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ABSTRACT

Nanofluid flow over a stretching cylinder with the electrification effect of nanoparticles has 
sparked renewed industrial interest in applications like thermal insulation, metal spinning, 
liquid film condensation, and wire coating. To elevate process quality standards in these ar-
eas, the associated transport phenomena require ongoing advancements. Hence, the current 
study investigates the thermal and numerical aspects of the axisymmetric boundary layer 
flow of Ag-water nanofluid around a horizontally stretching cylinder. The combined effects 
of electrified nanoparticles and viscous dissipation on the flow of Ag-water nanofluid around 
a stretching cylinder remain unexplored in the existing literature. Hence, the present study 
considers nanoparticle electrification and viscous dissipation effects, which are often over-
looked in conventional nanofluid models like Buongiorno’s model. The study emphasizes the 
importance of nanoparticle electrification, especially in scenarios involving tribo-electrifica-
tion due to Brownian motion. This unique aspect sets this investigation apart. The governing 
partial differential equations are transformed into local similarity equations using similarity 
transformations and nondimensionalization. The system of local similarity equations is then 
solved numerically using the MATLAB bvp4c solver. The results closely match those reported 
in previous studies. The study explores the effects of the Eckert number and electrification 
parameter on non-dimensional concentration, velocity, temperature, as well as heat and mass 
transfer coefficients through graphical analysis. The main finding highlighted in this study is 
the enhanced heat and mass transfer rates from a stretching cylinder to a nanofluid, facilitated 
by the presence of electrified nanoparticles. The electrified nanoparticle mechanism in nano-
fluids boosts heat transfer, benefiting manufacturing industries with high-temperature cylin-
drical products. This mechanism also enhances transport properties, improving drug delivery 
in biomedical applications. Moreover, the proposed model holds potential for applications in 
manufacturing and industrial cooling processes..
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INTRODUCTION

Recent advancements in nanotechnology have signifi-
cantly broadened the scope of research for scientists and 
researchers. This is primarily due to the improved ther-
mophysical properties and the extensive engineering and 
industrial applications offered by nanomaterials. The sig-
nificance of these materials lies in their diverse applications 
across vehicle thermal management, solar energy systems, 
electronics cooling, fusion control, material processing 
industries and biomedical technologies. Nanofluids are liq-
uid mixtures where nano-sized solid particles are dispersed 
within base liquids. Recent studies have focused on exam-
ining the transfer of heat and mass in situations involving 
the flow of nanofluids. These nanofluids, used in various 
industrial processes such as cooling in heat exchangers, 
microelectronics, and engine cooling, have attracted con-
siderable attention for their ability to transfer heat effi-
ciently. Additionally, nanofluids have applications in 
biomedical fields like cancer treatment and drug diffusion 
in the bloodstream. The use of nanofluids to improve heat 
transfer was first proposed by Choi [1]. Buongiorno [2] ini-
tially introduced nanofluid flow modelling, emphasizing 
the significance of thermophoresis and Brownian motion 
as key slip mechanisms in nanofluid. Recent investigations 
by Matta and Nagaraju [3], Gajjela et al. [4], Nagaraju et 
al. [5], Gajjela and Garvandha [6], Akaje et al. [7], Sharma 
et al. [8], Hattab et al. [9], Pati et al. [10,11] and Mishra 
et al. [12] highlight the growing interest in computational 
modelling and study of nanofluid flow with heat and mass 
transfer aspects.

The analysis of boundary layer flow with heat and mass 
transfer around a stretching cylinder has gained importance 
due to its relevance in industries such as thermal insula-
tion, metal spinning, liquid film condensation and wire 
coating. Several researchers, including Crane [13], Lin and 
Shih [14], Wang [15], Rangi and Ahmad [16], have inves-
tigated the flow of Newtonian fluids, whereas Gajjela and 
Garvandha [17] examined the flow of couple stress fluid 
past a stretching cylinder, recognizing its practical signif-
icance. Numerous researchers have explored various phys-
ical aspects of nanofluid flow with heat and mass transfer 
over a stretching cylinder. For example, Sinha et al. [18] 
investigated the forced convection nanofluid flow around 
a stretching cylinder, while Bakar et al. [19] conducted sta-
bility analysis on nanofluid flow over a shrinking/stretch-
ing cylinder with suction effects. Khan et al. [20] examined 
MHD nanofluid flow around a stretching cylinder with 
thermal slip, radiation and blowing/suction. Mehmood et 
al. [21] studied electromagnetohydrodynamic nanofluid 
flow past a stretching cylinder containing alumina and eth-
ylene glycol using convective boundary conditions. Mishra 
and Kumar [22] explored nanofluid MHD flow around a 
stretching cylinder, considering joule heating, viscous dissi-
pation, velocity and thermal slip effects. Hussain and Malik 
[23] studied the MHD flow of a nanofluid past a stretching 

cylinder with gyrotactic microorganisms under Nield con-
ditions and convective boundary conditions. Singh et al. 
[24] investigated the non-uniform heat source and melting 
heat transfer of MHD copper water nanofluid flow over a 
porous stretching cylinder. Pattnaik et al. [25] examined the 
influences of non-linear radiation, homogeneous-heteroge-
neous reactions, heat source and magnetic field effects on 
nanofluid flow past a stretching cylinder in porous media. 
Alqahtani et al. [26] studied the impact of viscous dissipa-
tion and thermal radiation on nanofluid flow over a stretch-
ing/shrinking cylinder. Muhammad et al. [27] developed 
a mathematical model for CNT-water mixed convective 
nanofluid flow past a stretching cylinder. Elbashbeshy et 
al. [28] examined the influences of heat absorption/gener-
ation on nanofluid flow across an inclined stretching cyl-
inder with gyrotactic microorganisms. Othman et al. [29] 
examined the influences of buoyancy force, heat absorp-
tion/generation, chemical reaction and activation energy 
on nanofluid flow past an inclined stretching cylinder with 
gyrotactic microorganisms. Pashikanti and Priyadharshini 
[30] analyzed the viscous dissipation, magnetic fields and 
slip effects on nanofluid flow past a stretching cylinder. 
Vinita et al. [31] examined the MHD and chemical reac-
tion effects on nanofluid flow over a stretched cylinder. 
Makhdoum et al. [32] investigated the effects of suction 
and joule heating on MHD stagnation point nanofluid flow 
past a horizontal cylinder. Mandal [33] analyzed the influ-
ences of viscous dissipation, chemical reaction and thermal 
radiation on MHD mixed convective nanofluid flow over a 
stretched cylinder. Recently, Boujelbene et al. [34] demon-
strated the MHD and interface slip effects of nanofluid flow 
past a heated stretching cylinder. Saranya et al. [35] stud-
ied the effects of homogeneous-heterogeneous reactions 
and heat generation on the MHD flow of a nanofluid past a 
contracting cylinder. Irfan and Bhatti [36] explored the slip 
effects on MHD nanofluid flow over a stretching cylinder 
in porous media.

Several researchers (Khan et al. [20]; Mehmood et 
al. [21]; Mishra and Kumar [22]; Hussain and Malik 
[23]; Singh et al. [24]; Pattnaik et al. [25]; Pashikanti and 
Priyadharshini [30]; Vinita et al. [31]; Makhdoum et al. 
[32]; Mandal [33]; Boujelbene et al. [34]; Saranya et al. 
[35]; Irfan and Bhatti [36]) have examined the magneto-
hydrodynamic (MHD) nanofluid flow. In all the previ-
ously mentioned magnetohydrodynamic (MHD) flows, 
the base fluid is assumed to be electrically conductive, and 
the influence of electrified nanoparticles resulting from 
triboelectrification, induced by the collision of nanopar-
ticles due to Brownian motion, is not taken into account. 
However, the interaction between solid particles and the 
fluid is significantly influenced by a small static charge on 
the solid particles, as highlighted by Loeb [37] and Soo 
[38]. Also, Misra et al. [39] examined the effect of the 
electrification of particles on heat transfer in a two-phase 
boundary layer flow past a semi-infinite flat plate and 
concluded that the electrification of particles significantly 
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affects the heat transfer. Additionally, Kang and Wang 
[40] determined that molecular collisions occur between 
the fluid and nanoparticles due to electrostatic forces, 
which primarily enhance heat transfer in nanofluids. 
In recent years, some investigations into nanofluid flow 
coupled with nanoparticle electrification have been con-
ducted for different geometries. Pattnaik et al. [41] exam-
ined the impact of nanoparticle electrification on natural 
convective nanofluid flow with internal heat generation. 
Pati et al. [42] investigated the effects of nanoparticle elec-
trification on heat and mass transfer in natural convective 
nanofluid flow over a vertical flat plate with Brownian 
motion and thermophoresis. Panda et al. [43] explored the 
effects of electrified nanoparticles and viscous dissipation 
on the flow of Al2O3-water nanofluid along a stretching 
sheet. Pattnaik et al. [44] studied the effects of nanopar-
ticle electrification on heat and mass transfer in Cu-water 
nanofluid flow over an exponentially stretching surface 
in the presence of viscous dissipation, thermophoresis 
and Brownian motion. Recently, Pati et al. [45] examined 
the effects of nanoparticle electrification and the electric 
Reynolds number on the flow of a nanofluid along a ver-
tical plane surface.

After an extensive review of the existing literature, it is 
observed that the combined effects of electrified nanopar-
ticles and viscous dissipation on the flow of Ag-water 
nanofluid around a stretching cylinder have not yet been 
investigated. The current study introduces a novel explora-
tion into the impact of nanoparticle electrification and vis-
cous dissipation mechanisms on the heat and mass transfer 
characteristics of Ag-water nanofluid flow past a stretching 
cylinder, employing Buongiorno’s two-component model. 
The flow analysis is mathematically modelled using a 

system of nonlinear partial differential equations (PDEs), 
which are subsequently transformed into a dimensionless 
set of local similarity equations via similarity substitutions. 
The resulting local similarity equations are solved numer-
ically using the MATLAB bvp4c solver, and the computed 
results are presented graphically for detailed analysis.

MATHEMATICAL FORMULATION

The present analysis examines the steady, incompress-
ible, axisymmetric laminar boundary layer nanofluid flow, 
wherein the nanoparticles are charged. The flow is gener-
ated by a horizontally stretching cylinder located at r = a 
with a fixed origin O. The cylinder undergoes extension 
with a stretching velocity  along the z-axis. Here 
l is the characteristic length. At the cylinder surface, the 
nanoparticle concentration Cw and wall temperature Tw 
remain constant. Ambient values of nanoparticle concen-
tration and temperature, denoted as C∞ and T∞ respec-
tively, prevail as r tends to infinity. It is assumed that Tw 
and Cw exceed T∞ and C∞ respectively. The geometry of the 
investigation is illustrated in Figure 1.

The governing equations of nanofluid (Buongiorno [2], 
Pati et al. [45,46]) with viscous dissipation and electrified 
nanoparticles are formulated as follows: 

  (1)

  (2)

Figure 1. Geometry of the study.
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(3)

  
(4)

The boundary conditions of the flow are presented as:

  
(5)

Where, a is the radius of the cylinder. The components 
of velocity are denoted by u and v, while Ez and Er denote 
the components of electric intensity along the z and r axes, 
respectively.

Using the set of similarity transformation  

    equation (1) 

is clearly satisfied and the equations (2) to (4) are converted 
into locally similarity equations as follows: 

  (6)

  
(7)

  
(8)

with the dimensionless boundary conditions: 

  (9)

Here prime denotes derivative with respect to η. The 
dimensionless parameters are presented as follows: 

And the thermophysical constants (Maharukh et al. 
[47]) are defined as follows:

The investigation utilizes a nanofluid comprising a 1% 
concentration of silver (Ag) nanoparticles in comparison to 
pure water, with Pr = 6.2. The thermophysical characteris-
tics of both pure water and silver are referenced from Upreti 
et al. [48], as presented in Table 1.

In the realm of heat and mass transfer applications, the 
significance lies in the local Nusselt number (Nuz) and the 
local Sherwood number (Shz) , both of which are defined as 
follows for practical purposes.

The skin friction coefficient is defined as follows:

The dimensionless, skin friction coefficient (f ''(0)), 
reduced Nusselt number (−θ'(0)) and reduced Sherwood 
number (−s'(0)) are formulated as follows:

Table 1. Thermophysical characteristics 

Property Ag Pure water

c(J/kgK) 235 4179
ρ(kg/m3) 10,500 997.1
k(W/mK) 429 0.613
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Method of Solution
The local similarity method emerges as the preferred 

approach among various methods due to its straightfor-
ward conceptual and computational ease in addressing 2-D 
problems lacking similarity solutions. With this method, 
non-similar solutions at specific streamwise stations can 
be obtained without the need to solve for other streamwise 
stations, which is a noteworthy advantage. Additionally, the 
governing equations resemble calculus-like ordinary differ-
ential equations (ODEs), enhancing the appeal of this strat-
egy. Further elaboration on this technique can be found in 
the following references: Farooq et al. [49], Usman et al. 
[50], Maji and Sahu [51], and Lund et al. [52].

The equations (6) to (8) exhibit characteristics of local 
similarity equations, as the parameters NF = NF(z) and NRe = 
NRe(z) solely involve variables. Since the parameters are still 
contingent upon the independent variable z, numerical solu-
tions remain valid, offering a local similarity solution. The 
MATLAB software’s bvp4c solver is employed for solving the 
local similarity equations (6) to (8) with non-dimensional 
boundary conditions (9). Achieving highly accurate solutions 
necessitates careful selection and fine-tuning of initial esti-
mates, other parameter values, and optimal boundary layer 
thickness within the solver’s coding framework. It’s crucial 
to highlight that Figures 2-8 illustrate the results, presenting 
numerical solutions for dimensionless velocity, temperature, 
and concentration profiles that meet the defined far stream 
boundary conditions (9). This helps validate the precision of 
the numerical findings obtained in this study.

COMPARISON AND VALIDATION STUDY

The impact of electrified nanoparticles and viscous 
dissipation on the heat and mass transfer properties of 

Ag-Water nanofluid flow past a stretching cylinder has 
been investigated numerically. Table 2 displays the existing 
numerical results for regular fluids in the limiting scenario, 
as reported by Rangi and Ahmad [16], for different values 
of γ. Table 2 displays the outcomes, demonstrating strong 
alignment with the current findings, thereby ensuring the 
precision of the numerical results acquired in the present 
analysis.

RESULTS AND DISCUSSION

Numerical solutions were derived to examine the 
impacts of the electrification parameter (M) and Eckert 
number (Ec) on various non-dimensional variables, includ-
ing velocity (f '(η)), temperature (θ(η)), concentration s(η), 
heat transfer coefficient (−θ'(0)) and mass transfer coeffi-
cient (−s'(0)), with the remaining parameters held constant. 
The findings are visually represented in Figures 3 to 12. 
Additionally, Figure 2 displays the distributions of f '(η), 
θ(η) and s(η)  that satisfy the non-dimensional far stream 
boundary conditions (9) asymptotically. It is observed that 
the thickness of the momentum boundary layer is greater 
compared to the thermal and concentration boundary layer 
thicknesses.

Figure 2. Plots of f '(η), θ(η) and s(η) for the case

Table 2. Comparison of dimensionless skin friction coeffi-
cient results

γ f''(0)(Rangi and Ahmad [16]) f ''(0)(present results)
0.00 -1.000000 -1.000001
0.50 -1.188715 -1.188723
1.00 -1.459308 -1.459330
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NF = M = Ec = Nb = Nt = Nc = 0.1, γ = 0.5, Pr = 6.2, 
Sc = NRe = 2.0. 

The effect of M on f '(η) is depicted in Figure 3. It is 
observed that as M increases, both the velocity and thickness 

of the momentum boundary layer increase. A rise in M 
leads to an amplification of the drag force on ions, which in 
turn exerts an equal and opposite reaction force on neutral 
fluid molecules. This mechanism results in an increase in 

Figure 3. Variation of f '(η) with M when NRe = 2.0, NF = 0.1.

Figure 4. Variation of f '(η) with Ec when NRe = 2.0, NF = 0.1.

Figure 5. Variation of θ(η) with M when NRe = 2.0, NF = 0.1.
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f '(η). Figure 4 shows that an increase in Ec results in a slight 
increase in the velocity profile within the boundary layer, 
attributed to the increase in stretching velocity associated 
with the increment of Ec.

The impact of M on θ(η) is illustrated in Figure 5. 
Increasing M leads to a reduction in both θ(η) and the 
thickness of the thermal boundary layer. This is because 
higher M results in increased fluid velocity, causing hot-
ter fluid particles to move away and thus lowering θ(η). 
Conversely, higher values of Ec, as depicted in Figure 6, 
lead to an increase in θ(η). This is due to viscous dissipa-
tion generating heat through drag between fluid particles, 
thereby raising the fluid temperature.

Figure 7 examines the influence of M on s(η). Both 
the thickness of the concentration boundary layer 
and s(η) decrease as M increases. This is because as M 
increases, nanoparticles migrate from the fluid region 
toward the cylinder, resulting in a decrease in s(η) and 
the corresponding boundary layer thickness. Figure 8 

illustrates the effect of Ec on s(η). Near the surface of 
the cylinder, there is a gradual decrease in s(η), whereas 
a contrasting pattern is observed farther away from the 
cylinder for higher values of Ec. This is attributed to con-
duction heat transfer surpassing convection heat transfer 
near the cylinder.

The effect of M on the dimensionless heat transfer coef-
ficient −θ'(0) and the dimensionless mass transfer coeffi-
cient −s'(0) is depicted in Figures 9 and 10, respectively. It 
is observed that as M increases, the rates of heat and mass 
transfer improve for different values of Nb. This improve-
ment occurs because the dimensionless temperature and 
concentration decrease near the surface of the stretching 
cylinder with increasing values of M. Consequently, this 
reduction enhances the rates of both heat and mass trans-
fer from the cylinder surface to the nanofluid. The values 
NF = Ec = Nt = Nc = 0.1, γ = 0.5, Pr = 6.2, Sc = NRe = 2.0 
remain constant across all the findings depicted in Figures 
9 and 10. Figures 11 and 12 illustrate the impact of Ec on 

Figure 7. Variation of s(η) with M when NRe = 2.0, NF = 0.1.

Figure 6. Variation of θ(η) with Ec when NRe = 2.0, NF = 0.1.
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−θ'(0) and −s'(0), respectively. As the Eckert number (Ec) 
increases, it is observed that heat transfer rates reduce while 
mass transfer rates enhance across different Brownian 
motion parameter (Nb) values. This change occurs because 
the dimensionless temperature increases and the dimen-
sionless concentration decreases near the surface of the 
stretching cylinder as Ec values increase, leading to reduced 
heat transfer rates and enhanced mass transfer rates. The 
parameters NF = M = Nt = Nc = 0.1, γ = 0.5, Pr = 6.2, Sc 
= NRe = 2.0 remain constant throughout the findings pre-
sented in Figures 11 and 12. Additionally, it is noticed that 
−θ'(0) monotonically lessens whereas −s'(0) boosts with a 
climb in Brownian motion parameter (Nb). 

Figures 13 and 14 depict the streamline patterns of nano-
fluid under different electrification parameter values. As 
M increases, the nanofluid streamlines become more con-
stricted. Moreover, the presence of electrified nanoparticles 

yields more pronounced streamline patterns compared to 
scenarios without electrification. Figures 15 and 16 illus-
trate the contour distributions for −θ'(0) and −s'(0) as the 
electrification parameter (M) and Eckert number (Ec) 
increase. An increase in M consistently leads to a rise in 
−θ'(0), although this trend is reversed at higher Ec values 
as shown in Figure 15. The enhancement in −θ'(0) is due to 
a decrease in the dimensionless temperature near the sur-
face of the stretching cylinder as the value of M increases. 
Conversely, the reduction in −θ'(0) happens because the 
dimensionless temperature near the surface of the stretch-
ing cylinder rises with increasing Ec values. Additionally, 
Figure 16 demonstrates that −s'(0) significantly improves 
with the growth of both M and Ec. The increase in −s'(0) 
occurs due to a reduction in the dimensionless concentra-
tion near the surface of the stretching cylinder as the values 
of both M and Ec rise.

Figure 9. Effect of M on −θ'(0).

Figure 8. Variation of s(η) with Ec when NRe = 2.0, NF = 0.1.
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Figure 12. Effect of Ec on −s'(0).

Figure 11. Effect of Ec on −θ'(0).

Figure 10. Effect of M on −s'(0).
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CONCLUSION

The study delves into the mathematical modelling of 
boundary layer Ag-water nanofluid flow around a stretch-
ing cylinder, exploring the impact of M and Ec on f '(η), 
θ(η), s(η), −θ'(0) and −s'(0). The numerical investigation 
focuses on studying the variations of −θ'(0) and −s'(0) con-
cerning the values of M and Ec, with the results presented 
graphically. The analysis of these findings yields the follow-
ing conclusions:
· As the electrification parameter M rises, the non-di-

mensional velocity experiences growth, while the 
dimensionless concentration and temperature decrease 
within the boundary layer region.

· As the Eckert number Ec increases, there is an increase 
in the non-dimensional velocity and temperature, while 
the dimensionless concentration exhibits a dual nature.

· An increase in the electrification parameter M enhances 
the rate of heat transfer from the stretching cylinder to 
the nanofluid. This enhancement in heat transfer due 
to nanoparticle electrification facilitates the dissipation 
of heat into the cooler nanofluid, effectively cooling 
the stretching cylinder. This improved heat transfer 
property of nanofluid due to the electrified nanopar-
ticle mechanism is particularly beneficial in manu-
facturing industries that produce cylindrical-shaped 
products, where the temperature of these products is 
significantly high during the manufacturing process. By 
promoting efficient heat transfer, the electrification of 

Figure 13. Effect of electrification parameter (M = 0) on streamlines.

Figure 14. Effect of electrification parameter (M = 0.2) on streamlines.
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nanoparticles helps in managing and reducing the tem-
perature of the products, thereby improving the overall 
manufacturing efficiency and product quality.

· The increase in the electrification parameter M increases 
the mass transfer rate from the stretching cylinder to 

the nanofluid. This improvement in mass transfer is due 
to the enhanced mobility and distribution of nanopar-
ticles within the nanofluid under the influence of elec-
trification. The electrification mechanism significantly 
enhances the transport properties of the nanofluid, 

Figure 15. Contour plot for variation of dimensionless heat transfer coefficient with M and Ec.

Figure 16. Contour plot for variation of dimensionless mass transfer coefficient with M and Ec.
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which can be particularly beneficial in biomedical 
applications. In such applications, the enhanced mass 
transfer can improve the efficacy of drug delivery sys-
tems. The nanoparticles, which serve as carriers for 
therapeutic agents, are more effectively distributed and 
transported to targeted areas within the body.

· An increase in the Eckert number Ec results in enhanced 
mass transfer rates while causing a decline in heat trans-
fer rates from the cylindrical surface to the nanofluid.

· The inclusion of the nanoparticle electrification mecha-
nism significantly impacts the stream lines of the flow.
The incorporation of electrified nanoparticles emerges 

as a crucial factor in the modelling of Ag-water nanofluid 
flow driven by a horizontally stretched cylinder. This mech-
anism plays a significant role in enhancing both heat and 
mass transfer aspects of the Ag-water nanofluid flow.

NOMENCLATURE

c specific heat capacity
C nanoparticles volume concentration 
DB Brownian diffusion coefficient
DT thermophoresis diffusion coefficient
Ec Eckert number
f non-dimensional stream function 
F time constant for momentum transfer between the 

fluid and nanoparticles
g gravitational acceleration
k thermal conductivity 
m nanoparticle mass
M electrification parameter
Nb Brownian motion parameter
Nc concentration ratio
NF   momentum transfer number
NRe   electric Reynolds number
Nt  thermophoresis parameter 
Nuz local Nusselt number
Pr Prandtl number
q charge of the nanoparticle
qw wall heat flux
qm wall mass flux
Rez local Reynolds number
s non-dimensional concentration
Sc Schmidt number
Shz local Sherwood number
T temperature
(z,r)  cylindrical polar coordinates

Greek Symbols
α thermal diffusivity
γ curvature parameter
η similarity variable
μ dynamic viscosity
θ temperature in dimensionless form
ρ density
τw     wall shear stress 

υ kinematic viscosity
ψ stream function

Subscripts
s nanoparticles
nf nanofluid
f base fluid
w condition at the cylinder surface
∞ ambient values
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