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ABSTRACT

Interval valued neutrosophic soft multisets are the generalization of Interval valued neutro-
sophic soft sets, which is a new revelation for handling incomplete and imprecise data in mul-
tiple universes.  In this paper, we propose new algorithms based on accuracy function for 
employing weighted sum method (WSM), weighted product method (WPM) and TOPSIS 
method to solve a decision making problem using Interval-valued Neutrosophic Soft Multi-
sets.  We adopt a real world personal selection problem and solve it by applying our proposed 
algorithms.  Additionally, we make a comparison of Interval valued neutrosophic soft multi-
sets with existing sets to illustrate the importance of Interval valued neutrosophic soft multi-
sets.  Furthermore, we compare and analyze the results obtained by WSM, WPM and TOPSIS.
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INTRODUCTION 

Lotfi A. Zadeh [1] introduced Fuzzy sets and Fuzzy logic 
to study the nature of an object that cannot be described 
clearly. It assigns membership values ranging between 0 to 
1 for those elements to characterize their nature. Thereafter, 
it can be extended to Interval valued fuzzy sets [2] which 
allocate intervals as membership values. In real world, there 
are innumerable situations based on both truth member-
ship and false membership for proper description of an 
object in uncertain situations. To handle those situations 
Intuitionistic fuzzy sets [3] were developed. Later, it was 
extended to Interval valued intuitionistic fuzzy sets [4] by 
K. Atanassov. F. Smarandache [5] extended fuzzy sets, clas-
sical set theory and intuitionistic set theory in the name of
Neutrosophic sets to talk about indeterminacy nature of an
object through an indeterminacy membership function.

Later, Wang et al. [6] extended neutrosophic sets to Interval 
valued neutrosophic sets which is more flexible to deal in 
case of real-life problems.

Molodtsov [7] initiated a new mathematical tool called 
Soft sets for handling uncertain information. It can easily 
handle objects with uncertain nature by the help of param-
eter sets which is one of the major benefits while using soft 
sets. Several researchers have studied soft sets. P.K. Maji 
gave an application of soft sets in a decision making prob-
lem with the aid of rough set theory [8]. Chen et al. [9] ini-
tiated the new concept called parameterization reduction 
of soft sets which reduced the attributes to enhance the 
application of soft sets. Çağman-Enginoğlu defined soft 
matrices to solve problems without the help of fuzzy soft 
sets or rough sets and they defined some operations on soft 
matrices [10]. Also, they presented a soft max-min decision 
making algorithm to select an optimal decision from the 
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set of alternatives. Subsequently they defined the product of 
soft sets and presented a uni-int decision making method in 
[11]. Feng et al. [12] devised new decision making methods 
namely uni-𝑖𝑛𝑡𝑘, 𝑢𝑛𝑖 − 𝑖𝑛𝑡𝑡, and 𝑖𝑛𝑡𝑚 −  𝑖𝑛𝑡𝑛. Later, Fuzzy 
soft sets [13] and intuitionistic fuzzy soft sets [14] were 
introduced as an extension of fuzzy sets and intuitionistic 
fuzzy sets.

Later, Neutrosophic soft sets were introduced as an 
extension of neutrosophic sets by P.K. Maji [15]. It was a 
new mathematical approach for describing indetermi-
nate and incomplete information through parameter sets 
and membership functions. I. Deli et al. [16] introduced 
Neutrosophic soft matrix and some operations on them 
and further solved a decision making problem using 
Neutrosophic soft matrices. I. Deli [17] proposed Interval 
valued neutrosophic soft sets as a generalization of soft sets, 
fuzzy soft sets, intuitionistic fuzzy soft sets, interval valued 
intuitionistic fuzzy soft sets and neutrosophic soft sets.

Research Gap and Motivation
Alkhazaleh et al. [18] introduced soft multisets to 

expand soft sets in multiple dimensions. Soft multisets 
are used to deal with multiple universes at a time. Many 
researchers have dealt with soft multisets ( [19], [20]). 
Further, Alkhazaleh and Salleh [21] defined fuzzy soft mul-
tisets and solved a decision making problem for fuzzy soft 
multisets. A.E. Coskun [22] employs soft matrices on soft 
multisets to explore the use of soft matrices in decision 
making. I. Deli et al. [23] initiated Neutrosophic soft mul-
tisets that handle uncertain and indeterminate information 
in multiple universes. Neutrosophic vague soft multisets 
and Weighted neutrosophic soft multisets were introduced 
by A. Al-Quran & N. Hassan [24] and C. Granados et. Al 
[25] respectively as well as some real-life applications were 
discussed.

Multi-criteria decision making (MCDM) provides a 
method for decision making in a practical and familiar situ-
ation in which multiple criteria are taken into consideration. 
The aim of this technique is to help decision makers where 
a large number of alternatives exist. MCDM attempts to 
choose a best alternative among the set of given alternatives. 
There are lot of methods used to solve MCDM problems to 
name a few, AHP, TOPSIS, ELECTRE and PROMETHEE, 
but they are all unique in their own way. Many research-
ers used hybrid structures of fuzzy set theory, soft set the-
ory, rough set theory and multiset theory to solve MCDM 
problems in uncertain environment ( [26], [27], [28], [29]). 
Weighted Sum Method (WSM) and Weighted Product 
Method (WPM) are more frequently used in MCDM. In 
both the methods alternatives are being compared with one 
another according to weights and criteria. Weighted Sum 
Method (WSM) allocates weights to each criteria according 
to their importance then calculate weighted sum for each 
alternative and finally choose the best one. D. Handoko et 
al. [30] applied WSM method to determine the allocation of 
special funds to primary and secondary schools located in 

underdeveloped areas. In medical field, Z. Yong [31] used 
WSM method to analyze Breast cancer. C.A. Alban-Perez 
et al. [32] applied WSM technique in decision making to 
improve the structure of a complete street in Colombia. 
Weighted Product Method (WPM) is a simplified model 
of WSM which is used in multi-dimensional decision mak-
ing problems. Particularly, Sathiyaraj et al. [33] used WPM 
technique to evaluate drinking water quality in Salem dis-
trict. Many industrial decision making problems were dealt 
by WSM and WPM. Hwang and Yoon [34] defined one of 
the primary methods, called TOPSIS (Technique for Order 
Performance by Similarity to Ideal Solution). TOPSIS tech-
nique is to provide an optimal solution by measuring dis-
tance from PIS (Positive Ideal Solution) and NIS (Negative 
Ideal Solution) for each alternative. PIS is the most pre-
ferred solution and NIS is the least preferred solution as 
decided by decision makers. Triantaphyllou and Lin [35] 
used fuzzy arithmetic operator to define the fuzzy version 
of TOPSIS method, which shows fuzzy relative closeness. 
Chen [36] applied TOPSIS method to fuzzy group decision 
making by defining the crisp Euclidean distance between 
fuzzy numbers. Jahanshahloo et al. [37] extended the 
TOPSIS approach for decision making problems involving 
interval data. Chen and Tsao [38] expanded the TOPSIS 
method to solve MADM problems involving interval val-
ued fuzzy data and compared the result by Hamming dis-
tance and Euclidean distance. M. Imtiaz et al. [39] used 
the accuracy function in the TOPSIS method to solve the 
MCDM problem in Octagonal intuitionistic fuzzy environ-
ment. Additionally, in the medical field TOPSIS, WSM and 
WPM techniques were used for selecting LASER as an effi-
cient surgical instrument [40]. 

Contribution
The first section begins with a brief Introduction fol-

lowed by the study framework of Interval valued neutro-
sophic soft multisets. In section 2, some fundamental 
definitions and concepts are discussed. In section 3, we 
propose new algorithms using accuracy function which 
employs WSM, WPM and TOPSIS techniques to solve 
problems using Interval valued neutrosophic soft multisets. 
In section 4, we make a comparison of some fundamental 
sets with IVNSMS and additionally the results of all three 
methods are compared and analyzed to find the best alter-
native in all given universes. Finally in section 5, we con-
clude our research work.

PRELIMINARIES

Definition 1 [5] Let 𝑈 be a space of points (objects), 
with a generic element in 𝑈 denoted by u. A neutrosophic 
set 𝐴 in 𝑈 is characterized by a truth-membership function 
𝑇𝐴 , an indeterminacy-membership function 𝐼𝐴  and a fal-
sity- membership function 𝐹𝐴 . 𝑇𝐴 (u); 𝐼𝐴 (u) and 𝐹𝐴 (u) are 
real standard or nonstandard subsets of [0, 1].
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There is no restriction on the sum of 𝑇𝐴 (u); 𝐼𝐴 (u) and 
𝐹𝐴 (u), so 0 ≤ 𝑠𝑢𝑝𝑇𝐴 (𝑢) + 𝑠𝑢𝑝𝐼𝐴 (𝑢) + 𝑠𝑢𝑝𝐹𝐴 (𝑢) ≤ 3.

Definition 2 [6] Let 𝑈 be a space of points (objects), 
with a generic element in 𝑈 denoted by u. An interval val-
ued neutrosophic set (IVN-set) 𝐴 in 𝑈 is characterized by 
truth-membership function 𝑇𝐴 , an indeterminacy-mem-
bership function 𝐼𝐴  and a falsity-membership function 𝐹𝐴 . 
For each point 𝑢 ∈ 𝑈 ; 𝑇𝐴 , 𝐼𝐴  and 𝐹𝐴  ⊆ [0,1].

Thus, an IVN-set over U can be represented by the set

𝐴  = {〈𝑇𝐴 (𝑢) , 𝐼𝐴 (𝑢) , 𝐹𝐴 (𝑢)〉 /𝑢: 𝑢 ∈  𝑈 }.

Here, (𝑇𝐴 (𝑢) , 𝐼𝐴 (𝑢) , 𝐹𝐴 (𝑢) )  is called interval valued 
neutrosophic number for all 𝑢 ∈ 𝑈 and all interval valued 
neutrosophic numbers over U will be denoted by 𝐼𝑉𝑁(𝑈 ) .

Definition 3 [17] Let 𝑈 be an initial universe set, 
𝐼𝑉𝑁(𝑈 ) denotes the set of all interval valued neutrosophic 
sets of 𝑈 and 𝐸 be a set of parameters that describe the ele-
ments of 𝑈 . An interval valued neutrosophic soft sets over 
𝑈 is a set defined by a set valued function 𝛶𝐾 representing 
a mapping

𝑣𝐾: 𝐸  → 𝐼𝑉𝑁(𝑈 ).

It can be written a set of ordered pairs

𝛶𝐾 = { (𝑥, 𝑣𝐾(𝑥)) ∶ 𝑥 ∈  𝐸 }.

Here, an interval valued neutrosophic set 𝜈𝐾 is called 
approximate function of the interval valued neutrosophic 
(ivn)- soft sets 𝛶𝐾. And 𝑣𝐾(𝑥) is called x-approximate value 
of 𝑥 ∈ 𝐸 .

Definition 4 [41] Let 𝑥 = ([𝑇𝐿, 𝑇𝑈 ], [𝐼𝐿, 𝐼𝑈 ], [𝐹𝐿, 𝐹𝑈 ])  be 
an Interval neutrosophic number and the accuracy function

𝑎(𝑥) of an Interval neutrosophic number can be defined 
as follows:

Definition 5 [18] Let {𝑈 𝑖: 𝑖 ∈ 𝑈 } be a collection of uni-
verses such that ⋂𝑖∈ 𝐼 𝑈 𝑖 =  ∅ and let {𝐸 𝑈 𝑖: 𝑖 ∈ 𝐼} be a col-
lection of sets of parameters, 𝑈 = ∏𝑖∈ 𝐼 𝑃(𝑈 𝑖)  where 𝑃(𝑈 𝑖)  
denotes the powerset of 𝑈 𝑖, 𝐸 = ∏𝑖∈ 𝐼 𝐸 𝑈 𝑖 and 𝐴 ⊆ 𝐸 .

A pair (I, A) is called a soft multiset over U given by the 
mapping 𝐼: 𝐴 → 𝑈 .

Definition 6 [42] Let {𝑈 𝑖: 𝑖 ∈ 𝑈 } be a collection of 
universes such that ⋂𝑖∈ 𝐼 𝑈 𝑖 =  ∅ and let {𝐸 𝑈 𝑖: 𝑖 ∈ 𝐼} be a 
collection of sets of parameters, 𝑈 = ∏𝑖∈ 𝐼 𝐼𝑉𝑁(𝑈 𝑖)  where 
𝐼𝑉𝑁(𝑈 𝑖)  denotes the set of all Interval valued neutrosophic 
sets of 𝑈 𝑖, 𝐸 = ∏𝑖∈ 𝐼 𝐸 𝑈 𝑖 and 𝐴 ⊆ 𝐸 .

An Interval valued neutrosophic soft multiset 
(IVNSMS) over U is the pair (I, A) given by the mapping 𝐼:
𝐴 → 𝑈 . It can be represented by,

(I, A)  =  {(ak, 〈[inf TI(𝑢) , supTI(u) ], [inf II(u) , supII(u) ], 
[inf FI(u) , supFI(u) ]〉)  ∶ ak ∈  A ⊆ E, u ∈  U} .

AN APPLICATION OF INTERVAL VALUED 
NEUTROSOPHIC SOFT MULTISETS IN DECISION 
MAKING

 In this section we try to solve a decision making prob-
lem using Interval valued neutrosophic soft multisets. If a 
person wants to purchase a personal computer, he has lot of 
choices for the same. By using the following algorithm and 
by setting required number of parameters, we shall arrive at 
a wise conclusion.

Algorithm 1: Weighted Sum Method
WSM technique is a frequently used technique in 

MCDM, which is strong in single dimension problems. 
Now, we propose a WSM algorithm to solve problem in 
multiple universes.
1. Input the 𝐼𝑉𝑁𝑆𝑀𝑆 (𝐼, 𝐴 ) .
2. To use the accuracy function

  
(1)

 

on every element of (𝐼, 𝐴 )  to get the matrix , 
𝑘 = 1,2, … 𝑛 and (𝑖, 𝑗) =  |𝑈 1| +  |𝑈 2| +  ⋯ +  |𝑈 𝑖|.
3. Consider the ith part (𝑈 𝑖, the ith universe) of IVNSMS 

(𝐼, 𝐴 ) in 𝑀.
4. Construct the normalized decision matrix 𝑅𝑖.
For beneficial attributes (criteria of benefits): 

  (2)

For non-beneficial attributes (criteria of cost):

  (3) 

5. Construct the weighted normalized decision matrix

  (4)

6. Calculate the score of each alternative

  (5)

7. Select 𝑢𝑖,𝑗 (𝐴 𝑖)  as the best alternative which have 
 

8. Continuing this procedure to all 𝐼𝑉𝑁𝑆𝑀-set parts 
(all universes), finally we obtain the optimal decision 
(𝐴 1, 𝐴 2, …  . , 𝐴 𝑛) .

Algorithm 2: Weighted Product Method
WPM technique is a more efficient technique in 

MCDM. In this technique, alternatives are evaluated by 
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multiplying the normalized data to the power of the corre-
sponding weight criteria.
1. Input the 𝐼𝑉𝑁𝑆𝑀𝑆 (𝐼, 𝐴 ) .
2. To use the accuracy function

  
(6)

on every element of (𝐼, 𝐴 )  to get the matrix , 
𝑘 = 1,2, … 𝑛 and (𝑖, 𝑗) =  |𝑈 1| +  |𝑈 2|+ . . . + |𝑈 𝑖|.
3. Consider the ith part (𝑈 𝑖, the ith universe) of (𝐼, 𝐴 ) in 𝑀.
4. Construct the normalized decision matrix 𝑅𝑖.

For beneficial attributes (criteria of benefits):

  
(7)

For non-beneficial attributes (criteria of cost):

  
(8)

5. Construct the weighted normalized decision matrix

  (9)

6. Calculate the score of each alternative

  (10)

7. Select 𝑢𝑖,𝑗 (𝐴 𝑖)  as the best alternative which have 
 

8. Continuing this procedure to all 𝐼𝑉𝑁𝑆𝑀-set parts 
(remaining universes), finally we obtain the optimal 
decision (𝐴 1, 𝐴 2, …  . , 𝐴 𝑛) 

Algorithm 3: TOPSIS Method
The TOPSIS method is a straight-forward method in 

MCDM. The main idea of the TOPSIS method is to rank 
the optimal solution that is closer to PIS and far from NIS.
1. Input the 𝐼𝑉𝑁𝑆𝑀𝑆 (𝐼, 𝐴 ) .
2. To use the accuracy function

  
(11)

on every element of (𝐼, 𝐴 )  to get the matrix , 
𝑘 = 1,2, … 𝑛 and (𝑖, 𝑗) =  |𝑈 1| +  |𝑈 2|+ . . . + |𝑈 𝑖|.
3. Consider the ith part (𝑈 𝑖, the ith universe) of (𝐼, 𝐴 ) in 𝑀.

4. Construct the normalized decision matrix 
 by

  
(12)

5. Construct the weighted normalized decision matrix

  (13)

6. Determine the Positive Ideal Solution (PIS) and 
Negative Ideal Solution (NIS) for universe 𝑈 𝑖 as follows:

(i) Positive Ideal Solution   (14) 

(ii) Negative Ideal Solution  (15) 
 

where 𝐾+  is the parameter set of benefit type and 𝐾−  is the 
parameter set of cost type.
7. Calculate the separation measure from PIS and NIS by

  
(16)

 

and

  
(17)

8. Relative closeness coefficient to ideal solution is calcu-
lated by

  (18)

and alternatives get ranked by descending order.
9. Continuing the above steps 3 to 8 for all 𝐼𝑉𝑁𝑆𝑀-set 

parts (all universes), finally we obtain the optimal deci-
sion (𝐴 1, 𝐴 2, …  . , 𝐴 𝑛) . 

Example 1.
Suppose that a person Mr. X wants to buy a computer, a 

printer and an UPS for his personal work within his budget. 
Let (𝐼, 𝐴 ) be an 𝐼𝑉𝑁𝑆𝑀𝑆(𝑈 ) which describes “computers,” 
“printers” and “UPS for PC” respectively that Mr. X is con-
sidering a good branded computer, printer for document 
work and an UPS for battery backup. Let 𝑈 1 =  {𝑐1, 𝑐2, 𝑐3, 
𝑐4}  be the universe for branded computers, 𝑈 2 =  {𝑝1, 𝑝2, 
𝑝3}  be the universe for printers and 𝑈 3 =  {𝑢1, 𝑢2, 𝑢3}  be 
the universe for UPS. Let {𝐸 𝑈 1, 𝐸 𝑈 2, 𝐸 𝑈 3 }  be a collection of 
parameters which describes above universes, where

𝐸 𝑈 1 = {𝑒𝑈 1,1 = Intel core i3 processor; 𝑒𝑈 1,2 = 16GB 
RAM; 𝑒𝑈 1,3 = AMD processor; 𝑒𝑈 1,4 = SSD Storage; 𝑒𝑈 1,5 = 
OS window 11}
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𝐸 𝑈 2 = {𝑒𝑈 2,1 = Inkjet; 𝑒𝑈 2,2 = multi function; 𝑒𝑈 2,3 = 
single function; 𝑒𝑈 2,4 = built in wifi; 𝑒𝑈 2,5 = good printing 
speed}

𝐸 𝑈 3 = {𝑒𝑈 3,1 = Output 600VA; 𝑒𝑈 3,2 = Backup time upto 
40mins; 𝑒𝑈 3,3 = Output socket 3 nos}.

Let  and 𝐴 ⊆ 𝐸 such 
that

𝐴  = {𝑎1 = (𝑒𝑈 1,1, 𝑒𝑈 2,1, 𝑒𝑈 3,1), 𝑎2 = (𝑒𝑈 1,3, 𝑒𝑈 2,2, 𝑒𝑈 3,2), 𝑎3 
= (𝑒𝑈 1,2, 𝑒𝑈 2,1, 𝑒𝑈 3,1), 𝑎4 = (𝑒𝑈 1,4, 𝑒𝑈 2,3, 𝑒𝑈 3,3), 𝑎5 =  (𝑒𝑈 1,5, 
𝑒𝑈 2,5, 𝑒𝑈 3,2) } .

 Suppose that Mr. X wants to choose a combination of 
computer, printer and UPS for PC from the set of given 
objects with respect to the set of choice parameters.

WSM Algorithm: 
Let Table 1. represents the Interval valued neutrosophic 

soft multiset (𝐼, 𝐴 ) . 

Conversation of 𝐼𝑉𝑁𝑆 to 𝐼𝑉𝑁𝑁 by using accuracy func-

tion  

 to get matrix M.

Table 3 represents the weight criteria given by expert.

Table 3. The weighted criteria

a1 a2 a3 a4 a5

0.3 0.3 0.1 0.1 0.2

Let us consider the 𝑈 1-part of 𝑀.

Table 4. Tabular representation of 𝑈 1 − part of 𝑀

U2 a1 a2 a3 a4 a5

c1 1.85 1.25 1.6 1.6 1.95
c2 2.05 1.25 1.75 1.4 2.15
c3 1.25 1.7 1.75 1.5 1.8
c4 1.45 1.65 1.65 1.45 1.8

Construct the normalized decision matrix for 𝑈 1 by 
using Equation (2).

Table 2. Tabular representation of M

Ui a1 a2 a3 a4 a5

U1 c1 1.85 1.25 1.6 1.6 1.95
c2 2.05 1.25 1.75 1.4 2.15
c3 1.25 1.7 1.75 1.5 1.8
c4 1.45 1.65 1.65 1.45 1.8

U2 p1 2.05 1.85 1.75 1.3 1.6
p2 1.8 1.65 1.6 1.75 1.7
p3 1.4 1.85 1.5 1.95 1.6

U3 u1 2.05 1.45 1.55 1.2 1.85
u2 1.4 1.15 1.8 1.35 1.65
u3 1.35 1.5 1.7 1.25 1.65

Table 1. Tabular representation of (I, A).

Ui a1 a2 a3 a4 a5

U1 c1 [0.5,0.8],[0.2,0.3],[0.4,0.5] [0.2,0.3],[0.9,1.0],[0.9,1.0] [0.6,0.7],[0.5,0.5],[0.4,0.5] [0.6,0.9],[0.3,0.5],[0.2,0.3] [0.7,0.8],[0.2,0.3],[0.4,0.5]

c2 [0.7,0.9],[0.1,0.2],[0.3,0.5] [0.2,0.3],[0.9,1.0],[0.9,1.0] [0.7,0.9],[0.4,0.6],[0.4,0.5] [0.5,0.8],[0.4,0.6],[0.2,0.3] [0.8,1.0],[0.2,0.4],[0.5,0.6]

c3 [0.2,0.3],[0.9,1.0],[0.9,1.0] [0.7,0.9],[0.2,0.3],[0.1,0.2] [0.7,0.9],[0.4,0.6],[0.4,0.5] [0.4,0.6],[0.7,0.8],[0.7,0.8] [0.7,0.9],[0.2,0.5],[0.2,0.5]

c4 [0.4,0.6],[0.5,0.6],[0.5,0.5] [0.6,0.8],[0.3,0.4],[0.2,0.4] [0.6,0.7],[0.5,0.5],[0.4,0.6] [0.2,0.3],[0.1,0.2],[0.3,0.4] [0.2,0.5],[0.2,0.5],[0.7,0.9]

U2 p1 [0.7,0.9],[0.2,0.3],[0.4,0.6] [0.6,0.8],[0.3,0.5],[0.5,0.6] [0.8,1.0],[0.3,0.6],[0.2,0.4] [0.2,0.4],[0.7,0.8],[0.7,0.8] [0.6,0.7],[0.4,0.4],[0.3,0.4]

p2 [0.6,0.8],[0.4,0.5],[0.5,0.6] [0.7,0.9],[0.4.0.6],[0.3,0.4] [0.4,0.8],[0.4,0.6],[0.4,0.6] [0.4,0.8],[0.5,0.5],[0.6,0.7] [0.5,0.8],[0.3,0.6],[0.4.0.6]

p3 [0.3,0.4],[0.5,0.6],[0.5,0.7] [0.5,0.7],[0.2,0.6],[0.5,0.8] [0.5,0.7],[0.5,0.5],[0.3,0.5] [0.9,1.0],[0.2,0.3],[0.2,0.3] [0.7,0.9],[0.5,0.6],[0.3,0.4]

U3 u1 [0.7,0.9],[0.2,0.3],[0.4,0.6] [0.6,0.9],[0.7,0.7],[0.3,0.5] [0.6,0.6].[0.2,0.5],[0.1,0.5] [0.3,0.5].[0.4,0.5],[0.2,0.3] [0.4,0.7],[0.2,0.3],[0.5,0.6]

u2 [0.5,0.6],[0.4,0.6],[0.3,0.4] [0.4,0.6],[0.5,0.7],[0.2,0.3] [0.4,0.8],[0.1,0.2],[0.3,0.4] [0.4,0.7],[0.6,0.9],[0.4,0.7] [0.5,0.7],[0.3,0.4],[0.4,0.5]

u3 [0.3,0.6],[0.4,0.5],[0.3,0.4] [0.2,0.8],[0.4,0.5],[0.4,0.5] [0.5,0.7],[0.2,0.4],[0.3,0.5] [0.7,0.8],[0.7,0.8],[0.2,0.3] [0.5,0.6],[0.4,0.5],[0.5,0.6]
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Now, let us construct the weighted normalized decision 
matrix for 𝑈 1 and calculate the score of alternatives using 
Equations (4) and (5).

Hence, the ranking order of 𝑈 1 alternatives is 𝑐2 > 𝑐1 
> 𝑐4 > 𝑐3 and 𝑐2 is the best alternative in the universe of 
computers.

Now, consider the 𝑈 2 part in 𝑀.

Table 7. Tabular representation of 𝑈 2-part of 𝑀

U2 a1 a2 a3 a4 a5

p1 2.05 1.85 1.75 1.3 1.6
p2 1.8 1.65 1.6 1.75 1.7
p3 1.4 1.85 1.5 1.95 1.6

The normalized decision matrix for 𝑈 2 is constructed in 
the following table.

Table 8. 𝑈 2 normalized decision matrix

U2 a1 a2 a3 a4 a5

p1 1 1 1 0.66667 0.94118
p2 0.87805 0.89189 0.91429 0.89744 1
p3 0.68293 1 0.85714 1 0.94118

For the 𝑈 2-part, the weighted normalized decision 
matrix is constructed and the score of each alternative is 
calculated as given below.

Hence, 𝑝1 > 𝑝2 > 𝑝3 is the ranking order of 𝑈 2 alterna-
tives and 𝑝1 is the best alternative in the universe of printers.

Next, let us consider the 𝑈 3 part in 𝑀.
The normalized decision matrix for 𝑈 3 is computed as 

follows.
Repeating the procedure as above for 𝑈 3-part, we get 

the score of alternatives as shown below.
Here, the ranking order of 𝑈 3 alternatives is 𝑢1 > 𝑢3 > 

𝑢2, where 𝑢1 is the best alternative in the universe of UPS.
Thus, from the above rankings Mr. X can choose the 

combination (𝑐2, 𝑝1, 𝑢1) . (i.e) Mr. X chooses computer
𝑐2, printer 𝑝1 and UPS 𝑢1 for his personal work.
Next, we use WPM algorithm to solve the above 

Example 1.

Table 11. 𝑈 3 normalized decision matrix

U3 a1 a2 a3 a4 a5

u1 1 0.96667 0.86111 0.88889 1
u2 0.68293 0.76667 1 1 0.89189
u3 0.65854 1 0.94444 0.92593 0.89189

Table 10. Tabular representation of 𝑈 3-part of 𝑀

U3 a1 a2 a3 a4 a5

u1 2.05 1.45 1.55 1.2 1.85
u2 1.4 1.15 1.8 1.35 1.65
u3 1.35 1.5 1.7 1.25 1.65

Table 9. Weighted normalized decision matrix for 𝑈 2

U2 a1 a2 a3 a4 a5 Score
p1 0.30000 0.30000 0.10000 0.06667 0.18824 0.95491
p2 0.26342 0.26757 0.09143 0.08974 0.20000 0.91216
p3 0.20488 0.30000 0.08571 0.10000 0.18824 0.87883

Table 6. Weighted normalized decision matrix for 𝑈 1

U1 a1 a2 a3 a4 a5 Score
c1 0.27073 0.22059 0.09143 0.10000 0.18140 0.86414
c2 0.30000 0.22059 0.10000 0.08750 0.20000 0.90809
c3 0.18293 0.30000 0.10000 0.09375 0.16744 0.84412
c4 0.21219 0.29118 0.09429 0.09063 0.16744 0.85572

Table 5. 𝑈 1 normalized decision matrix

U2 a1 a2 a3 a4 a5

c1 0.90244 0.73529 0.91429 1 0.90698
c2 1 0.73529 1 0.87500 1
c3 0.60976 1 1 0.93750 0.83721
c4 0.70732 0.97059 0.94286 0.90625 0.83721
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WPM Algorithm
Conversation of 𝐼𝑉𝑁𝑆 to 𝐼𝑉𝑁𝑁 by using accuracy func-

tion is identical to WSM method. Next, we use Equation (7) 
and construct the normalized decision matrix and display 
it in Table 13.

Now, we use Equation (9) to construct the weighted 
normalized decision matrix for 𝑈 1 and calculate the score 
of alternatives. The resultant matrix is given below.

Hence, the ranking order of 𝑈 1 alternatives is 𝑐2 > 𝑐1 > 
𝑐4 > 𝑐3, where 𝑐2 is the best alternative in the universe of 
computers.

Now, construct the weighted normalized decision 
matrix for 𝑈 2 and calculate the score of alternatives as exe-
cuted in 𝑈 1-part.

The ranking order of 𝑈 2 alternatives is 𝑝1 > 𝑝2 > 𝑝3, 
where 𝑝1 is the best alternative in the universe of printers. 
We shall follow the same steps for 𝑈 3 and calculate the score 
of alternatives and determine the ranking order.

Hence, 𝑢1 > 𝑢3 > 𝑢2 is the ranking order of 𝑈 3 alter-
natives and 𝑢1 being the best alternative in the universe of 
UPS.

Table 12. Weighted normalized decision matrix for 𝑈 3

U3 a1 a2 a3 a4 a5 Score
u1 0.30000 0.29000 0.08611 0.08889 0.20000 0.96500
u2 0.20488 0.23000 0.10000 0.10000 0.17838 0.81326
u3 0.19756 0.30000 0.09444 0.09259 0.17838 0.86297

Table 13. Tabular representation of Normalized decision matrix

Ui a1 a2 a3 a4 a5

U1 c1 0.90244 0.73529 0.91429 1 0.90698
c2 1 0.73529 1 0.87500 1
c3 0.60976 1 1 0.93750 0.83721
c4 0.70732 0.97059 0.94286 0.90625 0.83721

U2 p1 1 1 1 0.66667 0.94118
p2 0.87805 0.89189 0.91429 0.89744 1
p3 0.68293 1 0.85714 1 0.94118

U3 u1 1 0.96667 0.86111 0.88889 1
u2 0.68293 0.76667 1 1 0.89189
u3 0.65854 1 0.94444 0.92593 0.89189

Table 15. Weighted normalized decision matrix for 𝑈 2

U2 a1 a2 a3 a4 a5 Score
p1 1 1 1 0.96027 0.98795 0.94869
p2 0.96174 0.96626 0.99108 0.98924 1 0.91109
p3 0.89189 1 0.98470 1 0.98795 0.86766

Table 14. Weighted normalized decision matrix for 𝑈 1

U1 a1 a2 a3 a4 a5 Score
c1 0.96967 0.91188 0.99108 1 0.98066 0.85939
c2 1 0.91188 1 0.98674 1 0.89978
c3 0.86208 1 1 0.99357 0.96509 0.82663
c4 0.90133 0.99108 0.99413 0.99020 0.96509 0.84865
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Thus, from the above rankings Mr. X can choose the 
combination (𝑐2, 𝑝1, 𝑢1) .

Now, we shall apply TOPSIS method and solve Example 1.

TOPSIS Method
Conversation of 𝐼𝑉𝑁𝑆 to 𝐼𝑉𝑁𝑁 by using accuracy func-

tion is identical to WSM method and the same was pre-
sented in Table 2. Let us consider the 𝑈 1-part of 𝑀 and 
construct the normalized decision matrix using Equation 
(12). The resulting matrix is given in Table 17.

Table 17. 𝑈 1 normalized decision matrix

U1 a1 a2 a3 a4 a5

c1 0.55059 0.42288 0.47372 0.53715 0.50509
c2 0.61011 0.42288 0.51813 0.47001 0.55689
c3 0.37202 0.57512 0.51813 0.50358 0.46624
c4 0.43154 0.55820 0.48853 0.48679 0.46624

Constructing the weighted normalized decision matrix 
for 𝑈 1 by using weight vector for each criteria, we get the 
following matrix.

Table 18. Weighted normalized decision matrix for 𝑈 1

U1 a1 a2 a3 a4 a5

c1 0.16518 0.12686 0.04737 0.05372 0.10102
c2 0.18303 0.12686 0.05181 0.04700 0.11138
c3 0.11161 0.17253 0.05181 0.05036 0.09325
c4 0.12946 0.16746 0.04885 0.04868 0.09325

Now, let us determine PIS and NIS as follows:
𝑋+  =  {0.18303, 0.17253, 0.05181, 0.05372, 0.11138}  

and
𝑋− = {0.11161, 0.12686, 0.04737, 0.04700, 0.09325}
Using the PIS and NIS, let us calculate the separation mea-

sures and closeness coefficient and represent it in Table 19.

Table 19. Table of relative closeness coefficient

U1

c1 0.05032 0.05455 0.52017
c2 0.04616 0.07383 0.61528
c3 0.07377 0.04601 0.38412
c4 0.05708 0.04441 0.43755

Hence, the ranking order of 𝑈 1 alternatives based on 
relative closeness coefficient is 𝑐2 > 𝑐1 > 𝑐4 > 𝑐3 and 𝑐2 is 
the best alternative in the universe of computers.

Now, consider the 𝑈 2-part of 𝑀 and construct the nor-
malized decision matrix as done in 𝑈 1-part.

Table 20. 𝑈 2 normalized decision matrix

U2 a1 a2 a3 a4 a5

p1 0.66855 0.59810 0.62371 0.46720 0.56533
p2 0.58702 0.53344 0.57025 0.53908 0.60067
p3 0.45657 0.59810 0.53461 0.70080 0.56533

The weighted normalized decision matrix for 𝑈 2 is con-
structed by using weight vector for each criteria. Hence, we 
get the following matrix.

Table 21. Weighted normalized decision matrix for 𝑈 2

U2 a1 a2 a3 a4 a5

p1 0.20056 0.17943 0.06237 0.04672 0.11307
p2 0.17611 0.16003 0.05702 0.05391 0.12013
p3 0.13697 0.17943 0.05346 0.07008 0.11307

The PIS and NIS are determined as follows:
𝑋+  =  {0.20056, 0.17943, 0.06237, 0.07008, 0.12013}  

and
𝑋−  =  {0.13697, 0.16003, 0.05346, 0.04672, 0.11307} 
The separation measures and closeness coefficient are 

calculated using PIS and NIS.

Table 22. Table of relative closeness coefficient

U2

p1 0.02441 0.06708 0.73323
p2 0.03556 0.04057 0.53288
p3 0.06460 0.03036 0.31973

Here, the ranking order of 𝑈 2 alternatives based on rel-
ative closeness coefficient is 𝑝1 > 𝑝2 > 𝑝3, where 𝑝1 is the 
best alternative in the universe of printers.

We shall repeat the same procedure for 𝑈 3-part of 𝑀
and obtain the following matrices.

Table 16. Weighted normalized decision matrix for 𝑈 3

U3 a1 a2 a3 a4 a5 Score
u1 1 0.98988 0.98516 0.98829 1 0.96377
u2 0.89189 0.92338 1 1 0.97738 0.80493
u3 0.88221 1 0.99430 0.99233 0.97738 0.85077
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The PIS and NIS are as follows:
𝑋+  =  {0.21764, 0.18890, 0.06162, 0.06146, 0.12425}  

and
𝑋−  =  {0.14332, 0.14482, 0.05306, 0.05463, 0.11082} 
Now, we have the following table using PIS and NIS.

Table 25. Table of relative closeness coefficient

U3

u1 0.01263 0.08444 0.86989
u2 0.08298 0.01217 0.12789
u3 0.07573 0.04443 0.36976

The ranking order of 𝑈 3 alternatives based on relative 
closeness coefficient is 𝑢1 > 𝑢3 > 𝑢2, and 𝑢1 being the best 
alternative in the universe of UPS.

Thus, from the above rankings Mr. X can choose the 
combination (𝑐2, 𝑝1, 𝑢1) .

COMPARISON

The decision making problem in Example 1 is con-
verted to 𝐼𝑉𝑁𝑆𝑀𝑆 and solved by proposed WSM, WPM 
and TOPSIS methods. By using WSM, WPM and TOPSIS 
techniques we calculate the rank of all alternatives in all 
universes. Now, let us compare the results obtained by 
WSM, WPM and TOPSIS. In this comparison, rank of all 
alternatives in each universe are presented in the following 
table.

 From the comparative study, each alternative in the 
available universe achieves the same rank in all the meth-
ods. According to the results, the combination (𝑐2, 𝑝1, 𝑢1) 
is the first choice for Mr. X. Otherwise he goes with the sec-
ond choice (𝑐1, 𝑝2, 𝑢3)  and the worst choice is either (𝑐3, 𝑝3, 
𝑢2)  or (𝑐4, 𝑝3, 𝑢2) .

In this section, we compare the theory of IVNSMS with 
other existing theories like Soft sets (SS), Neutrosophic soft 
sets (NSS), Interval valued neutrosophic soft sets (IVNSS), 
Soft multisets (SMS) and Neutrosophic soft multisets 
(NSMS) to show that IVNSMS are more adaptable and gen-
eralized than other existing sets. The comparison analysis is 
developed by their characters like domain, co-domain, uni-
verse, and membership functions. In Table 27, a compari-
son analysis of the IVNSMS with other above-mentioned 
sets has been executed.

Now, we observe that the set IVNSMS is a generalized 
form of all above mentioned sets. The main advantage of 
IVNSMS is that it describes real world problems involving 
multiple universes, one at a time. Another merit of the set 
is that it can address information ranges from minimum to 
maximum with the help of interval membership functions. 
The application of IVNSMS can assist people pursue a right 
choice out of capable choices in uncertain and incomplete 
data conditions.

Table 23. 𝑈 3 normalized decision matrix

U3 a1 a2 a3 a4 a5

u1 0.72546 0.60867 0.53063 0.54630 0.62126
u2 0.49544 0.48274 0.61622 0.61459 0.55409
u3 0.47775 0.62966 0.58198 0.56906 0.55409

Table 24. Weighted normalized decision matrix for 𝑈 3

U3 a1 a2 a3 a4 a5

u1 0.21764 0.18260 0.05306 0.05463 0.12425
u2 0.14863 0.14482 0.06162 0.06146 0.11082
u3 0.14332 0.18890 0.05820 0.05691 0.11082

Table 26. Alternative rank comparison using WSM, WPM and TOPSIS

Universes Elements WSM Rank WPM Rank TOPSIS Rank
U1 c1 0.86414 2 0.85939 2 0.52017 2

c2 0.90809 1 0.89978 1 0.61528 1
c3 0.84412 4 0.82663 4 0.38412 4
c4 0.85572 3 0.84865 3 0.43755 3

U2 p1 0.95491 1 0.94869 1 0.73323 1
p2 0.91216 2 0.91109 2 0.53288 2
p3 0.87883 3 0.86766 3 0.31973 3

U3 u1 0.96500 1 0.96377 1 0.86989 1
u2 0.81326 3 0.80493 3 0.12789 3
u3 0.86297 2 0.85077 2 0.36976 2
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CONCLUSION

In this paper, we have proposed WSM, WPM and 
TOPSIS methods to solve MCDM problems for Interval 
valued neutrosophic soft multisets and a decision mak-
ing problem is illustrated. We have demonstrated the sig-
nificance of IVNSMS by comparing it with other relevant 
models. In addition, we have compared the results and con-
cluded that three methods prefer the same combination to 
Mr. X. These techniques were more adaptable and effective 
in solving decision making problems and were very useful 
to rank the alternatives in multiple universes at the same 
time. These algorithms can be used in many practical prob-
lems like decision making and personal selection problems. 
The major advantage of IVNSMS is that it can be used to 
maximize the benefits and minimize the cost by consider-
ing only choice parameters. In future work, we will provide 
many applications of these methods and propose a distance 
based TOPSIS technique to handle MCDM problems for 
Interval valued neutrosophic soft multisets.

AUTHORSHIP CONTRIBUTIONS

Authors equally contributed to this work.

DATA AVAILABILITY STATEMENT

The authors confirm that the data that supports the 
findings of this study are available within the article. Raw 
data that support the finding of this study are available from 
the corresponding author, upon reasonable request.

CONFLICT OF INTEREST

The author declared no potential conflicts of interest 
with respect to the research, authorship, and/or publication 
of this article.

ETHICS

There are no ethical issues with the publication of this 
manuscript.

REFERENCES

 [1]  Zadeh LA. Fuzzy sets. Inf Control 1965;8:338–353. 
[CrossRef]

 [2]  Turksen IB. Interval valued fuzzy sets based on nor-
mal forms. Fuzzy Sets Syst 1986;20:191–210. [CrossRef]

 [3]  Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Sets 
Syst 1986;20:87–96. [CrossRef]

 [4]  Atanassov KT. Interval valued intuitionistic fuzzy 
sets. In: Intuitionistic fuzzy sets. 1999:139–177. 

[CrossRef]

 [5]  Smarandache F. Neutrosophic set – A generalization 
of the intuitionistic fuzzy set. Int J Pure Appl Math 
2005;24:287–297.

 [6]  Wang H, Smarandache F, Sunderraman R, Zhang 
YQ. Interval neutrosophic sets and logic: Theory 
and applications in computing. Hexis; 2005.

 [7]  Molodtsov D. Soft set theory—first results. Comput 
Math Appl 1999;37:19–31. [CrossRef]

 [8]  Maji PK, Biswas R, Roy AR. An application of soft 
sets in a decision making problem. Comput Math 
Appl 2002;44:1077–1083. [CrossRef]

 [9]  Chen D, Tsang ECC, Yeung DS, Wang X. The param-
eterization reduction of soft sets and its applications. 
Comput Math Appl 2005;49:757–763. [CrossRef]

[10]  Çağman N, Enginoğlu S. Soft matrix theory and its 
decision making. Comput Math Appl 2010;59:3308–
3314. [CrossRef]

[11]  Çağman N, Enginoğlu S. Soft set theory and uni–int 
decision making. Eur J Oper Res 2010;207:848–855. 

[CrossRef]

[12]  Feng F, Li Y, Çağman N. Generalized uni–int deci-
sion making schemes based on choice value soft 
sets. Eur J Oper Res 2012;220:162–170. [CrossRef]

Table 27. Comparison of IVNSMS with existing sets

Sets Multiple 
Universe

Domain Co-domain Membership Functions

Truth Indeterminate False
SS [7] û E U û û û

NSS [15] û E N(U) ü ü ü

IVNSS [17] û E IVN(U) ü ü ü

SMS [18] ü A ⊆ 𝐸  = ∏𝑖∈ 𝐼 𝐸 𝑈 𝑖 û û û

NSMS [23] ü A ⊆ 𝐸  = ∏𝑖∈ 𝐼 𝐸 𝑈 𝑖 ü ü ü

IVNSMS [42] ü A ⊆ 𝐸  = ∏𝑖∈ 𝐼 𝐸 𝑈 𝑖 ü ü ü

https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/0165-0114(86)90077-1
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1007/978-3-7908-1870-3_2
https://doi.org/10.1016/S0898-1221(99)00056-5
https://doi.org/10.1016/j.camwa.2004.10.036
https://doi.org/10.1016/j.camwa.2010.03.015
https://doi.org/10.1016/j.ejor.2010.05.004
https://doi.org/10.1016/j.ejor.2012.01.015


Sigma J Eng Nat Sci, Vol. 43, No. 3, pp. 922−932, June, 2025932

[13]  Maji PK, Roy AR, Biswas R. Fuzzy soft sets. J Fuzzy 
Math 2001;9:589–602.

[14]  Maji PK, Biswas R, Roy AR. Intuitionistic fuzzy soft 
sets. J Fuzzy Math 2001;9:677–692.

[15]  Maji P. Neutrosophic soft set. Ann Fuzzy Math 
Inform 2013;5:157–168.

[16]  Deli I, Broumi S. Neutrosophic soft matrices 
and NSM-decision making. J Intell Fuzzy Syst 
2015;28:2233–2241. [CrossRef]

[17]  Deli I. Interval-valued neutrosophic soft sets and 
its decision making. Int J Mach Learn Cybern 
2017;8:665–676. [CrossRef]

[18]  Alkhazaleh S, Salleh AR, Hassan N. Soft multisets 
theory. Appl Math Sci 2011;5:3561–3573. [CrossRef]

[19]  Babitha KV, John SJ. On soft multi sets. Ann Fuzzy 
Math Inform 2013;5:35–44.

[20]  Majumdar P. Soft multisets. J Math Comput Sci 
2012;2:1700–1711.

[21]  Alkhazaleh S, Salleh AR. Fuzzy soft multiset theory. 
Abstr Appl Anal 2012;2012:350603. [CrossRef]

[22]  Coşkun AE, Aras G, Sönmez A. The use of soft 
matrices on soft multisets and their applications in 
optimal decision process. Filomat 2018;32:1055–
1067. [CrossRef]

[23]  Deli I, Broumi S, Ali M. Neutrosophic soft multi-set 
theory and its decision making. Neutrosophic Sets 
Syst 2014;5:10. [CrossRef]

[24]  Al-Quran A, Hassan N. Neutrosophic vague 
soft multiset for decision under uncertainty. 
Songklanakarin J Sci Technol 2018;40:290–305.

[25]  Granados C, Das AK, Osu BO. Weighted neutro-
sophic soft multiset and its application to decision 
making. YUJOR 2023;33:293–308. [CrossRef]

[26]  Bölükbaş U, Güneri AF. A fuzzy multi-criteria deci-
sion approach for measuring technology compe-
tency performance of SMEs. Sigma 2017;8:31–40.

[27]  Yolcu A. Intuitionistic fuzzy hypersoft topology and 
its applications to multi-criteria decision-making. 
Sigma J Eng Nat Sci 2023;41:106–118. [CrossRef]

[28]  Arshad M, Saeed M, Rahman AU. Interval complex 
single-valued neutrosophic hypersoft set with appli-
cation in decision making. Neutrosophic Sets Syst 
2023;60:396–419.

[29]  Arshad M, Saeed M, Rahman AU, Bajri SA, 
Alqahtani H, Khalifa HAEW. Modeling uncertain-
ties associated with multi-attribute decision-making 
based evaluation of cooling system using inter-
val-valued complex intuitionistic fuzzy hypersoft 
settings. AIMS Math 2024;9:11396–11422. [CrossRef]

[30]  Handoko D, Mesran M, Nasution SD, Yuhandri Y, 
Nurdiyanto H. Application of Weight Sum Model 
(WSM) in determining special allocation funds 
recipients. Int J Inform Comput Sci 2017;1:31–35. 

[CrossRef]

[31]  Yong Z. Analysis of breast cancer using Weighted 
Sum Method (WSM). Healthc Issues 2022;1:31–41.

[32]  Albán-Pérez A, Serrano-Guzmán MF, Pérez-Ruiz 
DD. Weighted sums method applied for decision 
making in improvement towards complete street: 
A case study in Popayan, Colombia. Rev Legado 
Arquit Dis 2023;18:1–30. [CrossRef]

[33]  Chinnasami S, RajKumar S, Ramachandran M, 
Selvam M. Evaluation of drinking water quality for 
Salem District using Weighted Product Method. 
Mater Charact 2023;2:1–9. [CrossRef]

[34]  Hwang CL, Yoon K. Multiple attribute decision 
making: Method and application. Springer; 1981. 

[CrossRef]

[35]  Triantaphyllou E, Lin CT. Development and evalu-
ation of five fuzzy multiattribute decision-making 
methods. Int J Approx Reason 1996;14:281–310. 

[CrossRef]

[36]  Chen CT. Extensions of the TOPSIS for group deci-
sion-making under fuzzy environment. Fuzzy Sets 
Syst 2000;114:1–9. [CrossRef]

[37]  Jahanshahloo GR, Lotfi FH, Izadikhah M. An algo-
rithmic method to extend TOPSIS for decision-mak-
ing problems with interval data. Appl Math Comput 
2006;175:1375–1384. [CrossRef]

[38]  Chen TY, Tsao CY. The interval-valued fuzzy 
TOPSIS method and experimental analysis. Fuzzy 
Sets Syst 2008;159:1410–1428. [CrossRef]

[39]  Imtiaz M, Saqlain M, Saeed M. TOPSIS for multi-cri-
teria decision making in octagonal intuitionistic 
fuzzy environment by using accuracy function. J 
New Theory 2020;31:32–40.

[40]  Farooq MU, Saqlain M. The selection of LASER as 
surgical instrument in medical using neutrosophic 
soft set with generalized fuzzy TOPSIS, WSM and 
WPM along with MATLAB coding. Neutrosophic 
Sets Syst 2021;40:28–44.

[41]  Liu P, You X. Interval neutrosophic Muirhead mean 
operators and their application in multiple attribute 
group decision-making. Int J Uncertain Quantif 
2017;7:303–334. [CrossRef]

[42]  Jayasudha J, Kowsalyaharishanthi C. Interval-valued 
Neutrosophic Soft Multisets. Submitted. 

https://doi.org/10.3233/IFS-141505
https://doi.org/10.1007/s13042-015-0461-3
https://doi.org/10.1155/2011/479756
https://doi.org/10.1155/2012/350603
https://doi.org/10.2298/FIL1803055C
https://doi.org/10.18052/www.scipress.com/IFSL.1.1
https://doi.org/10.2298/YJOR220915034G
https://doi.org/10.14744/sigma.2023.00011
https://doi.org/10.3934/math.2024559
https://doi.org/10.30865/ijics.v1i2.528
https://doi.org/10.36677/legado.v18i34.22130
https://doi.org/10.46632/mc/2/2/1
https://doi.org/10.1007/978-3-642-48318-9
https://doi.org/10.1016/0888-613X(95)00119-2
https://doi.org/10.1016/S0165-0114(97)00377-1
https://doi.org/10.1016/j.amc.2005.08.048
https://doi.org/10.1016/j.fss.2007.11.004
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2017019865



