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ABSTRACT

This article introduces a new circular distribution, the wrapped size-biased gamma Lindley 
distribution. The article elucidates the properties of this newly proposed distribution, provid-
ing explicit expressions for key statistical measures such as the characteristic function, trigo-
nometric moments, resultant length, mean, circular variance, standard deviation, skewness, 
and kurtosis. Estimation of model parameters is conducted using the maximum likelihood 
and weighted least squares methods. Lastly, the article applies the model to real-world data 
and compares its goodness of fit against the established model in the existing literature.
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INTRODUCTION

The use of linear probability models in the analysis of 
circular or directional data can produce misleading results. 
Therefore, studies on circular probability distributions have 
become a popular topic for researchers in recent years. The 
initial studies on modeling directional data have histori-
cal significance. K. Mardia’s [1] book, Statistics of Circular 
Data, is considered a fundamental resource in this field. 
Fisher’s [2] book, Statistical Analysis of Circular Data, and 
other significant publications also provide valuable infor-
mation on the analysis of directional data.

In recent years, there has been increasing general inter-
est in the literature on developing and studying new circu-
lar probability distribution models. Phani et al. [3-6] and 
Rao et al.[7] examined various properties of stereographic, 
circular, and semicircular distributions using inverse ste-
reographic projections on linear exponential, Weibull, 

and logistic variables. Rao et al. [8] developed wrapped 
versions of few life testing models.Sahana Bhattacharjee 
et al. [9] introduced a two-parameter wrapped length-bi-
ased weighted exponential distribution. Ahmad, H. 
Al-Khazahel, et al. [10-11] discussed wrapped quasi-Lind-
ley and wrapped Akash distributions. Recently, Yilmaz [12] 
derived the Inverse stereographic hyperbolic secant distri-
bution and presented some of its properties.

A circular probability distribution can be derived from 
a linear model, and one of the methods to achieve this is the 
wrapping technique. The fundamental idea behind wrapping 
a random variable (say X) onto a circle is to define a new 
random variable through the transformation X (mod 2π). In 
modeling circular data and processes, adopting the standard 
Euclidean model and wrapping it around the circle is a com-
monly used approach. For example, Pewsey [13] obtained 
the probability density function of the wrapped skew-normal 

https://sigma.yildiz.edu.tr
https://orcid.org/0000-0002-3402-8920
https://orcid.org/0000-0002-1196-9541
http://creativecommons.org/licenses/by-nc/4.0/


Sigma J Eng Nat Sci, Vol. 43, No. 4, pp. 1124−1131, August, 2025 1125

distribution by utilizing Azzalini’s [14] skew-normal distri-
bution. Jammalamadaka and Kozubowski [15] studied the 
stochastic properties of circular distributions obtained with 
exponential and Laplace distributions.

Additionally, Sanchez and Scarpa [16] successfully 
modeled a circular distribution using the generalized flexi-
ble skewed normal (FGSN) distribution defined by Ma and 
Genton [17]. Yilmaz and Biçer [18] derived a transmuted 
version of the wrapped exponential distribution. In another 
study, Yilmaz A. [19] examined the wrapped flexible skew 
Laplace distribution.

This study introduces a novel circular distribution, 
namely the wrapped size-biased gamma Lindley (WSBGaL) 
distribution. The Lindley distribution, initially introduced 
by D.V. Lindley [20], has undergone extensive examination 
by various researchers, resulting in the exploration of mul-
tiple modifications and generalizations. From these modi-
fications, we have chosen to adopt the size-biased gamma 
Lindley (SBGaL) distribution as the base distribution for 
the wrapping method. The SBGaL distribution, introduced 
by Beghriche and Zeghdoudi [21], is one of the prominent 
modifications of the Lindley distribution in recent years. 
This distribution was evaluated by studying two data sets 
frequently used in similar studies. The authors compared 
the modeling success of the SBGaL distribution with other 
distributions such as generalized Lindley, gamma Lindley, 
quasi-Lindley, two-parameter Lindley, gamma, Weibull, 
lognormal, and size-biased Lindley. They determined that 
the SBGaL distribution was more successful in these two 
examples. The idea that this remarkable modeling success 
will also be evident in the circular data constitutes the main 
motivation of this study.

The following section presents the probability density 
function and some stochastic properties of the WSBGaL 
distribution. In the third section, we discuss the estimation 
of parameters using maximum likelihood and weighted 
least squares methods. In this section, a Monte Carlo sim-
ulation study is also provided. The fourth section of the 
study demonstrates the fit of the WSBGaL distribution on 

real-world data. The concluding section summarizes the 
general findings of this study.

DEFINITION AND SOME PROPERTIES OF 
WSBGAL DISTRIBUTION

Beghriche and Zeghdoudi [21] used a mixture of 
gamma and Lindley distributions in the weighting method 
to obtain the probability density function (pdf) and the 
cumulative distribution function (cdf) of the size-biased 
gamma Lindley distribution in the forms 

  (1)

  (2)

respectively, where x > 0, λ > 0 is the scale parameter and β 
> λ ⁄(λ+1) is the shape parameter. 

As we mentioned in the introduction section, the 
wrapped form of the random variable X is defined by the 
Θ= X(mod 2π) transformation and the pdf of Θ can be 
obtained by 

Thus, we can give the probability density function of the 
WSBGaL distribution defined in the circular domain with 
the following definition.

Definition 2.1 A circular random variable Θ is said to 
follow the wrapped size biased gamma Lindley distribution 
with scale parameter λ and shape parameter β, if its proba-
bility density function is of the form

  
(3)

where θ ∈ [0, 2π), λ > 0 and β > λ⁄(λ+1).
From now on it is denoted Θ~WSBGaL(λ,β). Some pos-

sible shapes of the pdf of WSBGaL(λ,β) distribution pre-
sented in Figure 1. 

 

Figure 1. Pdf of WSBGaL distribution for different values of λ and β.
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Cumulative Distribution Function
The cumulative distribution function of WSBGaL(λ,β) 

distribution is obtained as follows 

  
(4)

where θ ∈ [0, 2π), λ > 0 and β > λ⁄(λ+1).

Characteristic Function
In circular models, as in models defined on a real line, 

the characteristic function defines the entire probability 
distribution. Since random variables with a circular distri-
bution are periodic, they will have the same distribution 
when shifted by 2π, i.e. Θ ≝ Θ + 2π. Consequently, since

p must be an integer. According to Jammalamadaka and 
Sengupta [22], the characteristic function of a wrapped ran-
dom variable Θ (say φΘ (p)) and the characteristic function 
of the corresponding unwrapped random variable (say φX 
(p)) are equal at integer values of p. Thus, the characteristic 
function of WSBGaL distribution is

  (5)

Where p = 0, ±1, ±2,…..

Trigonometric Moments
The values taken by the characteristic function of the 

wrapped random variable for p = 0, ±1, ±2,….. are referred 
to as trigonometric moments. The pth order non-central 
trigonometric moments of WSBGaL(λ,β) are given by 
in terms of αp = E(cospΘ) and βp = E(sinpΘ) where φp= 
φΘ (p) = αp + iβp. The first trigonometric moments of 
WSBGaL(λ,β) distribution are

  (6)

  (7)

Hence, the resultant length, the mean direction, the cir-
cular variance and the circular standard deviation, respec-
tively, given by 

  (8)

  (9)

  (10)

  
(11)

The mean direction vector, analogous to the mean in 
linear models, provides information about the mean of the 
distribution. The resultant length of this vector serves as 
a measure of the spread around the mean of the distribu-
tion, analogous to the conventional variance or standard 
deviation in circular models. As the concentration around 
the mean direction µ1 increases, the angular concentration 
measure ρ1 will rise, and it will decrease as the concentra-
tion decreases. 

Central Trigonometric Moments
The central trigonometric moments of the WSBGaL(λ,β) 

are given by 

  

(12)

  

(13)

Skewness: To compute skewness for the wrapped size 
biased gamma Lindley distribution we need its second cen-
tral trigonometric moment . From equation (13), we 
have 

  
(15)

From equations (10), (14) and (15), the skewness of the 
WSBGaL(λ,β) distribution is

  

(16)
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Kurtosis: Circular kurtosis of circular distribution is

   (17)

To calculate kurtosis for the WSBGaL(λ,β) distribu-
tion we need its second central trigonometric moment . 
From equation (12), we have 

  (18)

From equations (10), (17), and (18), the kurtosis of the 
WSBGaL(λ,β) distribution is 

  

(19)

 

Alternative representation: According to Carslaw [23], 
an alternative expression for the pdf of wrapped size biased 
gamma Lindley distribution can be obtained using the trig-
onometric moments as

  (20)

Thus,

  
(21)

where θ ∈ [0,2π), λ > 0 and β > λ⁄(λ+1).

ESTIMATION

This section discusses statistical inference for the 
WSBGaL distribution using two commonly used estima-
tion methods: maximum likelihood (ml) and weighted least 
squares (wls).

Maximum Likelihood Estimation
Let  be a random sample from 

WSBGaL(λ,β). The likelihood function is given by 
 where g(.;λ,β) is the pdf of 

the WSBGaL distribution. Then the maximum likelihood 
estimators of λ and β are obtained by collective solutions 
of equations

The first derivatives of the log-likelihood function given 
above can be obtained analytically. However, the resulting 
equations are too long to be shown here. The simultaneous 
solutions of the equations can be obtained using any math-
ematical software. 

Weighted Least Square Estimation
Weighted least square method is the well-known exten-

sion of least square method. See details for Swain et.al. 
[24]. Let us consider the ordered samples θ(1) ≤ θ(2) ≤ ... ≤ 
θ(n) from WSBGaL(λ,β) distribution. The wls estimates of 
unknown parameters λ and β are obtained by minimizing 
the

where G(.;λ,β) is the cdf of the WSBGaL distribution. In 
this study, we used the fmincon subroutine of the MATLAB 
to solve the aforementioned problems. 

Monte-Carlo Simulation
The quantile function of the WSBGaL distribution can-

not be derived as a straightforward analytical expression. 
Consequently, quantile calculations must be performed 
using numerical methods. We employed the Newton-
Raphson procedure to compute the quantile for U~U(0,1). 
The following algorithm generates an n-sized sample from 
the WSBGaL distribution using this approach.

Step 1. Set parameter values (σ,λ)
Step 2. Set initial values k = 0, ξ1 = π/2
Step 3. Generate U~U(0,1)
Step 4. k = k+1
Step 5. 

Step 6. If |ξk+1 - ξk| > 10-8 go to Step 4
Step 7. X = ξk+1

Step 8. Repeat Step 2-7 n times
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In this simulation study, we designed different scenarios 
with different parameter values to assess the performance 
of two estimation methods. These scenarios have been 
designed to include different levels of variance in your simu-
lation. In the four scenarios considered, we have structured 
the parameter values to vary from low to high variance in 
the distribution (considering Eq. (10), it is clear that high 
values of λ will lead to low variance; and vice versa). Across 
all scenarios, we generated samples of various sizes (n = 30, 
50, 100, and 1000) using the algorithm mentioned above. 
Parameter estimates were estimated using the methods (ml 
and wls) discussed in the previous section. The estimated 
values of the mean squared error (MSE) and mean relative 
error (MRE) from 1000 repetitions are presented in Table 1.

The simulation results show the prediction performance 
of the ML and WLS methods in four scenarios. Particularly 
noteworthy is the performance of the ML method in the 
high variance scenario, showing lower MSE and MRE val-
ues, especially with larger sample sizes. However, for small 
sample sizes, the WLS method has relatively higher error 
values, especially with regard to MRE. In the moderate 
variance scenario, the ML method consistently produces 
lower MSE and MRE values, especially with larger sam-
ple sizes. Although the WLS method demonstrates supe-
rior performance with small sample sizes compared to the 
ML method, this performance advantage diminishes as 
the sample size increases. For scenarios with low variance, 
the ML method tends to outperform the WLS method, 

especially in small sample sizes, showing lower MSE and 
MRE values. However, this performance disparity becomes 
less pronounced with larger sample sizes.

These results suggest that the ML method is gener-
ally preferable for high and medium variance scenarios. 
However, in cases of low variance and small sample sizes, 
the WLS method be a viable alternative. 

REAL DATA APPLICATION

In this section, we will discuss the application of the 
WSBGaL distribution to real-world data. The dataset we 
utilized consists of hourly average wind directions recorded 
by a meteorological observation station located in Pendik 
(Istanbul, Turkey; coordinates 40°59’57.4”N 29°19’47.2”E) 
in July 2020. The total number of data is 571 after missing. 
For data modeling, we employed the maximum likelihood 
(ml) and weighted least squares (wls) estimators discussed 
in the previous section. Additionally, to facilitate compari-
sons, we examined the suitability of the Wrapped Lindley 
(WL) distribution introduced by Joshi et al. [25] for this 
dataset. For the WL distribution, we obtained only ML esti-
mates. Parameter estimates for the WL distribution were 
obtained using the ML method provided in the study by 
Joshi et al.

Parameter estimates (Est.), standard errors (SE), 
and confidence intervals (CI) are presented in Table 2. 
Furthermore, the table includes negative log-likelihood 

Table 1. Monte-Carlo simulation results

Method n
MRE MSE MRE MSE MRE MSE MRE MSE

λ = 15 λ = 7

β = 6

ML

30 1.0082 0.0851 1.1740 1.3437 0.9993 0.0559 1.1870 1.3455
50 1.0077 0.0948 1.1624 1.3213 1.0002 0.0610 1.1810 1.3607
100 1.0056 0.0907 1.1532 1.2841 1.0050 0.0630 1.1437 1.3450
1000 1.0021 0.0434 1.0743 1.0988 1.0010 0.0184 1.1069 1.1783

WLS

30 0.9921 0.0997 1.1724 1.3021 0.9836 0.0599 1.1627 1.2853
50 0.9933 0.0968 1.1407 1.2157 0.9858 0.0661 1.1620 1.2745
100 0.9947 0.0886 1.1369 1.2915 0.9967 0.0586 1.1555 1.2266
1000 1.0009 0.0472 1.0626 1.0390 0.9992 0.0204 1.0879 1.2974

λ = 4 λ = 2

β = 2

ML

30 1.0075 0.1847 1.1098 0.1711 1.0184 0.0464 1.0573 0.2403
50 1.0092 0.1068 1.0628 0.1965 1.0020 0.0341 1.0065 0.2639
100 1.0007 0.0608 1.0124 0.1781 0.9973 0.0193 0.9616 0.2705
1000 1.0008 0.0127 1.0167 0.1129 0.9975 0.0026 1.0013 0.1066

WLS

30 0.9740 0.2154 1.0276 0.2336 0.9928 0.0496 0.9795 0.3304
50 0.9817 0.1166 1.0071 0.2614 0.9847 0.0297 0.9483 0.3277
100 0.9865 0.0735 0.9884 0.2355 0.9817 0.0220 0.9089 0.3399
1000 0.9998 0.0124 1.0138 0.1115 0.9982 0.0027 1.0061 0.1126
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(-L), Kolmogorov-Smirnov (KS), chi-squared, Cramer 
von Mises (CvM), Bayesian Information Criterion (BIC), 
Anderson-Darling (AD), and Hannan–Quinn information 
criterion (HQIC) values. 

The goodness of fit of the WL distribution is found to be 
unacceptable at the 0.05 significance level according to KS, 
chi-squared, and CvM test statistics. Although the -L value 
for the WSBGaL distribution’s ML estimators is the smallest 
in the table, indicating the best-fitting negative log-likeli-
hood value, it differs only slightly from the one for WLS 
estimations. A similar situation holds for the chi-squared 

test statistic. However, the KS, CvM, and AD values sug-
gest a better fit for the model fitted with WLS estimations. 
Therefore, based on the results presented in Table 2, it can 
be observed that the best fit for the WSBGaL distribution is 
achieved with wls estimators. In Figure 2, the middle panel 
shows the probability density functions of the fitted WL 
and WSBGaL with wls estimators models overlaid on the 
histogram of the data. In the right panel, the distribution 
functions of the two models fitted with the empirical distri-
bution function are depicted.
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Figure 2. Circular data plot (left), histogram and fitted densities (mid), empirical cdf and fitted cdf of WSBGaL and WL 
distributions.

Table 2. Summary of fits

WSBGaL (with ML) WSBGaL (with WLS) WL

Est. SE  CI Est. SE  CI Est. SE  CI

2.1093 0.0016 (2.03, 2.19) 2.1391 0.0015 (2.06, 2.22) 1.2604 0.0001 (1.24, 1.28)

0.9184 0.0022 (0.83, 1.01) 0.9293 0.0022 (0.84, 1.02) - - -

Fitting Statistics
-L 566.9810 567.0603 616.4430
KS (p) 0.049 (0.128) 0.043 (0.242) 0.143 (0.000)
χ2  (p) 8.203 (0.315) 8.544 (0.287) 82.0157 (0.000)
CvM (p) 0.179 (0.314) 0.147 (0.403) 3.031 (0.001)
BIC 1146.6 1146.8 1239.2
AD 0.9413 0.8808 18.743
HQIC 1141.4 1141.5 1236.6
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The top panel of Figure 2 shows a “circular data plot”. 
The arrow at the center of the plot represents the “sample 
mean resultant” vector with values m = 2.2956 (~131.53°) 
and r = 0.7625. The fitted WSBGaL distribution estimates 
the mean wind direction as μ = 2.2914 (~131.29°) and the 
resultant length as ρ = 0.7702. These estimates are quite 
close to the observed values. The bottom-left panel shows 
the pdf of the fitted linear representation of the WSBGaL 
distribution and the fitted wrapped Lindley distribution, 
plotted along with the data histogram. The lower-right 
panel shows the empirical distribution function of the data 
and the distribution function of the fitted WSBGaL and 
Wrapped Lindley distributions. In particular, visual inspec-
tion of the bottom panel suggests that the WSBGaL distri-
bution fits better than the Wrapped Lindley distribution.

CONCLUSION

In conclusion, the introduction of the wrapped size-bi-
ased gamma Lindley distribution in this article represents a 
significant contribution to the field of statistical modeling. 
The elucidation of its properties, including explicit expres-
sions for essential statistical measures, such as the charac-
teristic function, trigonometric moments, resultant length, 
mean, circular variance, standard deviation, skewness, 
and kurtosis, facilitates its practical application in various 
domains. Furthermore, the article’s exploration of parameter 
estimation through both maximum likelihood and weighted 
least squares methods ensures that this novel distribution can 
be effectively employed in real-world scenarios. The model’s 
application to real data and subsequent comparison against 
established model from the existing literature underscores its 
potential utility and the need for further research in this area. 
In essence, the wrapped size-biased gamma Lindley distri-
bution opens new avenues for statistical modeling, offering 
a versatile and valuable tool for data analysis. Its properties, 
estimation techniques, and practical applicability position it 
as a promising addition to the existing array of statistical dis-
tributions, with the potential to enhance our understanding 
and modeling of circular data.
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