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ABSTRACT

Composite materials are extensively utilized across various industries due to their light-
weight nature and superior mechanical properties. Enhancing and predicting the mechanical 
behaviour of these composites is crucial for optimizing their performance in various appli-
cations. This research investigates the prediction of load-bearing capacity in carbon-fiber 
laminates using Artificial Neural Networks (ANNs). The study involved experimental evalu-
ation of the mechanical properties of the carbon metal composite materials, focusing on their 
behavior under tensile stress. The ANN model was trained on experimental data, including 
laminate dimensions, volume fraction, and applied load. Results showed the model’s robust 
performance in accurately predicting tensile stress and classifying samples across diverse data-
sets, indicating high reliability and efficacy.
The study also highlights the potential of ANNs in modeling and predicting the mechanical 
behavior of composite materials, suggesting their usefulness in the design and analysis of car-
bon-fiber laminates. It recommends further optimization to improve the model’s accuracy and 
applicability in real-world scenarios. Overall, this research provides significant insights into 
the mechanical properties of composite materials and emphasizes the practical potential of 
ANN modeling in engineering applications.
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INTRODUCTION

In engineering and material science, the pursuit of 
advanced materials with precisely tailored mechanical 
properties has become essential to meet modern applica-
tion requirements. [1]. Among these materials, laminates 
stand out for their versatility and adaptability, offering 
a unique combination of strength, flexibility, and light-
weight characteristics. Composed of multiple layers of 
different materials bonded together, laminates find wide-
spread utilization across diverse industries, ranging from 
aerospace and automotive to construction and consumer 
goods [2,3]. The design and engineering of carbon-fibre 
laminates presents a crucial challenge in accurately pre-
dicting and optimizing mechanical properties like ten-
sile strength, modulus of elasticity, and flexural strength. 
Traditional methods are often time-consuming and lack 
accuracy as well as efficiency. The prediction of mechan-
ical behaviour of composite material helps to provide a 
more robust and reliable predictive model that enhance 
the structural integrity and performance of composite 
materials [4, 5]. The insights gained have wide-rang-
ing practical implications, including cost and time effi-
ciencies, failure prediction, as well as manufacturing 
techniques with potential benefits for various industries 
reliant on composite materials [6]. 

In recent years, advancements have developed in pre-
diction technologies for the mechanical properties in 
composite material. Özer et al.[7] compared analytical 
and numerical solutions for bi-adhesive single-lap joints, 
emphasising complex stress states at overlap ends and 
validating against finite element analyses. Gajewski et 
al.[8] explored neural network analysis of dual adhesive 
single lap joints in uniaxial tests using Abaqus software, 
with varied geometric parameters and two adhesive types, 
supported by research funding. Lee et al.[9] focused on 
optimizing stacking sequences for multilayered compos-
ite structures using parallel evolutionary algorithms. By 
minimizing weight, maximizing stiffness, and reducing 
costs, the research demonstrates the effectiveness of this 
approach in achieving superior structural performance. 
Sharma et al. [10] used machine learning to revolution-
ise in material science, particularly in predicting polymer 
composite behaviour. Recent studies highlight its versatil-
ity for prediction, optimization, and uncertainty quanti-
fication, though challenges in large-scale implementation 
persist. Senthil et al.[11] provided a survey on defects par-
ticularly delamination, in composite joints/structures. It 
examines the effects of defects, their initiation, and pre-
diction methods in fiber-reinforced plastics. The review 
highlights the need for further studies on adhesively 
bonded joints with closed debonds and discusses the use 
of the virtual crack closure technique (VCCT) and cohe-
sive zone modelling (CZM) for defect prediction. Yuen 
and Lam[12] discussed the complexity of artificial neural 
networks for smart structures monitoring, highlighting 

the potential applications of neural networks in optimiz-
ing the design of composite pressure vessels. Rayhan et 
al. [13], adopted Ansys Materials Designer to estimate the 
elastic properties of unidirectional laminate composite 
(carbon/epoxy and polyethylene/epoxy). Mehdi et al. [14] 
predicted the elastic propertiesof bidirectional carbon 
epoxy composites using Mori–Tanaka and self-consistent 
micro-mechanical techniques. Yang et al. [15] develops 
an artificial neural network (ANN) model to predict the 
residual strength of carbon fibre reinforced composites 
(CFRCs) post low-velocity impact, validated against finite 
element (FE) simulation results. Mian et al.[16]focused 
on optimizing composite material systems and lay-up 
configurations to achieve minimum weight pressure ves-
sels. This study demonstrates the importance of optimiza-
tion techniques in designing efficient composite pressure 
vessels.

The literature indicates that calculating the mechanical 
properties of composite materials is challenging as exper-
imental and mathematical modelling are time-consum-
ing and limited accuracy. To overcome this challenge, the 
research proposed Artificial Neural Networks (ANNs) to 
predict the mechanical properties of laminates. The main 
contribution of this research is to perform experiment on 
two types of carbon metal laminates whose fiber volume 
percentage varies from 60 to 70 to understand the mechani-
cal behavior. To develop and train artificial neural networks 
to predict the tensile stress of carbon-fibre laminates based 
on experimental results, and to evaluate the performance of 
the artificial neural network model across training, testing, 
and validation phases.

EXPERIMENTAL WORK

The experimental process of hybrid composite spec-
imens involved arranging carbon woven fiber sheet of 
thickness 0.25mm in an alternating lamination pat-
tern with metal plates sized 150*150 mm²and thickness 
0.5mm. Before laminate preparation, the treatment of 
the Al sheet included generating grooves using 180# grit 
emery paper for improved adhesion, followed by clean-
ing with NaOH and sulfuric acid solutions. Hand lay-up 
technique was employed for crafting the hybrid composite 
plates, followed by an autoclave curing process at 0.5 MPa 
pressure and 120°C temperature. The measured thick-
ness of laminate after treatment is 4 mm. Araldite LY 556 
epoxy resin serves as the matrix material in this work. Its 
viscosity is between 1000 and 1200 N-s/m2 and its density 
is between 1.15 and 1.20 MPa at 25 °C. Two types of lam-
inates are prepared, in which the fiber percentage ratio is 
60 and 70, they have nomenclature as CML60 and CML70 
respectively. Mechanical testing included tensile tests, 
conducted as per ASTM D3039 standards guidelines. 
Tensile strength and elastic modulus were determined 
from stress-strain curves. Figure 1 illustrates the final pre-
pared laminate.
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ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANNs) model offers an 
intricate nonlinear function and possesses a remarkable 
capacity for prediction, mirroring the complexity of organic 
brain wiring [17]. One commonly employed variant, multi-
layer perceptron (MLP) networks, excels in approximating 
nonlinear functions and addressing regression challenges. 
These networks are structured with interconnected layers, 
comprising an input layer, hidden layers, and an output 
layer, each linked by neurons functioning as computational 
units. These neurons incorporate inputs through weighted 
connections and biases, transmitting signals only upon 
reaching a predetermined threshold [18]. The mathemat-
ical expression of ANN is shown in equation 1. 

  
(1)

Where the output is represented by y, with b denoting 
the bias function, x indicating the input signal, and n rep-
resenting the number of neurons involved in the process. 
ANNs undergo a training process involving the analysis 
of samples with known inputs and outputs, during which 
connections are adjusted based on the discrepancy between 
the network’s output and the target outcome. This iterative 

refinement of connections, driven by error minimization, 
enhances the network’s ability to accurately predict out-
comes [19–21]. The training process may be supervised, 
depending on the availability of labelled data. Through 
strategic modification of weighted connections and biases, 
ANNs learn to optimize their predictive performance, mak-
ing them invaluable tools in various domains, from pattern 
recognition to predictive modelling. The architecture of the 
ANN model is illustrated in Figure 2.

RESULT AND DISCUSSION

In this research, during the application of tensile forces 
by the universal testing machine (UTM), the entire struc-
ture of the laminate endeavors to withstand the imposed 
loading. However, as the tensile forces escalate, the matrix 
within the laminate reaches its limit and subsequently frac-
tures, leading to the separation of the laminate layers into 
individual laminae. This phenomenon, known as delami-
nation, occurs due to the matrix’s inability to endure the 
applied loads. Prepared laminates, comprising a combi-
nation of metal and carbon woven fiber, exhibit distinct 
mechanical properties due to the higher elastic modulus of 
the metal sheet compared to the carbon fiber. When bonded 
with epoxy, these materials act as a single composite. Under 

Figure 2. Architecture of ANN model.

Figure 1. Carbon fibre metal laminate.
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tensile loading, both materials attempt to sustain the load 
together; however, the carbon fiber reaches its tensile limit 
before the metal. This leads to inadequate elongation and 
subsequent delamination into separate layers [22, 23]. This 
delamination highlights the failure of the interlaminar bond 
between the carbon fiber and metal, formed by the epoxy 
coating. After breaking the interlaminar bond carbon fiber 
and metal sheet tries to sustain load separately but carbon 
fiber unable to elongate and fiber breakage starts and unable 
to transfer stress to the metal layer in result fails to sustain 
the load which can be seen by Figure 3 (a), after reaching 
peak point stress strain curve suddenly comes down.

The stress-strain graph (Figure 3a) demonstrates the 
linear elastic behavior of the laminate for both samples. The 
carbon fiber exhibits significant strength and rigiditywhile 
the metal shows high ductility [24]. As a result, the carbon 
fiber begins to fail while the metal continues to elongate, 

causing the interlaminar bond to deteriorate. After reach-
ing the peak tensile strength, the graph indicates a decline.

Figure 3b also shows that the tensile strength of CML70 
is 3% higher than that of CML60. Although the same mate-
rials were used, the pairing effect and fiber arrangement 
significantly influence the stress transmission mechanisms. 
These test results are utilized for training the artificial neu-
ral network model. 

An artificial neural network is developed to forecast the 
tensile stress of carbon fiber-based laminate. Experimental 
measurements of tensile stress are utilized to train the ANN 
model. Following parameters are used in model such as 
laminate dimensions (mm), volume fraction (%), extension 
(mm), load (kN), true strain (N/mm2), and tensile exten-
sion (mm). Utilizing 2525 datasets, the ANN is designed 
and trained using Levenberg-Marquardt and feed-forward 
back-propagation (FFBP) techniques. Mean square error 
(MSE) and coefficient of determination (R2) values are 

 
(a) (b)

Figure 4. (a)Variations in Mean Square Error with each epoch (b) Error histogram.

(a) (b)

Figure 3. (a) Stress strain curve, (b) Mechanical properties of carbon metal laminate.
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employed for the performance evaluation of the developed 
ANN. An assessment of error rates between tentative data 
and ANN outputs is conducted using error histogram values.

Experimentation with various networks and compari-
son of their performance functions lead to the determina-
tion of the optimal number of neurons in the hidden layer. 
Consequently, the network structure yielding the lowest 
R2 and MSE values was selected as optimal, as depicted in 
Figure 4. This figure illustrates the fluctuation of MSE val-
ues over time. As the training cycles progressed, MSE values 

gradually decreased, ultimately stabilizing at 1.18258E-07 
after 1000 epochs. The ANN training process, which com-
menced with higher MSE values and concluded with lower 
ones, was successfully executed. The error histogram indi-
cates that the majority of errors are near the zero line, sig-
nifying minimal variation in error. The attainment of the 
lowest MSE value at the conclusion of the training phase 
indicates optimal completion of the ANN training process. 
The results of the training, testing, and validation phases 
are presented in Table 1.

Figure 5. Network result after training, testing, validation and overall performance.

Table 1. Result obtained in ANN

Samples MSE R-value
Training 1767 1.29330E-7 9.9999E-1
Testing 379 1.18250E-7 9.9999E-1
Validation 379 1.19285E-7 9.9999E-1
MSE: Mean square error.
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The classification model underwent rigorous evalua-
tion across distinct phases: training, testing, and validation. 
Trained on a dataset comprising 1767 samples, the model 
exhibited a mean square error (MSE) of 1.29330E-7 and an 
R-value of 9.9999E-1 during the training phase. In testing, 
where 379 samples were assessed independently, the model 
showcased an MSE of 1.18250E-7 and an R-value close to 1. 
Subsequently, during validation, also conducted on 379 dis-
tinct samples, the mean square error persisted at 1.19285E-
7, with an R-value of 9.9999E-1, indicating consistent 
performance. The R-value during the training, testing and 
validation are illustrated in Figure 5. These results under-
score the model’s resilience across varying datasets, high-
lighting its efficacy in accurately classifying samples. While 
the model demonstrates commendable performance, ongo-
ing optimization endeavors may further refine its accuracy 
and applicability in real-world scenarios, ensuring reliable 
categorization across diverse contexts and datasets.

CONCLUSION

The research article investigates the behavior of carbon 
fiber-based laminate under tensile stress using experimen-
tal measurements and Artificial Neural Network (ANN) 
modeling. Due to the non-relevant beahaviour of Metal and 
carbon fiber during the tensile test, their matrix bonding 
breaks and cause delamination. CML70 have higher ten-
sile strength compare to CML60 by 3%. The ANN model, 
trained on experimental data, accurately predicts tensile 
stress using input variables such as laminate dimensions, 
volume fraction, and load. Through rigorous evaluation 
across training, testing, and validation phases, the ANN 
demonstrates robust performance, achieving low Mean 
Square Error (MSE) values and high R-values consistently. 
The fluctuations in MSE values over training epochs illus-
trate the successful execution of the ANN training process, 
with optimal performance achieved. The results underscore 
the model’s reliability and efficacy in accurately classifying 
samples across diverse datasets. However, continuous opti-
mization efforts are recommended to further enhance the 
model’s accuracy and applicability in real-world scenarios. 
But there is a limitation that ANN model will work for 
arrangement or stacking sequences shown in this study, and 
for the other type stacking sequences it will not predict the 
correct data. Overall, the study contributes valuable insights 
into the behavior of carbon fiber-based laminate under ten-
sile stress and highlights the potential of ANN modeling in 
predicting mechanical properties with precision.
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