1.4700 1.4163 6.8508 2.0083 1.3994 1.3850 4.7587 1.4448
6;2 1.8459 1.7940 8.8800 2.5976 1.8099 1.7850 6.3543 1.9278

24 3;8 1.1905 1.2065 1.6898 1.7171 1.3116 1.2463 1.5309 1.5489
4;6 1.3207 1.2667 1.9876 2.0173 1.3184 1.2170 1.5147 1.4377
6;4 1.6160 1.5239 2.5617 2.5216 1.5440 1.4371 1.8883 1.8565

36 3;12 1.0253 1.1591 1.4836 1.6601 1.3242 1.2321 1.6112 1.5322
4;9 1.2570 1.2470 2.0234 2.0023 1.2717 1.2032 1.4684 1.4418
6;6 1.5316 1.5014 2.5352 2.5598 1.4617 1.3847 1.9739 1.8708

1.5;0.5 12 3;4 1.2789 1.2732 1.7848 1.7766 1.4070 1.4261 1.6564 1.7070
4;3 1.4997 1.4590 2.1172 2.0890 1.4541 1.3629 1.5583 1.5224
6;2 1.8664 1.8316 2.7168 2.6754 1.9114 1.8287 2.0512 2.0469

24 3;8 1.2409 1.2741 1.6667 1.7469 1.3237 1.3187 1.5760 1.5507
4;6 1.3659 1.3163 1.9863 1.9633 1.2524 1.2986 1.4500 1.4965
6;4 1.6467 1.6305 2.5144 2.4318 1.5715 1.5973 1.9078 1.8854

36 3;12 1.1991 1.1862 1.6342 1.6416 1.3037 1.2908 1.5459 1.5519
4;9 1.3142 1.3137 1.9724 1.9452 1.2554 1.2419 1.4591 1.4489
6;6 1.6309 1.5413 2.5535 2.4482 1.5372 1.4746 1.9066 1.8684

0.5;1.5 12 3;4 1.2689 1.2581 1.7965 1.9410 1.3229 1.3940 1.6394 1.7715
4;3 1.3143 1.3979 2.0744 2.2476 1.3186 1.3867 1.5166 1.5698
6;2 1.6903 1.6719 2.6170 2.7951 1.7125 1.7260 2.0051 2.0658

24 3;8 1.2133 1.1885 1.7695 1.7701 1.3373 1.3003 1.6174 1.6534
4;6 1.2832 1.3165 2.0507 2.0751 1.2366 1.2431 1.4725 1.4828
6;4 1.6199 1.4282 2.6591 2.5673 1.4849 1.4302 1.9470 1.9484

36 3;12 1.1486 1.1578 1.6366 1.7365 1.2552 1.2366 1.5132 1.5802
4;9 1.2872 1.2667 1.9681 2.0811 1.1669 1.2136 1.4345 1.4695
6;6 1.4379 1.4199 2.4484 2.5553 1.3451 1.3747 1.8219 1.9044

1.0;0.1 12 3;4 1.2698 1.1590 1.6875 1.7058 1.4305 1.1415 1.6363 1.6571
4;3 1.4621 1.1705 2.0000 2.0714 1.5134 1.2098 1.5882 1.6111
6;2 1.9272 1.0175 2.5714 2.7619 1.9914 1.2239 2.0769 2.1481

24 3;8 1.2805 1.3600 1.6250 1.6875 1.3545 1.4299 1.5294 1.6875
4;6 1.4676 1.5263 2.0000 2.0769 1.4259 1.4384 1.5294 1.5882
6;4 1.7315 1.7990 2.3636 2.4545 1.7230 1.7813 2.0000 2.0769

36 3;12 1.2140 1.2546 1.6363 1.5454 1.3018 1.3067 1.5000 1.5454
4;9 1.3939 1.3633 2.0000 1.8889 1.3059 1.3322 1.6363 1.5454
6;6 1.6299 1.6294 2.5714 2.4285 1.6428 1.6102 2.0000 1.8888

0.1;1.0 12 3;4 1.2845 1.3328 1.8565 1.7762 1.4867 1.4457 1.7236 1.6277
4;3 1.4394 1.4074 2.1720 2.1061 1.3337 1.5700 1.5618 1.5391
6;2 1.7298 1.8369 2.7185 2.6632 1.6839 1.7827 2.0488 1.9884

24 3;8 1.1513 1.2021 1.7254 1.7165 1.2373 1.2578 1.5582 1.5525
4;6 1.1939 1.2964 2.0277 2.0877 1.2500 1.3881 1.4851 1.4953
6;4 1.4759 1.5084 2.5579 2.6422 1.4000 1.4747 1.8499 1.9539

36 3;12 1.1372 1.1600 1.6839 1.7041 1.1713 1.2028 1.5259 1.5746
4;9 1.2415 1.2193 2.0100 1.9498 1.1776 1.3118 1.4679 1.4987
6;6 1.3726 1.3780 2.5224 2.5080 1.3154 1.3474 1.8899 1.9079

3.0;0.01 12 3;4 1.3233 1.4114 1.5000 1.5000 1.5054 1.4552 3.0000 1.5000
4;3 1.5879 1.5859 3.0000 3.0000 1.5686 1.6203 1.5000 3.0000
6;2 2.0008 2.0005 3.0000 3.0000 2.1724 2.1613 3.0000 3.0000

24 3;8 1.3113 1.2148 1.0000 3.0000 1.4620 1.3468 3.0000 1.0000
4;6 1.5165 1.4407 1.0000 3.0000 1.5184 1.4556 3.0000 1.0000
6;4 1.8421 1.8165 1.0000 3.0000 1.9489 1.8336 3.0000 1.0000

36 3;12 1.2121 1.3130 1.0000 3.0000 1.3110 1.4044 3.0000 1.0000
4;9 1.3773 1.4590 1.0000 3.0000 1.3222 1.4109 3.0000 1.0000
6;6 1.6788 1.7884 1.0000 3.0000 1.7173 1.7532 3.0000 1.0000
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using different set sizes from Gompertz distribution 
different parameters. 

2. Calculate MLE and Bayesian estimates given in Sections 
2 and 3 using SRS, RSS, and FRSS samples for chosen 
each sample size of n. 

3. Repeat steps 1-2 N times where N=10 000. Then calcu-
late the bias and mean squared error (MSE) of all the 
estimates.

4. Compute the efficiency of estimators, defined as 
 and 

The results are reported in Tables 2-4. Tables 2-3 con-
tain the biases of the estimators for Gompertz distribution 
under SRS, RSS, and FRSS for different values of sample 
sizes and different values of parameters. Table 4 contains 
the efficiency of estimators for SRS relative to RSS and 
FRSS.

The following findings are summarized as follows:
• Based on SRS, the biases of ML and Bayes estimators of 

λ and β are greater than the corresponding in RSS and 
FRSS.

• For all methods of estimation, it can be seen that bias 
decreases and RE increases as the sample sizes increase 
for fixed value of parameters. It verifies the consistency 
properties of all the estimators.

• For RSS and FRSS, biases decrease as set sizes increase 
for fixed sample sizes.

• In terms of the bias, the ML and Bayes estimators of λ 
and β based on FRSS are lower than RSS in almost most 
cases. 

• In terms of the RE, the ML and Bayes estimators of λ 
parameter are quite competitive, while the ML and 
Bayes estimators of β based on RSS have higher effi-
ciency values. 

• In general, as λ gets smaller, the biases obtained with 
FRSS for  get smaller.

• According to all criteria, bias, and RE, it is noted that the 
ML and Bayes estimators based on the RSS design have 
close competition. 

REAL DATA APPLICATION

In this section, we present a real data analysis to illus-
trate the usefulness of the RSS and FRSS compared to the 
traditional SRS scheme. The data set includes the life of 
fatigue fracture of Kevlar 373/epoxy that is subject to con-
stant pressure at the %90 stress level until all had failed 
(Andrews and Herzberg [37], Barlow et al. [38]). The data 
set is given in Table 5.

The Kolmogorov-Smirnov test is used to assess whether 
this data set is well-modeled by a Gompertz distribution. 
The ML estimation of the parameters λ, β and the p-value 
of the Kolmogorov-Smirnov test are 0.1216, 0.4116, and 
0.1592, respectively. The Bayes estimation of the parame-
ters λ, β and the p-value of the Kolmogorov-Smirnov test 
are 0.1216, 0.4115, and 0.1594, respectively. These results 
show that the Gompertz distribution seems to fit the data 
very well for both estimators. For the analysis, a sample 
based on SRS of size 36 is drawn from the data set, and in 
RSS and FRSS to obtain the same sample size m=6 and r=6 

Table 6. ML and Bayes estimations, AIC and BIC values for Gompertz distribution

Method Sampling Parameter estimates ( ) AIC BIC

ML SRS (0.1751, 0.3883) 128.0447 132.7062
RSS (0.1720, 0.3766) 108.2883 112.9498
FRSS (0.1741, 0.3802) 119.1949 123.8564

Bayes SRS (0.1815, 0.3859) 812.6950 817.8365
RSS (0.1801, 0.3766) 807.0914 811.7529
FRSS (0.1811, 0.3817) 807.3621 812.0236

Table 5. The life of fatigue fracture of Kevlar 373/epoxy

0.0251 0.0886 0.0891 0.2501 0.3113 0.3451 0.4763 0.5650 0.5671 0.6566
0.6748 0.6751 0.6753 0.7696 0.8375 0.8391 0.8425 0.8645 0.8851 0.9113
0.9120 0.9836 1.0483 1.0596 1.0773 1.1733 1.2570 1.2766 1.2985 1.3211
1.3503 1.3551 1.4595 1.4880 1.5728 1.5733 1.7083 1.7263 1.7460 1.7630
1.7749 1.8275 1.8375 1.8503 1.8808 1.8878 1.8881 1.9316 1.9558 2.0048
2.0408 2.0903 2.1093 2.1330 2.2100 2.2460 2.2878 2.3203 2.3470 2.3513
2.4951 2.5260 2.9911 3.0256 3.2678 3.4045 3.4846 3.7433 3.7455 3.9143
4.8073 5.4005 5.4435 5.5295 6.5541 9.0960
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are taken. For the purpose of comparison, the values of the 
MLE and Bayes parameter estimates, the Akaike informa-
tion criteria (AIC), and Bayesian information criteria (BIC) 
are reported in Table 6.

We also observe that the data obtained under RSS is the 
best fitted by the Gompertz distribution for both estimators.

CONCLUSION 

In this article, to estimate the unknown parameters of 
the Gompertz distribution, we have used two different esti-
mation methods, namely, ML and Bayes methods based on 
the three different sampling schemes (SRS, RSS, and FRSS). 
Bayes estimates are obtained under the squared loss func-
tion. The performances of the estimators were evaluated 
based on the two criteria bias and RE. Under RSS designs, 
the biggest challenges in real-time sampling are the com-
putational difficulties in the estimation phase and the 
complexity of the sample selection process. Of course, this 
situation is also related to the complexity of the pdf of the 
distribution and the number of parameters. In this case, the 
solution is to increase the sample size, change the param-
eter estimation method, or use different numerical tech-
niques in the simulation study and real time example. The 
Gompertz distribution considered in this study provided 
both favourable bias values for small sample sizes and no 
computational or simulation difficulties in parameter esti-
mation and real-time example processing. We can conclude 
from the simulation study that, according to the bias, FRSS 
outperforms both estimators and all sampling schemes in 
almost all cases. Furthermore, ML and Bayes estimators are 
competitive for RSS and FRSS in general in terms of bias. 
In addition, for the β parameter, the efficiency values of 
ML and Bayes estimators were higher in RSS scheme. This 
study reveals that the biases obtained with FRSS for λ and 
β are lower than RSS, while the efficiencies obtained with 
RSS for λ and β are higher than FRSS. Also, the real data set 
confirmed the simulation results. We see from the result, 
that estimates based on FRSS are closer to the given value of 
both parameters λ and β. This result is consistent with the 
numerical study in the previous section. This indicates that 
estimation under the FRSS method is more efficient than 
estimation under the SRS and RSS approaches.
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