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ABSTRACT

A simply supported rectangular plate of small thickness with a thermal bending moment is 
considered in this proposed work, and fractional order theory is used to analyze the thermo-
elastic effects. A point heat source that is instantly available and situated anywhere inside the 
solid rectangular plate is also present. The influences of thermally stressed components are 
evaluated for weak, moderate, and superconductivity using the thermal moment of bending. 
The outcomes are achieved as a series solution, and the corresponding convergences have 
been illustrated. For computational analysis, copper-based material properties of a rectan-
gular plate shape are assumed, and graphically plotted results are presented successfully. In 
the above-mentioned study, we prepared the mathematical model for defined parameters 
and functions and illustrated the result with physical significance. Till date, only studies have 
shown the thermal bending moment for classical heat conduction equations, whereas this 
work, considered heat conduction containing a fractional order approach, which predicts the 
retarded response, and it also interpolates classical heat conduction equations. As a part of the 
comparison, the limiting case is discussed.
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INTRODUCTION

In the preceding years, the requirements for using frac-
tional calculus to describe complex phenomena, i.e., multi-
physics couplings, multiscale couplings, etc., have increased 
dramatically. Thermoelasticity has made a lot of use of 
derivatives of fractions recently, and renowned researchers, 
mathematicians, and scientists are working hard to develop 

it further. The domains of practical sciences and engineer-
ing are two areas where fractional calculus is used in a vari-
ety of applications (included in the books by Podlubny [1], 
Atanackovi’c et al. [2], Herrmann [3], Magin [4], Mainardi 
[5], West et al. [6], and Zaslavsky [7]). Povstenko performed 
a study on thermoelasticity to apply the fractional transfer 
of heat equation [8], along with a discussion of modified 
Fourier’s law. The time-based fractional radial distribution 
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in a sphere was treated by Povstenko [9]. In the context of 
decoupling thermoelasticity, the heat transmission formula 
has a fractional component of time for an infinite medium, 
Povstenko [10] studied thermal loads.

Recently, numerous more prominent researchers have 
made major contributions [11–17] to the advancement of 
thermoelasticity with fractional techniques. Abouelregal 
et al. [18] utilized a memory-dependent variant of the heat 
transmission model and determined thermoelastic rota-
tional nano-beams with changeable thermal characteris-
tics. Using an integral transformation process, Lamba [19] 
presented the memory-based behaviour in a thick, solid 
thermoelastic cylindrical cylinder with an internal thermal 
source. Iyengar and Alwar [20] have given an overall solu-
tion for the induced stresses caused by a uniform transfer 
of temperature flow in a long rectangular plate. Iyengar and 
Chandrashekhara [21] have established the stress caused by 
temperature with boundary constraints. Chen [22] uses a 
direct power series method to tackle the linear issues asso-
ciated with stress in a rectangular thin plate. Tanigawa and 
Komatsubara [23] established the thermal variation assess-
ment in the two-dimensional plane stress situation and 
examined its intensity. Morimoto et al. [24] use the example 
of thermal buckling of an inhomogeneous plate with rect-
angular dimensions with heat input.

Kulkarni and Deshmukh [25] explored the problem 
based on the thermal analysis of a quasi-static plate of rectan-
gular dimensions. Also, Deshmukh et al. [26-29] described 
the effect of thermal bending on the rectangle-shaped plate 
problem. A discussion of the thermoelastic phenomenon 
of a thin plate of rectangular dimensions caused by a par-
tially dispersed thermal supply was carried out by Lamba 
and Khobragade [27]. Further, Lamba and Khobragade 
[28] explored various aspects related to the three-dimen-
sional inverse modeling of the rectangular plate problem. 
Manthena et al. [30] analyse in detail the behaviour of heat 
and mechanical inhomogeneity in the case of a rectangular 
plate. They also carry out numerical calculations while tak-
ing into consideration the fluctuation in inhomogeneous 
characteristics. A rectangular-shaped plate with non-ho-
mogeneous material characteristics that generated heat 
was studied by Manthena et al. [31] to evaluate the heat 
distribution, movement, and stresses caused by tempera-
ture. Aleck [32] found an approximate explanation for the 
pressures produced by a uniform temperature change in a 
thin, camped, rectangular-shaped plate. Sedelnikov et al. 
[33] developed analytical methods for the study of a homo-
geneous plate that underwent a shock. Also, the fractional 
approach is adopted by some more authors in knowing 
the behaviour of solids as reflected in [34, 35]. Lamba and 
Deshmukh [36] studied the memory effect in a solid body 
of infinite length and successfully determined the tempera-
ture, displacement, and stress functions. Lamba et al. [37] 
discussed both space- and time-based fractional ordered 
behaviour in a finite-length layer under certain boundaries. 
Demirbas et al. [38] utilized the finite difference method 

to determine the thermo-mechanical behaviour of the plate 
for different compositional gradient exponents. Eslami [39] 
presented the development of the theory of thermoelastic-
ity by considering solid plates.

Gunasekar et al. [40, 41] presented the transform 
approach for the solution of integro-differential equations. 
Using a basic fractional calculus method, Raghavendran et 
al. [42] investigated approaches to various families of frac-
tional integro-differential equations

The present manuscript is prepared on the basis of the 
literature given in the book title “Thermal Stresses” by 
Noda et al. [43] and we modified this basic idea and pre-
pared the mathematical modelling. No recent literature was 
studied by any researcher except the work done by one of 
the authors, Deshmukh et al. [29], by considering problem 
of circular plate with bending moments. The above work is 
based on only the classical heat conduction of a rectangular 
plate with a bending moment. Whereas in the present man-
uscript, we modified the classical heat conduction of the 
problem by introducing the fractional derivative in the heat 
transfer equation, which interpolates the classical heat con-
duction equation, and the impact of the retarded response 
is discussed successfully.

In this article, we have studied the heat transfer equa-
tions using fractional order theory and discussed the effects 
of thermal stresses with an additional heat source and ther-
mal bending moments using fractional order theory. Till 
date, only studies have shown the thermal bending moment 
for classical heat conduction equations, whereas this paper, 
considered heat conduction containing a fractional order 
approach, which predicts the retarded response, and it also 
interpolates classical heat conduction equations. This kind 
of work has not been cited so far, which contributes to the 
development of thermoelasticity based on fractional analy-
sis and is useful for various material structure designs under 
the influence of additional heat generation. This is our new 
and novel contribution to the field of thermoelasticity.

MODELLING OF FRACTIONAL THERMOELASTIC 
PROBLEM 

Let’s assume a rectangular plate with dimension 
{𝐷: 0 < 𝑥 <  𝑎, 0 < 𝑦 < 𝑏, 0 < 𝑧 < 𝑐}, which is maintained at a 
temperature 𝐹(𝑥 , 𝑦 , 𝑧 ) initially. All of the boundary constraints 
are maintained at absolute zero. In such cases, it is crucial to 
calculate the thermoelasticity in conjunction with a rectangu-
lar plate that is simply supported. The shape of a plate that is 
rectangular with a simple support is shown in Figure 1.

To better fit this problem to physical conditions, frac-
tional derivatives of time order are used for the fluctuation 
of temperature, and an additional thermal source is also 
used in setting up the heat transfer equation. The rectangu-
lar plate’s bending stiffness or thermal produced resultant 
moment are both factors in the fundamental equation of 
deflection. This type of modeling can play an important role 
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in classifying materials based on fracture parameters and 
is capable of describing the actual behaviour of materials.

Governing Heat Transfer Equation
The fractional derivative-based modeling of heat con-

duction for homogeneous and isotropic rectangular-shaped 
solids with fractional order differential and heat generation 
is given by

  (1) 

Subjected to the conditions 

  (2)

  (3)

  (4)

where 𝑇denotes the function of temperature flow, 𝐴 and 
𝑘 stands for the thermal conductivity and thermal diffu-
sivity of the material of the plate respectively and 𝛼is the 
fractional order parameter. Also 𝑔(𝑥 , 𝑦 , 𝑧 ,  𝑡) denotes the 
instantaneous point source of heat situated at any point 
inside the rectangular solid plate.

Since the thickness of the assumed plate is believed to be 
insignificant, one observes a rectangular plate with simple 
support that has had a thermal load applied a × b dimensions.

Bending Moments, Thermal Deflection and Thermal 
Stresses

Following [26, 29], the basic formula and related bound-
ary circumstances in the Cartesian system of coordinates 
are

  (5)

where

with

  (6)

and

  
(7)

where 𝑤 and 𝜈 are notations denote the deflection and 
Poisson’s ratio respectively. 

The plate’s bending stiffness and the consequent 
moment caused by the heat, respectively, are denoted by the 
letters 𝑅 and 𝑀𝑇 are defined as

   (8)

and

  (9)

where 𝑎𝑡 and 𝐸, respectively, represent the linear heat 
expansion coefficient and Young’s modulus.

One focuses on the equilibrium condition in the 𝑥 and 
𝑦 in-plate dimensions. Consequently, the in-plate resulting 
forces becomes

  (10)

Figure 1. Geometrical design of rectangular-shaped plate with source of heat under fraction order theory.
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The definition of the resultant moments per unit length 
of the plate reads as follows:

  (11)

  (12)

and 

  (13)

The equations for moments’ equilibrium about the x 
and y axes are 

  (14)

  (15)

where the shearing forces are denoted by 𝑄𝑥 ,  𝑄𝑦 .
The thermal stress elements are stated as [26] in terms 

of the resulting forces and resulting moments as

  (16)

  (17)

and 

  (18)

where the resultant force is 

  (19)

The deflection

  (20a)

the moments 

  (20b) 

the shearing forces

  (20c)

the thermal stresses

  (20d)

The problem is mathematically formulated in Equations 
(1) through (20).

Analytical Approach to Solve a Mathematical Modeled 
Problem

The integral transformation method—which is covered 
in the subsection below—is used to get the solution to the 
heat transfer equation for rectangular-shaped solids with 
fractional order differential and heat generation.

Solution of Heat Transfer Equation 
To obtain the desired temperature function, one con-

structs the “Triple Analytic Transformation” and its 
inverted formula.

  
(21)

  
(22)

 where the kernels are 𝑆(𝜙𝑚,  𝑥 ), 𝑆(𝜃𝑛,  𝑦 ) and 𝑆(𝜓𝑝,  𝑧 )
are obtained and are defined as 

  
(23a)

  
(23b)

  (23c)

Moreover, the transcendental equations

  (24)

when the equations (1) to (4) are transformed using the tri-
ple integral transform described in (21), one obtains

  
(25)

By employing the theorem known as Green’s to solve the 
problem (25), one can derive an expression such as 

  (26)

with 



Sigma J Eng Nat Sci, Vol. 43, No. 4, pp. 1140−1151, August, 20251144

  (27) 

Solving the equation (26), one obtains

  (28)

where 𝐸𝛼, 𝛼 denotes for the Mittag Leffler function.
To obtain a mathematical expression of the tempera-

ture function, the triple integral transformation is inverted 
repeatedly by applying the inversion formula (22) to equa-
tion (27)

  
(29)

Where,

Determination of Bending Moments, Thermal Deflection 
and Thermal Stresses

Using equation (29) in equations (8) and (19), one 
obtains the expression of the resultant moment and resul-
tant forces as below:

  
(30)

  
(31)

Equations (30) and (31) represent the resultant moment 
and resultant forces respectively.

Utilizing equation (30) in (5) the expression of thermal 
deflection obtained as

  
(32)

Using equations (30) and (32) in (11), (12) and (13), one 
obtains the resultant moments as, 

  
(33)

  
(34)

  
(35)

Using equations (10),(29),(30),(31),(33),(34), and (35) 
in equations (16), (17), and (18), we get the thermal stress 
functions mathematically as 

  

(36)

  

(37)

  (38)

Convergence Analysis
Numerical computations were made on different axes 

(𝑥 and 𝑦 ) to assess the impact of steady heat supply on the 
plate’s extreme ends. 

Consider

 

The terms sine and cosine are also constrained. The 
required condition for convergence has been met, so it is 
simple to confirm that all of the aforementioned series are 
convergent by using D’Alembert’s ratio test. Additionally, 
for large values of m, n, and p, the term in the calculation 
for temperature, deflection, and thermal stresses is minimal 
and converges to zero at infinity.

Numerical Computation
To make computations as simple as possible, we set the 

functions in dimensionless form as
Dimensionless form: 

Material Properties
The computational analysis has been done for a plate 

with a rectangular shape made entirely of copper-based 
material properties [26, 29].



Sigma J Eng Nat Sci, Vol. 43, No. 4, pp. 1140−1151, August, 2025 1145

Thermal conductivity, 𝐴 = 386𝑊𝑚−1𝑘 −1

Thermal diffusivity, 𝑘 = 112.34 × 10 −6𝑚2𝑠−1

Density, 𝜌 = 8954 𝑘 𝑔𝑚−3

Specific heat, 𝑐𝑝 =  383𝐽𝑘 𝑔−1𝑘 −1

Poisson ratio, 𝜈 = 0 .35
Coefficient of linear thermal expansion, 𝑎𝑡 =  16.5 × 10 −6𝑘 −1

Lames constant, 𝜇 = 26.67

Dimensions
The following dimensions are set for numerical 

computations:
Length of a rectangular plate, 𝑎 = 2𝑚
Breadth of a rectangular plate, 𝑏 = 1𝑚
Height of rectangular plate, 𝑐 = 0 .5𝑚

GRAPHICAL ILLUSTRATION AND DISCUSSION

Arbitrary establishing heat supply 𝑇 = 𝑇0  and instanta-
neous point heating source of strength 𝑔0  located at loca-
tion (𝑥 0 ,  𝑦 0 ,  𝑧 0 ) inside the material spontaneously releases 
heat at the time 𝑇 = 𝜏.

𝑔(𝑥 , 𝑦 , 𝑧 ,  𝑡) = 𝑔0 𝛿(𝑥 − 𝑥 0 )𝛿(𝑦 − 𝑦 0 )𝛿(𝑧 − 𝑧 0 )𝛿(𝑡 − 𝑡0 )

Below Figures 2 to 5 represent the graphical plotting 
temperature distribution, deflection variation, and stress 
dispersion along axial directions for different fractional 
parameters.

The value of 𝑦 is fixed at 0 .5𝑚 respectively for plotting 
along 𝑥 axis, similarly the value of 𝑥 is fixed at 1𝑚 for plotting 
along 𝑦 axis and for the plotting along 𝑥 and 𝑦 axis, the value 
of 𝑧 and time 𝑡are fixed at 0 .25𝑚 and 0 .5 respectively.

Figure 2(a) and 2(b) display the display of dimensionless 
temperature 𝑇∗ and dimensionless defection distribution 𝜔∗ 

Figure 2(b). Influence of fractional parameters on deflection behaviour along the 𝑥 ∗ axis.

Figure 2(a). Influence of fractional parameters on temperature behaviour along the 𝑥 ∗ axis.



Sigma J Eng Nat Sci, Vol. 43, No. 4, pp. 1140−1151, August, 20251146

along dimensionless 𝑥 ∗ axis for various values of fractional 
parameters 𝛼 = 0 .5, 1, 1.5, 2. It can be seen in both plots 
that temperature and defect rise in the 𝑥 ∗ direction from 
the initial edge to about the midway and decrease towards 
the extreme edge. Additionally, it is evident that the larg-
est temperature distribution and deflection are found in 
the middle, it could be caused by an effect of the source 
point of heat. The speed of thermal signal transmission is 
discovered to be directly related to the variation of the frac-
tion-order parameter 𝛼, and temperature and deflection 
adopt a uniform pattern for various values of fractional 
parameters 𝛼. Furthermore, deflection 𝜔∗at points 𝑥 ∗ =  0  
and 𝑥 ∗ =  2 is zero, this agrees with the necessary boundary 
criteria stated in equation (6).

For various values of the fractions parameters 𝛼 = 0 .5, 
1,  1.5,  2, Figure 3(a) and 3(b) demonstrate the fluctuation 
of without dimension temperature 𝑇∗and defection distri-
bution 𝜔∗ along dimensionless 𝑦 ∗ axis. The rate of thermal 
signal propagation is shown to be directly related to the 
parameters denoting the fraction-order differentiation in 
both plots. Additionally, when one moves into the 𝑦 ∗ direc-
tion from the initial edge towards the middle, the tempera-
ture and deflection rise and then fall as one approaches the 
extreme edge. Further, slight discrimination in both tem-
perature and deflection distribution is noted as compared 
to distribution in 𝑥 ∗direction. Also, deflection 𝜔∗ is zero 
at 𝑦 ∗ =  0  and 𝑦 ∗ =  1 which matches with the prescribed 
boundary condition defined in equation (7).

Figure 3(b). Influence of fractional parameters on deflection behaviour along the 𝑦 ∗ axis.

Figure 3(a). Influence of fractional parameters on temperature behaviour along the 𝑦 ∗ axis.
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Figure 4(a), 4(b) and 4(c) demonstrate the graphical 
view of dimensionless stress distributions 𝜎𝑥 𝑥 

∗,  𝜎𝑦 𝑦 
∗, 

, 
𝜎𝑥 𝑦 

∗ 
respectively along 𝑥 ∗ for various values of fractional 

Figure 4(c). Influence of fractional parameters on stress 𝜎𝑥 𝑦 
∗ behaviour along the 𝑥 ∗ axis.

Figure 4(b). Influence of fractional parameters on stress 𝜎𝑦 𝑦 
∗ behaviour along the 𝑥 ∗ axis.

Figure 4(a). Influence of fractional parameters on stress 𝜎𝑥 𝑥 
∗ behaviour along the 𝑥 ∗ axis.
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parameters 𝛼 = 0 .5, 1, 1.5, 2. The following observations 
are noted from graphical plotting:
(a) Stress function 𝜎𝑥 𝑥 

∗ grows in the vicinity 0  ≤ 𝑥 ∗ ≤ 0 .74 , 
1.5 ≤ 𝑥 ∗ ≤ 2 and falls in the vicinity 0 .76 ≤ 𝑥 ∗ ≤ 1.4 9,  
whereas maximum distribution in 𝜎𝑥 𝑥 

∗ is attained at 
𝑥 ∗ =  0 .75.

(b) Stress distribution for 𝜎𝑦 𝑦 
∗ grows in the vicinity 0  ≤ 𝑥 ∗ 

≤ 0 .5, 1.2 ≤ 𝑥 ∗ ≤ 1.74  and falls in the vicinity 0 .5 ≤ 𝑥 ∗ 
≤ 1.19, 1.76 ≤ 𝑥 ∗ ≤ 2 maximum distribution in 𝜎𝑦 𝑦 

∗ is 
attained at 𝑥 ∗ =  1.75.

(c) Stress distribution 𝜎𝑥 𝑦 
∗ falls in the vicinity 0  ≤ 𝑥 ∗ ≤ 1.24  

and grow in the vicinity 1.25 ≤ 𝑥 ∗ ≤ 2maximum distri-
bution in 𝜎𝑥 𝑦 

∗ is attained at 𝑥 ∗ =  1.5.
(d) All the stress functions 𝜎𝑥 𝑥 

∗, 𝜎𝑦 𝑦 
∗ and 𝜎𝑥 𝑦 

∗ varies propa-
gation to different values of fractional parameters 𝛼.

(e) Stresses 𝜎𝑥 𝑥 
∗, 𝜎𝑦 𝑦 

∗ are compressive throughout the curve 
while 𝜎𝑥 𝑦 

∗ is tensile at the extreme edge. 
(f) Stress function 𝜎𝑥 𝑥 

∗ becomes zero for 𝑥 ∗ =  2 which 
matches the mathematical condition defined in equa-
tion (20c).
Figure 5(a), 5(b) and 5(c) demonstrate the graphical 

view of dimensionless stress distributions 𝜎𝑥 𝑥 
∗,  𝜎𝑦 𝑦 

∗, 𝜎𝑥 𝑦 
∗ 

respectively along 𝑦 ∗ for various fractional parameters 
𝛼 = 0 .5, 1, 1.5, 2. The following observations are noted 
from graphical plotting:
(a) Stress function 𝜎𝑥 𝑥 

∗ grows in the range 0  ≤ 𝑦 ∗ ≤ 0 .29, 
0 .8 ≤ 𝑦 ∗ ≤ 1 and falls in the vicinity 0 .31 ≤ 𝑦 ∗ ≤ 0 .79,  
whereas maximum distribution in 𝜎𝑥 𝑥 

∗ is attained at 
𝑦 ∗ =  0 .3.

Figure 5(b). Influence of fractional parameters on stress 𝜎𝑦 𝑦 
∗ behaviour along the 𝑦 ∗ axis.

Figure 5(a). Influence of fractional parameters on stress 𝜎𝑥 𝑥 
∗ behaviour along the 𝑦 ∗ axis.
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(b) Stress distribution for 𝜎𝑦 𝑦 
∗ starts increasing from the 

initial edge and reaches its peak at 𝑦 ∗ =  0 .2 and then 
starts gradually decreasing towards the extreme edge.

(c) Stress distribution for 𝜎𝑥 𝑦 
∗ starts increasing from the 

initial edge and reaches its peak at 𝑦 ∗ =  0 .75 and then 
slightly decreases towards the extreme edge.

(d) Significant impact of fractional parameters 𝛼 is observed 
in stress functions 𝜎𝑥 𝑥 

∗,  𝜎𝑦 𝑦 
∗ and 𝜎𝑥 𝑦 

∗ along 𝑦 ∗ axis.
(e) Stresses 𝜎𝑥 𝑥 

∗,  𝜎𝑦 𝑦 
∗ are compressive throughout the curve 

while 𝜎𝑥 𝑦 
∗ is tensile at the initial and extreme edges. 

(f) Stress function 𝜎𝑦 𝑦 
∗ becomes zero for 𝑦 ∗ =  1 which 

matches the mathematical condition defined in equa-
tion (20c).

RESULTS AND DISCUSSION

Based on numerical computation, the following signifi-
cant outcome summaries were obtained:
· The deflection on the boundary at 𝑥 = 𝑎 and 𝑦 = 𝑏 is 

seen to be insignificant since the moments and shearing 
forces in the x and y directions are negligible, which ful-
filled the uniqueness and existence of the problem.

· The thermal stresses 𝜎𝑥 𝑥  =  𝜎𝑦 𝑦  =  0  at 𝑥 = 𝑎, 𝑦  = 𝑏, 
which shows that they are traction-free.

· Numerical representation shows that higher thermal 
response is observed for a higher value of fractional 
order parameter.

· Due to the initial constant heat input from internal heat 
generation, significant stresses and deflections develop 
in a rectangular region.

· Both the resulting components of stress and the shear 
stress components vary greatly from the initial edge to 
the outermost edge of the rectangular plate and conform 
to the specified mathematical boundary conditions.

· The variation in the temperature, deflection, and stress 
functions is confined to a restricted range, and no 

variation is observed excluding this range. This phe-
nomenon reflects the fact that waves propagate with 
finite speed.

· The creation of novel structural materials for physical 
processing is dependent on the wave propagation rate 
since changing values of the fractional parameters have 
an impact on it. The result can be seen schematically.

· It can be observed that the resultant moments caused by 
heat and forces are strongly influenced by the response 
of the weak, medium, and superconductivity, which 
have a direct influence on the characteristics of the 
thermal variation in temperature, deflection, and stress 
distribution.

· The effects of temperature, deflection, and stress func-
tions for different fraction order parameters show the 
weak, medium, and superconductivity. Also, for frac-
tional parameters 𝛼 = 1 and 𝛼 = 2 heat transfer inter-
polates the diffusion and wave equation and then effects 
on bending moments and stresses are shown in the fig-
ures, which represent the limiting case.

CONCLUSION

An analytical approach is used to effectively analyse the 
thermoelastic behaviour for a simply supported thin rectan-
gular plate that has a thermal bending moment and a heat 
source. Here, the concept of resultant forces and moments 
per unit length of the plate is used to know the exact ther-
mal response of the rectangular plate under the fractional 
theory, additionally, by excluding the in-plane resultant 
forces and accounting for the thermal bending moments, 
the stress components are assessed. A rectangular copper 
plate was numerically calculated, and the results of thermal 
change, including temperature and deflection along differ-
ent axes based on different fractional parameters, are effec-
tively presented and discussed.

Figure 5(c). Influence of fractional parameters on stress 𝜎𝑥 𝑦 
∗ behaviour along the 𝑦 ∗ axis.
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Finally, the authors study fractional order theory to 
investigate the thermal effect of the time fractional deriv-
ative on a rectangular plate, which deals with the memory 
effect and interpolates the classical heat conduction equa-
tion for a rectangular plate. Also due to fractional order 
theory effectiveness of heat and elastic waves inputting 
𝛼 = 0 , 𝛼 =  1, 𝛼 = 2 it predicts the classical heat conduc-
tion equations i.e. Helmholtz, diffusion, and wave equation. 
Also noting for 𝛼 = 1,  it is the limiting case of the study by 
Deshmukh et al. [29]. 

FUTURE SCOPE OF THE RESULTS

It may be helpful to build various thermo-mechanical 
structures with bending moments and subjected to addi-
tional heat sources by using the researched inhomogeneous 
boundary value issue of a rectangular plate under fractional 
thermoelasticity, which is essential for capturing the real 
behaviour of materials. Also, this work might potentially 
be extended to investigate the thermal bending moment 
by introducing the concept of memory-dependent deriva-
tives to investigate the behaviour of materials in practical 
circumstances.
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