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ABSTRACT

Obtaining real forms of complex Lie algebras (or complex Lie groups) is important in math-
ematical physics and engineering applications. One of these Lie algebras is the Lie algebra 
sl(2, C) and its real forms. In our study, we obtain the S3-graded algebras sl(2, R) which are 
the real forms of the S3-graded algebras sl(2, C) for dimensional matrix representations 
M =1, 2, 3 and 4.
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INTRODUCTION

Lie algebras and groups are widely used in mathemat-
ics and mathematical physics, as well as in engineering and 
economics applications [1]. In some cases, the real form of 
a complex algebra (group) or the complex form of a real 
algebra may be necessary. Therefore, in this case, obtaining 
real forms of complex Lie algebras (or complex Lie groups) 
is important in mathematical physics and applications. 
Generally, in the literature, Lie algebra is denoted with a 
lowercase letter g and its group with an uppercase letter G. 

As known, Lie algebra g with the operation Lie bracket 
[.,.] is a vector space over F satisfying the following condi-
tions for α, β ∈ F and X, Y, Z ∈ g;

[X, Y] ∈ g,
[X, Y] = -[Y, X],
[X, αY + βZ] = α[X, Y] + β[X, Z],
[X,[Y, Z]] + [Y,[Z, X]] + [Z,[X, Y]] = 0
In short, the Lie algebra is the algebra that provides 

Jacobian identity with the antisymmetric bilinear commu-
tator operation.

 If F is the field of real numbers R, then we say g is a real 
Lie algebra. If F = C then we say g is a complex Lie algebra. 
A Lie algebra h is called as real form of the complex algebra 
g if g is the complexification of h. For example, the Lie sub-
algebras su(2) and sl(2, R) are real forms of the Lie algebra 
sl(2, C). All other are isomorphic to one of these two [2]. In 
literature, for quantum algebra, the algebras Uq(su(2)) and 
Uq(sl(2, R) are real forms of the quantum algebra Uq(sl(2, C) 
[3, 4, 5]. At the same time, fractional superalgebras su(2) 
are the real form of the fractional superalgebras sl(2, C) 
for dimensional matrix representations M =1, 2 and 3 [6]. 
Instead of the fractional superalgebras, Sn–graded algebra 
term is sometimes used in the literature. In this study, we 
used the term Sn-graded algebra.

Sn-graded algebras were defined for the first time in [7]. 
Then, firstly, Sn-graded algebra which based on the group 
Sn were given in Hopfalgebra formalism [8]. There are var-
ious definitions to obtain Sn-graded algebra [4, 9-13]. In our 
study, we preferred the algebraic approach. Writing the group 
of an algebra or the algebra of a group isn’t always feasible. 
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However, through the algebraic approach, this obstacle is 
overcome, enabling transitions between algebra and group. 
S2-graded algebra (super algebra) based on S2 invariant form 
were first introduced in Hopf algebra formalism and then Sn 
graded algebra (fractional superalgebra) were defined as a 
generalization of super algebra for n ≥ 3 ∈ ℤ [8]. This study 
focuses on the cubic roots of classical Lie algebras sl(2, C) and 
its real forms, which are important in mathematical physics 
and applications. That is, we focused on the real forms of the 
S3-graded algebras sl(2, C) denoted by  in the 
case of n = 3 and M = 1, 2, 3, 4.

It is known that different S3-graded algebras can be 
obtained for with fixed g Lie algebra and different dimensional 
matrix representations M. These algebras are available in the 
literature for M = 1, 2, 3, 4 and are denoted by  [8, 
14]. In this study, we aimed to obtain the S3-graded algebras 
sl(2, R) which are the real forms of the S3-graded algebras sl(2, 
C) for dimensional matrix representations M = 1, 2, 3 and 4, 
which is not available in the literature.

In this context, in section 2, we introduce *- algebra and 
super *- algebra [3, 15]. In section 3, we obtain S3-graded 
algebras sl(2, R) for M =1, 2, 3 and 4. We denote these 
algebras as , ,  and 

, respectively. Finally, the article concludes with 
a section dedicated to discussion and conclusions.

PRELIMINARIES

In this section, we will make some definitions necessary 
for the calculations [5, 8, 15].

Definition-1
Let be an algebra 𝒜 with associative and unit l over 

complex number field C. If algebra 𝒜 satisfies below condi-
tions, then it is called as *- algebra. 
i) , for a, b ϵ 𝒜 and α, β ϵ C 

(anti-linearity),
ii) (a)* = a (involutivity),
iii) (ab)* = b* a*, I* = I, (anti-multiplicativity).

Definition-2
Let ℋ be a homomorphism from algebra 𝒜 to algebra 

ℬ. A homomorphism ℋ is called as a*-homomorphism if 
ℋ(a*) = ℋ(a)* for  a ϵ 𝒜.

Definition-3
Let 𝒜 be a Hopf algebra. 𝒜 is called a *-Hopf algebra if 

it satisfies below conditions for a, b, c ϵ 𝒜, 
i) For 
ii) , 
iii) For .

Definition-4
Let  be a super algebra. The algebra  is 

defined a super *- algebra if it is generated by K, Qα and 
Yj for α, β = 1, …, M; j= 1, 2, …, dim(g), which satisfy the 
below conditions

  (1)

  (2)

  (3)

  (4)

the co-product

  
(5)

 

the co-unit and antipode

  (6) 

  (7)

and with the involution

  (8) 

Indeed involution (8) leaves Hopf algebra relations 
invariant. For example, the relation (3) is preserved with

S3−GRADED ALGEBRAS sl(2, R)

As known, The Lie algebra sl(2, C) satisfies the follow-
ing commutation relations [5]:
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  (9) 

and the Lie algebra sl(2, R) is defined with involution

Definition-5
Let  be a S3-graded algebras. The algebra  is 

defined a S3-graded *- algebra if it is generated by K, Qα and 
Yj for α, β, γ = 1, …, M; j= 1, 2, …, dim(g), which satisfy the 
below conditions [15];

  (10) 

  (11)

  (12)

  (13)

the co-product 

  
(14)

 

the co-unit and antipode

  (15) 

  (16)

and with the involution

  (17) 

Indeed involution (17) leaves Hopf algebra relations 
invariant. For example, let’s show that  

In the following sections, the S3-graded algebras 
sl(2, R) which are the real forms of the S3-graded algebras 
sl(2, C) for dimensional matrix representations of M =1, 2, 
3 and 4 are obtained and then these algebras are denoted 
as , ,  and , 
respectively.

i) S3−GRADED sl(2, R) FOR M = 1
Theorem-1:
The  is a *-Hopfalgebra of  gen-

erated by Q1, K, Y1, Y2 and Y3 which satisfy the co-algebra 
relations (14)-(16) and the commutation relations as fallows

with the involution 

ii) S3−GRADED sl(2, R) FOR M = 2
In this case, if Q1 and Q2 convert as spinors under the pro-

cess of sl(2, C) then we have matrix representation as below

Theorem-2
The  is a *-Hopfalgebra of  gen-

erated by Q1, Q2, Y1, Y2 and Y3 which satisfy the co-algebra 
relations (14)-(16) and the commutation relations as fallows

with the involution 

To be *−Hopf algebra, definition-3 must be provided. 
Indeed, with this involution, the above relations remain 
invariant. For example, Using the definitions Δ*−homo-
morphism and S anti-homomorphism:

from *−operation and the definition of fractional algebra

 

and
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Similarly, it can be shown for other elements of algebra.

iii) S3−GRADED sl(2, R) FOR M = 3
In this case, we obtain two different S3- graded algebra 

sl(2, R) according to the choice of the matrix representation 
dj where j = 1, 2, 3.

a) In case of vector representations, we have the follow-
ing matrix representations 

Theorem-3
The  is a *-Hopfalgebra of  gen-

erated by Q1, Q2, Q3, Y1, Y2 and Y3 which satisfy the co-al-
gebra relations (14)-(16) and the commutation relations as 
follows

with the involution

Indeed, with this involution, the above relations remain 
invariant. For example, 

Also, from *- Hopf algebra conditions:

Similarly, it can be shown for other elements of algebra.
b) If two of the S3- graded generators convert as spinors 

and the other convert as scalar, then we have the following 
matrix representations

Theorem-4
The  is a *-Hopfalgebra of  gen-

erated by Q1, Q2, Q3, Y1, Y2 and Y3 which satisfy the co-al-
gebra relations (14)-(16) and the commutation relations as 
follows

with the involution

Let’s show with an example that the theorem is satisfied 
by the defined involution. For this, let us consider the rela-
tion 

It appears to be .  
has been achieved.

iv) S3−GRADED sl(2, R) FOR M = 4
In case of vector representations, we have the following 

matrix representations 
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Theorem-5
The  is a *-Hopfalgebra of  gen-

erated by Q1, Q2, Q3, Q4, Y1, Y2 and Y3 which satisfy the 
co-algebra relations (14)-(16) and the commutation rela-
tions as follows

with the involution

With the defined involution, the  and 
 relations are satisfied respectively.

Let us first show that the  relation is 
true.

CONCLUSION

In our study, we obtain the S3-graded algebras sl(2, R) 
which are the real forms of the S3-graded algebras sl(2, C) for 

dimensional matrix representations M =1, 2, 3 and 4. Then 
we denote these algebras with , , 

 and , respectively. When we com-
pare our results with the papers [14, 15, 16] and the duality 
relations given in Appendix B, it can be easily seen that the 
obtained algebras are consistent. Additionally, M = 5 and 6 
dimensional vector representations, obtained using Schur’s 
lemma and providing the commutator relation of the Lie 
algebra sl(2, C), are given in the appendix A. Using the 
equations given in [8] it has been seen that the relation (11) 
provided by the super generators is zero for the S3- graded 
algebras sl(2, C). As a result, S3–graded algebras sl(2, R) sat-
isfy the following relation for dimensional matrix represen-
tations M > 3: {Qα, Qβ, Qγ} = 0 α, β, γ = 1, 2, 3, 4, 5 and 6.
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APPENDIX A

M = 5 and 6 dimensional matrix vector representations of the S3–graded algebras sl(2, C) are obtained as follows;

APPENDIX B

Let be the S3–graded group  and the S3–graded algebra . In this case, the dual of the Hopfalgebra  
is Hopfalgebra  and the duality relations are given as follows:
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