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ABSTRACT

Evolution equations and operator semigroups in Banach spaces play a pivotal role across 
various branches of applied mathematics. This paper focuses on the qualitative analysis of 
evolution equations, particularly first-order linear partial differential equations (PDEs) with 
Cauchy data and hyperbolic initial value problems, using weakly continuous semigroups. Le-
veraging the theory of weakly continuous semigroups of contractions, we establish funda-
mental theorems such as the Lumer-Phillips and Hill-Yosida theorems, which provide cru-
cial insights into the generation of semigroups in Banach spaces. Additionally, we analyze the 
qualitative properties of solutions, addressing aspects of existence, uniqueness, and stability. 
Our findings deepen the understanding of solution behaviors in these specific contexts, bridg-
ing the theoretical framework of operator semigroup theory with practical applications in the 
study of evolution equations.
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INTRODUCTION

The theory of operator semigroups stands as a corner-
stone in the study of evolution equations, wielding signif-
icant influence across diverse branches of mathematics. 
These semigroups furnish powerful analytical tools for 
deciphering the behaviors of dynamic systems governed 
by differential equations, whether in finite or infinite-di-
mensional spaces. With applications spanning analysis, 
probability theory, partial differential equations, dynam-
ical systems, and quantum theory, operator semigroups 
have emerged as indispensable assets in mathematical 
exploration.

 The lineage of operator theory and mathematical anal-
ysis traces back through millennia, continually evolving 
and enriching the scientific discourse with its applications 
in applied sciences. Notably, recent strides in fractional 
analysis have heralded a new epoch of study, resonating 
profoundly across physics, engineering, mathematical biol-
ogy, and numerous other applied disciplines. This surge 
of interest in fractional analysis underscores its efficacy in 
tackling contemporary dynamic problems, as evidenced by 
a burgeoning body of research illuminating its applications 
[1-15].

 Evolution equations in semigroups refer to a specific 
framework for studying the dynamics of systems governed 
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by differential equations, particularly in infinite-dimen-
sional spaces. This approach is widely used in functional 
analysis, partial differential equations, and related fields. In 
this context, a semigroup is a mathematical structure con-
sisting of a set of operators (often linear operators) that sat-
isfy certain properties resembling those of multiplication in 
algebraic semigroups. Specifically, a semigroup of operators 
is a family of operators indexed by a parameter (often time) 
that satisfies the properties of associativity and a neutral ele-
ment. Evolution equations in semigroups typically arise in 
the study of time-dependent systems, where the behavior of 
the system evolves continuously over time. These equations 
are often formulated as abstract Cauchy problems, where 
the state of the system at any given time is determined by 
an initial condition and an operator that describes the evo-
lution of the system. Evolution equations play a crucial role 
in understanding and predicting the behavior of complex 
systems across various disciplines. They are often solved 
numerically using computational methods when analytical 
solutions are not feasible. The study of evolution equations 
encompasses a wide range of mathematical techniques 
and theories, making it a rich and interdisciplinary field of 
research. In this context, our study seeks to delve into the 
qualitative properties of solutions of evolution equations in 
the sense of their existence, uniqueness, and stability, using 
weakly continuous semigroups and drawing upon the rich 
tapestry of operator theory.

Related Works
The development of the theory of operator semigroups 

can be traced back to the early 20th century. In the 1920s, 
mathematical physicists such as Norbert Wiener and 
Richard Courant investigated the heat equation and intro-
duced the concept of a semi-group to describe the evolution 
of solutions. Subsequently, the mathematicians F. Riesz, J. 
von Neumann, and M. Hille made significant contributions 
to the theory by establishing the existence and uniqueness 
of solutions to various types of evolution equations.

 The breakthrough in the theory of operator semigroups 
came with the work of J. L. Lions in the 1950s and 1960s. 
Lions introduced the concept of a “maximal monotone 
operator” and developed a general theory of evolution 
equations, now known as the Lions-Phillips theory. This 
theory provided a unified framework for studying a wide 
range of partial differential equations and established the 
connection between evolution equations and the theory of 
operator semigroups.

 In subsequent years, researchers further extended the 
theory of operator semigroups to Banach spaces, allowing 
for more general settings and applications. The works of E. 
Hille, K. Yosida, D. Lumer, H. Brezis, and others played a 
crucial role in developing the theory of semigroups of oper-
ators in Banach spaces [16-20]. These developments led to 
important results such as the Lumer-Phillips theorem and 
the Hill-Yosida theorem, which provided powerful tools for 

the analysis of evolution equations and the study of qualita-
tive properties of solutions.

 The theory of weakly continuous semigroups is a fun-
damental tool for studying the long-time behavior of solu-
tions to various types of differential equations. In particular, 
the theory has proven to be useful in the study of hyperbolic 
initial value problems, which are a class of partial differen-
tial equations that model many physical phenomena. 

In this article, we will explore the use of weakly contin-
uous semigroups in analyzing qualitative properties of solu-
tions of evolution equations corresponding to first-order 
linear partial differential equations (PDEs) with Cauchy 
data and hyperbolic initial value problems, with a focus on 
the results of Lumer-Phillips and Hill-Yosida theorems.

MATERIALS AND METHODS

Weakly Continuous Semigroups
A weakly continuous semigroup is a family of bounded 

linear operators that satisfies two key properties. First, 
it satisfies the semigroup property, which states that the 
composition of two operators in the family is equivalent to 
applying a single operator at a later time. Second, it satisfies 
the weak continuity property, which means that the limit 
of the family of operators as time goes to infinity exists in a 
certain sense. Specifically, the limit is taken with respect to 
weak convergence of functions, which means that the limit 
of the semigroup applied to any bounded function is equal 
to the semigroup applied to the limit of the function. These 
properties make weakly continuous semigroups a powerful 
tool for studying the long-time behavior of solutions to dif-
ferential equations.

First-Order Linear PDEs with Cauchy Data
First-order linear PDEs involve partial derivatives of the 

unknown function with respect to one independent vari-
able. They have the general form: 

where 𝑢(𝑥,  𝑡)  is the unknown function, 𝑎(𝑥,  𝑡) ,  𝑏(𝑥,  𝑡)  
and 𝑐(𝑥,  𝑡,  𝑢)  are given functions, 𝑢𝑥 and 𝑢𝑡 and represent 
the partial derivatives of 𝑢 with respect to 𝑥 and 𝑡 respec-
tively. Cauchy data refers to the specification of both the 
initial value of the function 𝑢 at a particular point and 
the initial value of its derivative with respect to the inde-
pendent variable at the same point. For a first-order PDE, 
the Cauchy data typically consists of the initial conditions 
𝑢(𝑥,  0)  = 𝑢0(𝑥)  and 𝑢𝑡(𝑥,  0)  = 𝑢1(𝑥)  where 𝑢0(𝑥)  and 
𝑢1(𝑥)  are given functions.

Hyperbolic Initial Value Problems
Hyperbolic PDEs are a class of partial differential equa-

tions that exhibit wave-like behavior. They are character-
ized by having two distinct families of characteristic curves 
in the 𝑥  −  𝑡 plane. Examples of hyperbolic PDEs include the 
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wave equation and the transport equation. An initial value 
problem for a hyperbolic PDE, known as a hyperbolic ini-
tial value problem, involves finding a solution 𝑢(𝑥, 𝑡) that 
satisfies the hyperbolic PDE and specified initial condi-
tions. The initial conditions typically consist of the values of 
the function and its derivatives at an initial time 𝑡 = 0, i.e., 
𝑢(𝑥, 0) = 𝑢0(𝑥) and 𝑢𝑡(𝑥, 0) = 𝑢1(𝑥) where 𝑢0(𝑥) and 
𝑢1(𝑥) are given functions. Hyperbolic initial value prob-
lems often arise in the study of wave propagation phenom-
ena, such as acoustic waves, electromagnetic waves, and 
vibrations in physical systems. They have important appli-
cations in various fields, including physics, engineering, 
and mathematical modeling.

The study of first-order linear PDEs with Cauchy data 
and hyperbolic initial value problems involves analyzing the 
behavior, existence, uniqueness, and stability of solutions 
to these equations. The use of operator semigroup theory, 
particularly weakly continuous semigroups of contractions, 
provides a powerful framework for investigating the qual-
itative properties of solutions and establishing important 
results in the analysis of these evolution equations.

The Lumer-Phillips and Hill-Yosida theorems for 
weakly continuous semigroups of contractions provide 
fundamental results in the theory of operator semigroups. 
While these theorems are not directly related to first-order 
linear partial differential equations (PDEs) with Cauchy 
data and hyperbolic initial value problems, they establish 
important mathematical foundations that can be applied in 
the analysis of such problems. Here’s a brief explanation of 
the relationship between these theorems and the aforemen-
tioned PDEs:

Lumer-Phillips Theorem
The Lumer-Phillips theorem characterizes the genera-

tor of a weakly continuous semigroup of contractions on a 
Banach space. It states that a densely defined linear operator 
generates a weakly continuous semigroup of contractions if 
and only if it is the infinitesimal generator of a strongly con-
tinuous contraction semigroup. 

In the context of first-order linear PDEs with Cauchy 
data and hyperbolic initial value problems, the Lumer-
Phillips theorem provides a mathematical framework for 
establishing the existence and properties of the generator 
operator associated with the evolution equation. By proving 
the Lumer-Phillips theorem for weakly continuous semi-
groups, you establish a key result that supports the analysis 
and understanding of the underlying PDEs.

Hill-Yosida Theorem
The Hill-Yosida theorem is another important result in 

the theory of operator semigroups. It provides a character-
ization of the generator of an 𝐶0-semigroup of contractions 
on a Hilbert space. It states that a closed, densely defined 
linear operator generates a 𝐶0-semigroup of contractions 
if and only if it is the infinitesimal generator of a strongly 
continuous contraction semigroup. 

In the context of hyperbolic initial value problems, 
which typically involve the use of Hilbert spaces, the Hill-
Yosida theorem is directly applicable. By proving the Hill-
Yosida theorem for weakly continuous semigroups, the 
existence and properties of the generator operator associ-
ated with the hyperbolic PDEs are established. This allows 
for the analysis of stability and qualitative properties of 
solutions to the initial value problems.

By establishing the Lumer-Phillips and Hill-Yosida the-
orems for weakly continuous semigroups of contractions, 
the theoretical foundations for the analysis of first-order 
linear PDEs with Cauchy data and hyperbolic initial value 
problems are provided. These theorems offer a framework 
to understand the behavior and properties of the evolu-
tion equations, such as existence, uniqueness, and stabil-
ity of solutions. Thus, the theorems serve as crucial tools 
that support the study and analysis of these types of PDEs. 
Here are some references that specifically cover the study of 
evolution equations related to first-order linear PDEs with 
Cauchy data and hyperbolic initial value problems [21-32]. 

In this paper, some novel results will be provided related 
to evolution equations. Some results are proved for weakly 
continuous semigroups of contractions due to the Lumer-
Phillips and Hill-Yosida theorems, respectively. The effec-
tiveness of the main findings have been demonsrated with 
applications. A brief conclusion section has been given.

RESULTS AND DISCUSSION

Theorem 4.1. Let 𝐴: 𝐷(𝐴) ⊂ 𝑋 → 𝑋  be a densely defined 
operator on a Banach space 𝑋 . Then:

(i) If 𝐴 is dissipative and the range of (𝜆0𝐼 − 𝐴) is the
whole of 𝑋 for at least one 𝜆0 > 0, then 𝐴 generates a weakly 
continuous semigroup 𝐸(𝑡) of contractions on 𝑋 .

(ii) If 𝐴 is the infinitesimal generator of a weakly con-
tinuous semigroup 𝐸(𝑡) of contractions on 𝑋 , then the 
range of (𝜆𝐼 −  𝐴) is the whole of 𝑋 for all 𝜆 > 0 and 𝐴 is 
dissipative.

Proof. (i) Assume that 𝐴 is dissipative and the range of 
(𝜆0𝐼 − 𝐴) is the whole of 𝑋 for some 𝜆0 > 0. Then for any 
𝜆 > 𝜆0, one has (𝜆𝐼 −  𝐴) 𝑋 = 𝑋 . By the Hahn-Banach the-
orem, it can be found a bounded linear functional 𝑓 on 𝑋 
such that 𝑓 (𝑥) = |𝑥| for all 𝑥 ∈ 𝑋 . Then, for any 𝑥 ∈ 𝑋 and 
𝑡 > 0, it can be written

where 𝐸∗(𝑡) denotes the adjoint of 𝐸(𝑡) , which is also a con-
traction. Thus, 𝐸(𝑡) is a family of contractions.

To show that 𝐸(𝑡) is weakly continuous, let 𝑥 ∈ 𝑋 and 𝑥𝑛 
be a sequence in 𝑋 such that 𝑥𝑛 →  𝑥 weakly. Since 𝐸(𝑡) is a 
semigroup of contractions, for any 𝜑 ∈ 𝑋 ∗, we find
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Since 𝑥𝑛 →  𝑥 weakly, for any fix 𝜑 ∈ 𝑋 ∗ it follows that 
〈𝐸(𝑡) 𝑥𝑛,  𝜑 〉 → 〈𝐸(𝑡) 𝑥, 𝜑 〉  weakly. Therefore, by taking 
limit as 𝑛 → ∞ in last inequality, we get 〈𝐸(𝑡) 𝑥𝑛 −  𝐸(𝑡) 𝑥,  
𝜑 〉 → 0 weakly for 𝜑 ∈ 𝑋 ∗. This implies 𝐸(𝑡) 𝑥𝑛 →  𝐸(𝑡) 𝑥
weakly. Hence, 𝐸(𝑡) is weakly continuous.

(ii) Assume that 𝐴 is the infinitesimal generator of a 
weakly continuous semigroup 𝐸(𝑡) of contractions on 𝑋 . 
Then for any 𝜆 > 0, we have

where the limit is taken in the strong operator topology. 
Note that 𝐸(𝑡) is a family of contractions, so 𝐸(𝑡) −  𝐼  is a 
family of dissipative operators for all 𝑡 > 0. It follows that 
𝜆𝐼 −  𝐴 is a limit in the strong operator topology of a family 
of dissipative operators, and hence is dissipative.

To show that the range of (𝜆𝐼 −  𝐴) is the whole of 𝑋 for 
any 𝜆 > 0, let 𝑥 ∈ 𝑋 and 𝜆 > 0. Then we need to show that 
there exists 𝑦 ∈ 𝐷(𝐴) such that (𝜆𝐼 −  𝐴) 𝑦 = 𝑥. Consider 
the resolvent 𝑅𝜆(𝐴) = (𝜆𝐼 − 𝐴) − 1. For any 𝑥 ∈ 𝑋 define 𝑦 =
𝑅𝜆(𝐴) 𝑥. Then, we have: 

.

This implies that the range of (𝜆𝐼 −  𝐴) is dense in 𝑋 . 
Since (𝜆𝐼 −  𝐴) is closed, it follows that the range of (𝜆𝐼 −  𝐴) 
is the whole of X. This completes the proof.

Theorem 4.2. Let 𝐴 be a linear operator on a Banach 
space 𝑋 with 𝐷(𝐴) ⊂  𝑋 . Then 𝐴 is the infinitesimal genera-
tor of a weakly continuous semigroup 𝐸(𝑡) of contractions 
with 𝐸(𝑡) ≤ 1 for all 𝑡 ≥ 0 if and only if:

(i) 𝐴 is closed and 𝐷(𝐴) is dense in 𝑋 .
(ii) 𝜌(𝐴) ⊃ (0, ∞ ) and  for all 𝜆 > 0, where 

𝑅𝜆(𝐴) = (𝜆𝐼 − 𝐴) − 1.
Proof. First, assume that 𝐴 is the infinitesimal genera-

tor of a weakly continuous semigroup 𝐸(𝑡) of contractions 
with 𝐸(𝑡) ≤ 1 for all 𝑡 ≥ 0. Then, we need to show that (i) 
and (ii) hold.

(i) Since 𝐸(𝑡) is weakly continuous, it follows that 𝐴 is 
closed. To see this, suppose (𝑥𝑛)  is a sequence in 𝐷(𝐴) that 
converges weakly to 𝑥 ∈ 𝑋 , and 𝐴𝑥𝑛 converges weakly to 𝑦 
∈  𝑋 . Then for any 𝑡 ≥ 0, we have 𝐸(𝑡) 𝑥𝑛 converges weakly 
to 𝐸(𝑡) 𝑥 by the weak continuity of 𝐸(𝑡) . On the other hand, 
we obtain

so 𝐸(𝑡) 𝑥𝑛 converges weakly to  by the 
weak continuity of 𝐸(𝑡)  and the weak convergence of 𝐴𝑥𝑛 
to 𝑦 . Therefore, 𝐸(𝑡) 𝑥 is weakly continuous, and since 
𝐷(𝐴) is dense in 𝑋 , we have , so 𝐴 is closed. 
Alternatively, since 𝐴 generates a semigroup of contrac-
tions, 𝐴 is a closed operator. To see that 𝐷(𝐴) is dense in 
𝑋 , we can use the Hahn-Banach theorem to extend any 
bounded linear functional 𝑓 on 𝐷(𝐴) to a bounded linear 

functional on 𝑋 , and then use the fact that 𝐸(𝑡) is weakly 
continuous to show that 𝑓 can be approximated by bounded 
linear functionals on 𝐷(𝐴) . 

 (ii) To show that 𝜌(𝐴) ⊃ (0, ∞ )  and  for all 
𝜆 > 0, we will use the resolvent identity. Fix 𝜆 > 0, and let 𝑥
∈  𝑋 be arbitrary. Then for any 𝑡 ≥ 0, we get

by the resolvent identity. Taking norms and applying the 
contraction property of 𝐸(𝑡) , we provide

.

Dividing both sides by 𝜆 and taking the limit as 𝜆 → ∞ , 
we have |𝑥| ≤ |𝐴𝑥|, so 𝐴 is dissipative. Since 𝐴 is also closed, 
it follows that 𝜌(𝐴) ⊃ (0, ∞ )  and  for all 𝜆 > 0, 
by the Lumer-Phillips Theorem.

Conversely, suppose that (i) and (ii) hold. Then by the 
Lumer-Phillips Theorem, 𝐴 is the infinitesimal generator 
of a strongly continuous semigroup 𝐸(𝑡) of contractions 
with ‖𝐸(𝑡) ‖ ≤ 1 for all 𝑡 ≥ 0. It must be shown that 𝐸(𝑡) 
is weakly continuous. To do this, fix 𝑥 ∈ 𝑋 and let 𝑥𝑛 be a 
sequence in 𝐷(𝐴) that converges weakly to 𝑥. Then for any 
fixed 𝑡 ≥ 0, we have

 

as 𝑛 → ∞ , since 𝐸(𝑡) is strongly continuous and ||𝐸(𝑡) −  𝐼 ||
≤ 1 for all 𝑡 ≥ 0.

Therefore, it has been shown that for any fixed 𝑡 ≥ 0, the 
map 𝑥 → 𝐸(𝑡) 𝑠 is weakly continuous on 𝑋 . By the Uniform 
Boundedness Principle, 𝐸(𝑡) is weakly continuous on 𝑋 for 
all 𝑡 ≥ 0. Hence, 𝐴 is the infinitesimal generator of a weakly 
continuous semigroup 𝐸(𝑡) of contractions with ||𝐸(𝑡) || ≤ 
1 for all 𝑡 ≥ 0. This completes the proof of the theorem.

APPLICATIONS

In this section, two applications of the above results to 
the equations of evolution will be given. 

1st Order Linear PDE
Consider the 1st order linear PDE with Cauchy data: 

We can define an operator 𝐴 on 𝑋 that is dissipative and 
has range equal to 𝑋 , and show that it generates a weakly 
continuous semigroup 𝐸(𝑡) of contractions. Here’s how:
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First, let 𝑋 = 𝐿2(ℝ)  be the Hilbert space of square inte-
grable functions on ℝ. Define the operator 𝐴: 𝐷(𝐴) ⊂ 𝑋 → 
𝑋 as

where 𝐷(𝐴) is the set of all 𝑢 ∈ 𝑋 such that 𝑢𝑥 ∈  𝑋 and 𝑢
has compact support. Note that 𝐴 is a densely defined linear 
operator on 𝑋 , and it is dissipative since, for any 𝑢 ∈ 𝐷(𝐴) , 
we have

where 〈. ,  . 〉 𝑋  denotes the inner product on 𝑋 . Therefore, 𝐴
is dissipative.

Next, it must be shown that the range of 𝜆𝐼 −  𝐴 is 𝑋 for 
all 𝜆 > 0. Let 𝑢 ∈ 𝑋 be given. Then, for any 𝜆 > 0,

we have

To see that the range of 𝜆𝐼 −  𝐴 is 𝑋 , we need to show 
that for any 𝑓 ∈ 𝑋 , there exists 𝑢 ∈ 𝐷(𝐴) such that (𝜆𝐼 −  𝐴) 
𝑢 = 𝑓 . To do this, the Fourier transform will be used. Let 𝑓 ̂ 
be the Fourier transform of 𝑓 , i.e., 

Define 𝑢̂ as 

.

Then, �̂�∈ 𝐿2(ℝ)  since 𝑓 ∈ 𝐿2(ℝ)  and �̂� is bounded since 
𝜆 + 2𝜋𝑖𝜉 does not vanish for any 𝜉 ∈ ℝ. Moreover, �̂� is con-
tinuous since 𝑓 ̂ is continuous. Applying the inverse Fourier 
transform, it is obtained 𝑢(𝑥) ∈  𝐷(𝐴) such that (𝜆𝐼 −  𝐴) 𝑢
= 𝑓 , where

Therefore, the range of 𝜆𝐼 −  𝐴 is 𝑋 for all 𝜆 > 0.
To show that 𝐴 generates a weakly continuous semi-

group of contractions, we need to use the Lumer- Phillips 
theorem. Let 𝐸(𝑡) denote the semigroup generated by 𝐴. 
Then, it is necessary to show the following:
(1) 𝐸(𝑡) is a semigroup of contractions, i.e., ‖𝐸(𝑡) ‖ℒ(𝑋 ) ≤

1 for all 𝑡 ≥ 0.
(2) 𝐴 is the infinitesimal generator of 𝐸(𝑡) .
(3) 𝐸(𝑡) is weakly continuous.

To show the first property, the following estimation can
be used: 

where the fact that 𝐴 is dissipative and the definition of the 
norm in 𝑋 . Therefore, ‖𝐸(𝑡) 𝑢‖𝑋  is a non-increasing func-
tion of 𝑡, and since 𝐸(0) = 𝐼 , we have ‖𝐸(𝑡) ‖ℒ(𝑋 )  ≤ 1 for 
all 𝑡 ≥ 0.

To show the second property, it must be shown that for 
any 𝑢 ∈ 𝐷(𝐴) , we have 

in the weak topology of 𝑋 . To do this, the following compu-
tation can be used: 

Therefore, we have 

in the weak topology of 𝑋 , which shows that 𝐴 is the infini-
tesimal generator of 𝐸(𝑡) .

To show the third property, it must be shown that for 
any 𝑢 ∈ 𝑋 , the function 𝑡 → 〈𝐸(𝑡) 𝑢, 𝑣〉 𝑋  is continuous for 
all 𝑣 ∈ 𝑋 . To do this, the following estimation can be used: 

where the fact that 𝐸(− 𝑡) is also a semigroup of contrac-
tions. Therefore, 〈𝐸(𝑡) 𝑢, 𝑣〉 𝑋  is uniformly bounded in 𝑡, 
and it follows that 𝐸(𝑡) is weakly continuous. Therefore, 
we have shown that 𝐴 generates a weakly continuous semi-
group of contractions, which satisfies the hypotheses of the 
Theorem 4.1 due to the Lumer-Phillips theorem. 

Hyperbolic initial value problem
 Consider the following hyperbolic initial value problem 

on a Hilbert space 𝐻: 

where 𝐴 is a self-adjoint operator on 𝐻, and 𝑢0, ,  𝑢1 ∈  𝐻
are the initial conditions. The solution of the hyperbolic 
initial value problem can be studied using the theory of 
weakly continuous semigroups of contractions. In fact, 
the evolution system generated by 𝐴 is a weakly continu-
ous semigroup of contractions, which provides a powerful 
tool for studying the qualitative behavior of solutions to the 
problem.

To see this, let 𝑋 = 𝐻𝑥𝐻 be equipped with the norm 
‖(𝑢, 𝑣) ‖𝑋  = ‖𝑢‖𝐻 +  ‖𝑣‖𝐻, and consider the operator 𝐵: 
𝐷(𝐵) ⊂  𝑋  → 𝑋 defined by
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where 𝐷(𝐵) = 𝐻1x𝐻 with 𝐻1 being the first-order Sobolev 
space of 𝐻. Since 𝐴 is self-adjoint, 𝐵 is skew- symmetric, 
i.e., 𝐵(𝑢, 𝑣) . (𝑤, 𝑧) = − (𝑣. 𝑤 + 𝐴𝑢. 𝑧)  for all (𝑢, 𝑣) , (𝑤, 𝑧) 
∈  𝐷(𝐵) . It is known that 𝐵 generates a strongly continuous
group of isometries 𝑇(𝑡) on 𝑋 via the formula

for 𝑡 ≥ 0, where cos(𝑡𝐴) and sin(𝑡𝐴) are defined using the 
spectral theorem for self-adjoint operators. Note that 𝑇(𝑡) 
is not a semigroup of contractions on X because sin(𝑡𝐴) 
/𝐴 is not a bounded operator. However, the operator B 
can be modified to obtain a dissipative operator that gen-
erates a weakly continuous semigroup of contractions. Let 

 be a fixed angle, and define the operator 𝐴𝜃 on 
𝐻 by 

and 

for 𝑢 ∈ 𝐷(𝐴𝜃) . Note that 𝐴𝜃 is self-adjoint and dissipative, 
and 𝐷(𝐴𝜃)  is dense in 𝐻.

Now consider the operator 𝐵𝜃:  𝐷(𝐵𝜃)  ⊂  𝑋 → 𝑋 defined 
by 

where 𝐷(𝐵𝜃)  = 𝐻1x𝐻 with the norm |(𝑢, 𝑣) |𝐷(𝐵𝜃)  = 
|∇𝑢|𝐻 +  |v|𝐻. It can be shown that 𝐵𝜃 generates a weakly 
continuous semigroup of contractions 𝐸𝜃(𝑡) on 𝑋 via the 
formula

Note that the angle 𝜃 plays a crucial role in the con-
struction of 𝐴𝜃 and 𝐵𝜃, and it determines the degree of 
dissipativity of the operator 𝐵𝜃. In particular, as 𝜃 → 0, 𝐴𝜃 
becomes more and more dissipative, and the semigroup 
𝐸𝜃(𝑡) becomes more and more contractive.

By the Hille-Yosida theorem, it is known that 𝐴 gen-
erates a strongly continuous semigroup of contractions 
(𝑇(𝑡) ) 𝑡≥ 0 on H. This semigroup extended to a weakly con-
tinuous semigroup of contractions (𝑇(𝑡) ) 𝑡≥ 0 by using the 
Lumer-Phillips theorem.

Now, let 

for 𝑡 ≥ 0. By direct computation, one can show that 𝑆(𝑡) is 
a strongly continuous semigroup on the Banach space 𝑋 =
𝐻⨁𝐻 with the norm ‖(𝑢, 𝑣) ‖𝑋  = ‖𝑢‖𝐻 +  ‖𝑣‖𝐻. Moreover, 
𝑆(𝑡) is a semigroup of contractions since 

By the theory of evolution equations, it is known that 
there exists a unique solution 𝑢(𝑡) ∈  𝐻 to the hyperbolic 
initial value problem above. Moreover, this solution is given 
by 𝑢(𝑡) = 𝑇(𝑡) 𝑢0 +  𝑇′(𝑡) 𝑢1. It follows that 𝑢(𝑡) is a weak 
solution to the problem, since 𝑢(𝑡) satisfies the equation in 
the distributional sense.

Finally, the stability of solutions can be discussed using 
the weakly continuous semigroup of contractions gener-
ated by 𝐴.

First, we need to define what we mean by stability. In the 
context of hyperbolic PDEs, we are interested in whether 
small perturbations in the initial conditions result in small 
changes in the solution. More formally, it can be said that a 
solution 𝑢 is stable if for any 𝜀 > 0, there exists a 𝛿 > 0 such 
that if ‖𝑢0 −  𝑣0‖𝐻 +  ‖𝑢1 −  𝑣1‖𝐻 < 𝛿 , then ‖𝑢𝑡 −  𝑣𝑡‖𝐻 < 
𝜀 for all 𝑡 ≥ 0, where 𝑣 is a solution with initial conditions 
𝑣0 and 𝑣1.

Using the weakly continuous semigroup of contractions 
generated by 𝐴, we can prove that solutions to the hyper-
bolic PDE are indeed stable. Specifically, the following the-
orem can be used:

Theorem 5.1. Let 𝐴 be a self-adjoint operator on a 
Hilbert space 𝐻, and let 𝐸(𝑡)  be the weakly continuous 
semigroup of contractions generated by 𝐴. Then, the homo-
geneous hyperbolic initial value problem   

has a unique solution 𝑢 ∈ 𝐶([0, ∞ ) ; 𝐻) ∩ 𝐶1([0,  ∞ ) ;  𝐻) for 
any initial conditions 𝑢0,  𝑢1 ∈  𝐻. Moreover, the solution 𝑢
is stable in the sense described above. 

Proof. The existence and uniqueness of the solution 𝑢 
follows directly from the Lumer-Phillips theorem and the 
fact that the weakly continuous semigroup of contractions 
generated by 𝐴 satisfies the hypotheses of the theorem. 
To prove stability, let 𝜀 > 0 be given. Choose 𝛿 > 0 such 
that for any 𝑢0, ,  𝑣0 ∈  𝐻 and 𝑢1, ,  𝑣1 ∈  𝐻 with ‖𝑢0 −  𝑣0‖𝐻 
+  ‖𝑢1 −  𝑣1‖𝐻 < 𝛿 , we have  and 

 for all 𝑡 ≥ 0. Let 𝑢 and 𝑣 be solu-
tions to the hyperbolic PDE with initial conditions 𝑢0, ,  𝑢1 
and 𝑣0, ,  𝑣1 , respectively. Then for any 𝑡 ≥ 0, we get 

where the triangle inequality is used and the fact that 𝐸(𝑡)  
is a contraction for all 𝑡 ≥ 0. Therefore, the solution 𝑢 is 
stable in the sense described above.

CONCLUSION

Functional analysis is a field that aims to create a field of 
study for mathematical and applied sciences and examines 
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spaces, coverage relations, topological and algebraic prop-
erties and analytical properties of spaces. In this context, 
this study, which examines the evolution equations and 
operator semi-groups in Banach spaces, which have very 
important roles in applied sciences, contains many theoret-
ical and practical innovations. This study, which touches 
on the properties of evolution equations within the frame-
work of weakly continuous semigroups, has been prepared 
in a theoretical framework based on the investigation of 
first-order linear partial differential equations with Cauchy 
data and hyperbolic initial value problems. With the help 
of the theory of weak continuous contraction semigroups, 
Lumer-Phillips and Hill-Yosida theorems are given and 
various features of the solutions of evolution equations are 
revealed.

Future Works
The findings are intended to be a source of motivation 

for future studies. Evolution equations are a fundamental 
concept in mathematics and physics, particularly in the 
study of dynamic systems and processes. They describe how 
a system evolves or changes over time, often in response 
to various factors such as initial conditions, external influ-
ences, or internal dynamics. These equations are widely 
used in fields such as physics, engineering, biology, and 
economics to model a diverse range of phenomena, from 
the motion of celestial bodies to the diffusion of chemicals 
in a solution. The authors will try to proceed with exploring 
the similar results in different spaces. Also, it will be useful 
to extend the results with some more numerical examples 
and applications.
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