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ABSTRACT

Heart disease is a serious health issue, and effective management requires an awareness of the 
factors determining survival. This work used Kaplan-Meier analysis and Cox proportional 
hazard and frailty survival models on heart disease data. With p-values less than 0.05, our 
results show that factors including “Age”, “Anaemia”, “Creatinine Phosphokinase”, “Ejection 
Fraction”, “High Blood Pressure”, “Serum Creatinine”, and “Serum Sodium” are significant 
predictors of survival. The Cox proportional model, showed these factors effects, and their 
importance was highlighted by the frailty survival model using the AIC and BIC metrics. A 
high initial survival probability of 99.7% was revealed by Kaplan-Meier analysis, which subse-
quently dropped to 57.6%. With a median survival time of 111.5time units, the mean survival 
time was calculated to be roughly 125.19time units. These findings support risk assessment 
and patient treatment strategies by offering important new information on heart disease sur-
vival patterns and risk variables.
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INTRODUCTION 

According to the World Health Organisation, cardiovas-
cular disease (CVD) is the primary cause of death globally, 
taking the lives of 17.9 million people each year. A group 
of conditions affecting the heart and blood vessels known 
as cardiovascular diseases (CVDs) include rheumatic heart 
disease, coronary heart disease, and cerebrovascular illness 
[1]. More than four out of every five fatalities from CVD are 
caused by heart attacks and strokes, with one-third of these 
deaths occurring prematurely in people under the age of 70 
[2]. Tobacco use, excessive alcohol use, poor nutrition, and 

physical inactivity are the main behavioural risk factors for 
heart disease and stroke [3]. Because of their conduct, peo-
ple may suffer from symptoms including HBP, HBS, high 
blood lipids, and obesity or overweight [4].

 Frailty survival models and the Cox proportional haz-
ards model are two complex survival analysis techniques 
that are combined in this inquiry to take a deep dive into 
the problem’s severity. We may investigate how particular 
characteristics affect the hazard function over time by using 
the Cox model, which offers insightful information about 
their potential applications as mortality markers [5]. By 
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adding random factors, the incorporation of frailty survival 
models recognizes the existence of unobserved heterogene-
ity among people [6]. Through the utilization of Kaplan-
Meier estimates, it is possible to distinguish between the 
likelihood of dying from heart-related problems and from 
other causes [7]. This allows us to gain a more comprehen-
sive understanding of the intricate dynamics of mortality in 
cases of heart illness.

This multifaceted approach aims to shed light on the 
multitude of patient-specific prognoses and trajectories. 
This approach aims to streamline the complex process of 
surviving cardiac disease. Through this research, we hope 
to gather a wealth of data that can help improve clinical 
practice, better classify individuals, and ultimately assist 
those suffering from heart issues. The primary objective of 
this work is to provide a comprehensive and nuanced anal-
ysis of cardiac diseases using a limited dataset that incor-
porates numerous parameters. These are our specific goals:
1. Assessment of Covariate Impact: The study uses the 

Cox Proportional Hazards model to determine the clin-
ical factors that significantly impact the life expectancy 
of individuals with heart conditions over time.

2. Acknowledgment of Heterogeneity: Frailty Survival 
Models should be implemented to account for individ-
ual differences and hidden variables, aiming to identify 
and explain observed variation in survival rates among 
research subjects.

3. Probabilistic Estimation: Kaplan-Meier estimations 
are utilized to estimate the likelihood of dying from 
heart disease and other causes, aiding in a better under-
standing of mortality in complex settings.

LITERATURE REVIEW

Cardiovascular disease, a rapidly increasing global 
death rate, affects the heart and blood vessels, affecting 
17.9 million people. Improve heart disease diagnosis using 
machine learning algorithms like SVM, KNN, NB, ANN, 
RF, and GDO. The GDO-based model achieved 98.54% 
accuracy, 99.43% sensitivity, and 97.76% precision [8]. 
computational intelligence techniques for heart disease 
diagnosis, highlighting medical feature selection as a prom-
ising technique [9]. Seven models achieve 100% accuracy 
using power transform, PCA, and grid search [10]. The 
study compares classification techniques for predicting 
heart disease patients, finding neural networks with the 
highest accuracy at 81.1%. ANN has the lowest error rate 
and highest accuracy [11]. Hybrid techniques [12], includ-
ing vote and random forest with TPOT classifiers, improve 
accuracy [13]. Pooled logistic regression relates risk factors 
to event occurrence [14].

A study comparing Cox, Weibull, Exponential, and 
Frailty models in a small sample size randomised trial of 
Kaposi’s sarcoma found the Exponential model best for 
fitting data, emphasising the importance of assessing fit 
goodness [15]. The odd Weibull family is a three-parameter 

Weibull distribution used for modelling survival processes, 
testing goodness-of-fit in data sets, particularly in censor-
ing situations, and for simulation studies [16]. Recent car-
diothoracic transplantation studies use the poly-Weibull 
distribution model for estimating mean survival over 
recipients’ lifetimes, a flexible parametric model applica-
ble to two problems using available software and inference 
procedures [17]. Survival analysis methods in medical 
research, including Kaplan-Meier estimation and log-rank 
tests, recommend survival regression models like Cox and 
AFT for continuous predictors or multiple covariates [18]. 
Weibull distribution, its extensions, and their applications 
in modelling complex lifetime data, including probability 
plots, parameter estimation, model validation, and future 
research topics [19].

A study reveals that common herd diseases like retained 
placenta, nonsystemic metritis, systemic metritis, ovarian 
cysts, and lameness decrease conception rates and increase 
median days open in dairy cattle [20]. Multilevel data is 
used in various disciplines, and three regression models are 
described for analysing it: Cox proportional hazards mod-
els with mixed effects, time discrete survival models, and 
individually exponential survival models using heart attack 
patient data [21]. Bayesian method to estimate Rayleigh’s 
distribution parameters in the survival analysis of type II 
tuberculosis patients, revealing a value of 0.001097324 [22]. 
The Transformed Transformer (T-X) family generator is 
used to propose a new (LRD) Lomax Rayleigh distribution, 
which is studied for its structural properties and model fit-
ting with simulated and real-time cancer data sets [23-25].

The significance and motivation for this research stem 
from the critical need to enhance predictive models for 
heart disease survival, considering its standing as the top 
cause of death worldwide. This study is inspired by the 
limitations of current machine learning algorithms, which 
frequently fail to offer precise survival probability and risk 
factor evaluations over time. This study uses survival anal-
ysis approaches such as Cox proportional hazard models, 
frailty survival models, and Kaplan-Meier analysis to pro-
vide a more precise and complete knowledge of the variables 
impacting heart disease outcomes. The findings, which 
emphasise the impact of factors like age, anaemia, and 
ejection fraction, offer vital insights that can help improve 
clinical decision-making and patient care techniques. The 
research thus addresses a critical vacuum in the literature 
by integrating strong statistical methodologies with practi-
cal cardiology applications, ultimately leading to improved 
patient prognosis and targeted treatment interventions. 

MATERIALS AND METHODS

Cox-Proportional Hazard Model 
The Cox-Proportional-Hazards Model, a statistical 

model used for survival analysis, was developed in 1972 by 
David R. Cox. This semi-parametric model assesses the risk 
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rates of different covariates under the assumption that the 
ratio of risks remains constant across time.

The rate of failure at time t in the given time interval is 
the hazard function, represented by the symbol h(t), given 
a probability of survival till time t. Below is a description of 
the Cox model:

  (1)

• The hazard function at time t, given the covariate values 
X, is h(t|Z)

• h0t is the baseline hazard function, representing the 
hazard when all covariates are zero. 

• β1, β2,………, βp are the regression coefficients associ-
ated with covariates Z1, Z2,………, Zp

• Z1, Z2,………, Zp are the covariates of predictors. 
• Exp() denotes the exponential function. 

The Hazard Ratio Exp(β) illustrates how the hazard 
changes multiplicatively with a one-unit change in the rele-
vant covariate. The model can be used to evaluate these risk 
ratios and their significance.

Frailty Survival Model
Weakness to account for unobserved heterogeneity, 

survival models supplement the Cox Proportional-Hazards 
model with random effects or frailty components. When 
survival times are impacted by unmeasured factors, this 
strategy performs well. To account for individual differ-
ences, the frailty term adds a random component to the 
hazard function. 

 The Frailty survival model is expressed as follows: 

  (2)

• h(t|X,Z) is the HF at time t given covariate values X and 
a frailty term Z. 

Table 1. An overview of cutting-edge strategies for predicting cardiovascular illnesses. Individual classifiers

Author name Year Data Set Methods Accuracy
Hassan et al. [26] 2024 Heart failure clinical records dataset (13 features) mANN

FDA
CIT
BTM
BLR
NN
RF
SVM
RT
NB
BGLM
MARS
BoGLM

82.95%
82.95%
79.55%
78.40%
82.95%
84.09%
85.23%
81.82%
81.82%
79.54%
82.95%
84.09%
80.68%

Sara et al. [27] 2018 1. EnterprisdeData Ware house (EDW)
2. Research Patient Data Respository(RPDR)

LR
GB
Maxoutnetworks
DUNs

75.4%
73.9%
75.4%
76.4%

C. Beulah et al. [28] 2019 Cleveland Heart dataset (14 features) C4.5
RF
MP
BN
NB

79.87%
80.53%
81.52%
84.16%
84.16%

Milan et al. [29] 2011 Cleveland cardiovascular diseases dataset of 303 records (14 features) RIPPER
DT
ANN
SVM

81.08%
79.05%
80.06%
84.12%

Roohallah et al. [30] 2013 303 individual Rajaie cardiovascular (34 features) Bagging 
c4.5classification

79.54%
68.96%
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• γ0t is the BHF.
• β1, β2,………, βp are the regression coefficients associ-

ated with covariates X1, X2,………, X3
• α is the frailty parameter representing the random 

effects impact on the hazard. 
• Z is the frailty term, assumed to follow a certain 

distribution 

Kaplan-Merier
The survival function in survival analysis is estimated 

from observed time-to-event data using the non-para-
metric Kaplan-Meier estimator. It is frequently applied to 
material that has been suppressed and in which not every 
participant saw the noteworthy event.

The likelihood that a person will live past time t is repre-
sented by the Kaplan-Meier survival function, or S(t). This 
is how the estimator is computed: 

  (3)

• tj represents the observed event times.
• dj is the No.of.events(deaths) at time tj.
• rj is the No.of.individuals at risk just before time tj. 

DATA SUMMARY

Data was obtained data from Kaggle dataset collection. 
The dataset has 299 and no missing values, therefore there 
is no need for imputation.
• Normal Ejection Fraction: 41%–75%; Abnormal: <41% 

or >75% An EF of between 50% and 75% is considered 
normal, according to the AHA. The range of a border-
line EF is 41% to 50%.

• Serum Creatinine: 0.74 to 1.35 mg/dL (65.4 to 119.3 
micromoles/L) in adult males 0.59 to 1.04 mg/dL (52.2 
to 91.9 micromoles/L) for adult females

• Platelets: Between 150,000 and 450,000 platelets per 
microliter of blood are considered normal.

• Normal blood sodium levels range from 135 to 145 
milliequivalents per litre. This is known as serum 
sodium.

• Creatinine Phosphkinase:10 to 120 micrograms per 
liter.

• Event: Patient who died. Censor: Patient is alive

RESULTS AND DISCUSSION

Cox Proportional Analysis for Heart Diseases
In the heart disease dataset, we examined the effects 

of several clinical factors on survival times using the Cox 
Proportional Hazards model. 

For every covariate in the Cox Proportional Hazards 
model, this Table2 summarizes the following: hazard ratios, 
standard errors, z-values, p-values, and 95% confidence 
intervals. To further evaluate the overall model fit, we also 
offer the concordance index in addition to the outcomes of 
the likelihood ratio, Wald, and Score tests in Table 3.

Epidemiology results for heart diseases data by using cox 
proportional model
• Age is a significant predictor of heart disease risk, with 

each unit increase in age associated with a 4.75% higher 
hazard of experiencing heart disease events.

• Anaemia is a significant risk factor, with a 58.43% 
higher hazard ratio of heart disease events in individu-
als with anemia compared to non-anaemic individuals.

• Higher serum creatinine levels are linked to a 37.86% 
higher risk of heart disease events, according to a coef-
ficient of 0.321 and a hazard ratio of 1.3786.

• High blood pressure significantly increases the risk of 
heart disease, with a 60.92% higher hazard compared 

Table 2. Cox-Proportional analysis for heart diseases

Covariate Coefficient Hazard 
Ratio

Standard 
Error

Z Values P value 95% CL 
Lower

95% CL 
Upper

Age 0.04641 1.0475 0.009324 4.977 6.45e-07 1.0285 1.067
Anaemia 0.4601 1.5843 0.2168 2.122 0.0338 1.0358 2.423
Creatinine Phosphokinase 0.0002207 1.0002 9.919e-05 2.225 0.026 1.00 1.00
Diabetes 0.1399 1.1501 0.2231 0.627 0.5307 0.7427 1.781
Ejection Fraction -0.04894 0.9522 0.01048 -4.672 2.98-06 0.9329 0.972
High Blood Pressure 0.4757 1.6092 0.2162 2.201 0.0278 1.0534 2.458
Platelets -4.635e-07 1.0000 1.126e-06 -0.412 0.6806 1.000 1.00
Serum Creatinine 0.321 1.3786 0.07017 4.575 4.76e-06 1.2014 1.582
Serum Sodium -0.04419 0.9568 0.0237 -1.899 0.0575 0.9141 1.001
Sex -0.2375 0.7886 0.2516 -0.944 0.3452 0.4816 1.291
Smoking 0.1289 1.1376 0.2512 0.513 0.6078 0.6953 1.861
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to normal blood pressure, according to a coefficient of 
0.4757 and a hazard ratio of 1.6092.

• Higher ejection fraction values are protective, decreas-
ing the risk of heart disease events by 4.78% per unit 
increase, according to a negative coefficient and hazard 
ratio.
Age, anaemia, high blood pressure, and serum creati-

nine are the most significant risk factors for heart disease, 
with other variables like diabetes, serum sodium, sex, and 

smoking having less impact. Effective management through 
therapies and lifestyle changes can reduce risk and improve 
cardiovascular health outcomes.

Additionally, the Cox proportional hazards model 
yielded a predictive accuracy of 74%, indicating a moder-
ately reliable performance in forecasting heart disease-re-
lated mortality (Fig. 1). Further refinement and validation 
of the model may enhance its accuracy and robustness in 
predicting outcomes.

Table 3. Metrics for different tests 

Chi squares Degree of freedom P Value 
Likelihood ratio test 81.95 11 6e-13
Wald test 87.27 11 6e-14
Score (log rank)test 88.39 11 3e-14

Figure 1. Cox proportional hazard graph.
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From Table 3 LRT, WT, and ST (Log-Rank) collectively 
indicated significant differences in survival curves (Chi-
Squared =81.95, df =11, p<0.001), underscoring the robust-
ness of the analysis in capturing variations across covariates. 

Frailty Survival Models

Epidemiology results for heart diseases data by using 
Frailty Survival model.

Based on (Table 4) chi-square values, degrees of free-
dom, p-values, and information criteria (AIC and BIC), we 
can predict the influence of various variables on heart dis-
ease and risk factor mitigation techniques.
• Age: The study’s chi-square value of 57.22 indicates that 

age significantly impacts heart diseases, with older indi-
viduals being associated with an increased risk.

• Anaemia: A significant risk factor for heart diseases, as 
indicated by a chi-square value of 79.37.

• Creatinine Phosphokinase: The studies have significant 
chi-square values (78.04), indicating their significance 
in assessing heart disease risk.

• Diabetes: A significant risk factor for heart diseases, 
as indicated by a chi-square value of 81.56 (DF=11, 
p=7.35e-13).

• Ejection Fraction: The chi-square value of 81.32 empha-
sizes the significance of ejection fraction in evaluating 
heart disease risk.

• High blood Pressure:The study’s findings, with a chi-
square value of 79.35, highlight the significant impact 
of high blood pressure on heart diseases.

Table 4. Frailty survival model analysis for heart diseases

Variable Chi-square 
value

Degree of 
freedom 

p AIC BIC

Age IL
PL

57.22
57.39

11
10

3.0254e-08
1.2122e-08

35.22
37.03

7.22
11.50

Anaemia IL
PL

79.37
81.72

11
10

1.94e-12
5.37e-13

57.37
60.18

29.17
32.55

Creatinine 
Phosphokinase

IL
PL

78.04
78.11

11
10

3.5335e-12
1.2122e-08

56.04
58.04

27.83
32.35

Diabetes IL
PL

81.56
81.57

11
10

7.35e-13
2.48e-13

59.56
61.56

31.35
35.91

Ejection-fraction IL
PL

81.32
110.05

11
10

8.18e-13
6.439e-15

59.32
72.45

31.11
24.24

High Blood Pressure IL
PL

79.35
81.74

11
10

1.966e-12
5.411e-13

57.35
60.17

29.15
32.51

Serum Creatine IL
PL

77
133.7

11
10

5.6003e-12
3.44e-15

55
74.54

26.79
-1.30

Platelets IL
PL

81.78
81.85

11
10

6.672e-13
2.259e-13

59.78
61.78

31.57
36.05

Serum Sodium IL
PL

78.56
78.57

11
10

2.800e-12
9.623e-13

56.56
58.56

28.35
32.90

sex IL
PL

81.06
81.09

11
10

9.196e-13
3.112e-13

59.06
61.06

30.85
35.39

Smoking IL
PL

81.69
110.05

11
10

6.467e-13
2.3426e-13

59.69
61.69

31.48
36.04

Table 5. SD & variances for risk factors

Variable SD Variances
Age 0.0199 0.003991
Anaemia 0.2822 0.0796
Creatinine Phosphokinase 0.01996 0.00039
Diabetes 8.98e-0.3 8.07e-0.5
Ejection 0.8719 0.76025
High Blood Pressure 0.2950 0.08704
Platelets 0.0199 0.0039
Serum Creatine 1.0127 1.0256
Serum Sodium 9.077e-03 8.227e-05
Sex 0.0199 0.0003
Smoking 8.9764e-03 8.057e-05
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Regular health check-ups, a healthy lifestyle with a bal-
anced diet and exercise, managing chronic conditions like 
diabetes and high blood pressure, and avoiding tobacco use 
can reduce heart disease risk factors. Early detection and 
management of conditions like anemia and monitoring 
biomarkers are also crucial.

The results of the frailty survival analysis provided 
insight into the differing effects of several factors on sur-
vival rates in heart disease. Notably, p-values below 0.05 
indicate the statistical relevance of variables from Table 5 
that significantly affect survival. The variances correspond-
ing to these factors offer valuable insights into the degree to 
which they contribute to the variability in survival within 
the population under investigation. These results high-
light the significance of taking into account a variety of 
parameters, such as comorbidities and physiological mark-
ers, when evaluating and forecasting survival prospects in 
patients with heart disease.

Figures 2-7 show frailty model graphs that show how 
time and important clinical parameters are related. The 
left side of Figure 2 shows Time in connection to Age, 
and the right side shows Time in relation to Anaemia. 
Figure 3 shows the relationship between time and cre-
atine phosphokinase and the relationship between time 
and diabetes. Figure 4 shows how Time is related to 

Ejection Fraction and Hypertension. Figure 5 shows how 
Time and Platelets are related, as well as how Time and 
Serum Creatinine are related. Figure 6 shows how Time 
and Serum Sodium are related, as well as how Time and 
Sex are related. Figure 7 finally shows the fragility plot 
for Time in relation to Smoking. These charts make it 
easier to see how different factors affect survival time 
through frailty effects.

Kaplan Meier Analysis on Heart Diseases
The Kaplan-Meier survival analysis offers import-

ant information about the chances of survival for people 
with cardiac disease over an extended period of time from 
table6. At the fourth time point, the study shows a high ini-
tial survival probability of 99.7%, which progressively drops 
to 57.6% by the 241st time point. Each estimate’s standard 
errors offer a measure of variability that reveals how accu-
rate the survival probability. The range that the true sur-
vival probabilities are most likely to fall within is provided 
by the 95% confidence intervals. The Kaplan-Meier study, 
taken as a whole, shows a downward trend in survival prob-
abilities over the observed time periods, underscoring the 
dynamic character of survival outcomes in heart disease 
patients. 

Figure 2. Frailty model plots (left) time vs age; (right) time vs anaemia.
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Figure 4. Frailty model plots (left) time vs ejection fraction; (right) time Vs HBP.

Figure 3. Frailty model plots (left) time vs creatine phosphokinase; (right) time vs diabetes.
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Figure 6. Frailty model plots (left) time vs serum sodium; (right) time vs sex.

Figure 5. Frailty model plots (left) time vs platelets; (right) time vs serum creatinine.
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The Kaplan-Meier analysis yielded an estimated mean 
survival time of 125.19time units. Furthermore, it is com-
puted that the median survival time is 111.5time units as 
shown in Figure 8. By showing the average and middle sur-
vival durations seen in the population under study, these 
statistics offer important insights on the central patterns of 
survival periods for people with heart disease.

The study examined Hassan et al. [26] findings on 
heart disease data using machine learning techniques like 
Random forest, SVM, mANN etc. The study focuses on 
survival approaches such as Cox proportional hazards, 
Kaplan-Meier estimators, and frailty models. The Cox 
model demonstrated that variables such as older age, anae-
mia, greater creatinine phosphokinase, poorer ejection 
fraction, high blood pressure, and elevated serum creati-
nine substantially increased the risk of death. Kaplan-Meier 
charts showed survival probability over time, but frailty 
models emphasized individual variations. The dataset com-
prised the variables “time” and “event,” which are import-
ant in survival analysis. Integrating these techniques should 
improve predictive models and provide a better knowledge 
of heart disease survival. 

Table 6. Kaplan Meier survival analysis

Time No.of.Risk No.of.Event Survival Probability Standard Error Lower 95% CI Upper 95% CI
4 299 1 0.997 0.00334 0.99 1
6 298 1 0.993 0.00471 0.984 1
7 297 2 0.987 0.00664 0.974 1
8 295 2 0.98 0.00811 0.964 0.996
10 293 6 0.96 0.01135 0.938 0.982
11 287 2 0.953 0.01222 0.93 0.977
13 284 1 0.95 0.01263 0.925 0.975
14 283 2 0.943 0.0134 0.917 0.97
15 281 2 0.936 0.01412 0.909 0.964
20 278 2 0.93 0.0148 0.901 0.959
23 275 2 0.923 0.01545 0.893 0.954
24 273 1 0.92 0.01575 0.889 0.951
26 272 3 0.909 0.01663 0.877 0.943
27 269 1 0.906 0.01691 0.873 0.94
28 268 2 0.899 0.01745 0.866 0.934
29 266 1 0.896 0.01771 0.862 0.931
30 264 4 0.882 0.01869 0.846 0.92
31 259 1 0.879 0.01893 0.843 0.917
32 258 1 0.875 0.01916 0.839 0.914
33 257 2 0.869 0.01961 0.831 0.908
35 254 1 0.865 0.01983 0.827 0.905
38 253 1 0.862 0.02004 0.823 0.902
40 252 1 0.858 0.02025 0.82 0.899

Figure 7. Frailty model plots for time vs smoking.
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Table 6. Kaplan Meier survival analysis (countined)

Time No.of.Risk No.of.Event Survival Probability Standard Error Lower 95% CI Upper 95% CI
41 251 1 0.855 0.02046 0.816 0.896
42 250 1 0.852 0.02066 0.812 0.893
43 249 3 0.841 0.02124 0.801 0.884
44 246 1 0.838 0.02143 0.797 0.881
45 245 1 0.834 0.02161 0.793 0.878
50 244 1 0.831 0.02179 0.789 0.875
55 241 1 0.828 0.02197 0.786 0.872
59 240 1 0.824 0.02215 0.782 0.869
60 239 2 0.817 0.0225 0.774 0.863
61 236 1 0.814 0.02267 0.771 0.859
64 234 1 0.81 0.02283 0.767 0.856
65 233 2 0.803 0.02316 0.759 0.85
66 231 1 0.8 0.02332 0.755 0.847
67 230 1 0.796 0.02348 0.752 0.844
72 227 1 0.793 0.02364 0.748 0.841
73 225 2 0.786 0.02394 0.74 0.834
77 217 1 0.782 0.02411 0.736 0.831
78 216 1 0.779 0.02427 0.732 0.828
82 207 1 0.775 0.02444 0.728 0.824
88 194 1 0.771 0.02464 0.724 0.821
90 189 2 0.763 0.02504 0.715 0.813
95 180 1 0.758 0.02526 0.711 0.81
96 175 1 0.754 0.02548 0.706 0.806
100 173 1 0.75 0.02571 0.701 0.802
109 159 1 0.745 0.02597 0.696 0.798
111 155 1 0.74 0.02625 0.691 0.794
113 152 1 0.735 0.02652 0.685 0.789
115 150 1 0.73 0.02679 0.68 0.785
126 136 1 0.725 0.02713 0.674 0.78
129 135 1 0.72 0.02746 0.668 0.776
130 134 1 0.714 0.02777 0.662 0.771
135 132 1 0.709 0.02808 0.656 0.766
150 118 1 0.703 0.02848 0.649 0.761
154 117 1 0.697 0.02886 0.643 0.756
162 116 1 0.691 0.02923 0.636 0.751
170 115 1 0.685 0.02959 0.629 0.745
171 114 1 0.679 0.02993 0.623 0.74
172 113 2 0.667 0.03059 0.61 0.73
180 106 2 0.654 0.03128 0.596 0.719
193 86 1 0.647 0.03183 0.587 0.712
196 83 1 0.639 0.03238 0.578 0.706
198 79 1 0.631 0.03297 0.569 0.699
207 71 1 0.622 0.03368 0.559 0.692
214 53 1 0.61 0.03503 0.545 0.683
235 37 1 0.594 0.03776 0.524 0.673
241 33 1 0.576 0.04068 0.501 0.661
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CONCLUSION 

Using the frailty survival model, Kaplan-Meier anal-
ysis, and Cox proportional hazard analysis performed on 
heart disease data, numerous important findings may be 
made. First, low p-values for several variables indicated 
that they were important predictors of survival, including 
age, anaemia, creatinine phosphokinase, ejection fraction, 
high blood pressure, serum creatinine, and serum sodium. 
Achieving a concordance index of 0.741, which indicates 
reasonably trustworthy prediction accuracy, the Cox pro-
portional hazard model demonstrated the distinct effects 
of these factors on survival, along with noteworthy hazard 
ratios and confidence intervals. 

The considerable variations in AIC and BIC measure-
ments further supported the relevance of these factors, as 
indicated by the frailty survival model. Furthermore, the 
Kaplan-Meier analysis demonstrated how survival probabil-
ities are dynamic and change over time, with a high survival 
probability initially dropping with time. The median survival 
time of 111.5 time units and the anticipated mean survival 
period of around 125.19 time units are crucial comparison 
points for comprehending the course of the illness. These 
results highlight the significance of routine health examina-
tions, alterations in lifestyle, and efficient handling of long-
term medical disorders in reducing the risk of heart disease.

To further develop knowledge and treatment of cardiac 
disease, future studies should investigate survival analysis 

distributions such as Weibull, exponential, gamma, and 
normal distributions, which are appropriate for accelerated 
failure time analysis. Enhancing patient care and predicted 
accuracy might be achieved by combining these methods 
with machine learning.
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