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ABSTRACT

The concept of centrality is widely used in graph theory to determine the dominance of nodes 
within a graph. This concept is crucial for solving many real-life problems that are modeled 
using graphs. In this study, the effectiveness of a new approach, the Malatya Centrality Algo-
rithm, for determining the centrality of nodes in a graph is examined. This algorithm provides 
effective solutions to problems in both graph theory and real-life applications. The centrality 
value in the Malatya Centrality Algorithm is calculated by summing the ratios of the degree 
of the relevant node to the degrees of its neighboring nodes. To demonstrate the effective-
ness of the Malatya Centrality Algorithm, comparisons and analyses were conducted with 
well-known centrality algorithms in the literature. Various types of graphs, including random 
graphs, benchmark graphs, social network graphs, and lattice bipartite graphs, were used for 
these comparisons and analyses. Kendall rank correlation analysis and tests were performed 
on these different types of graphs for the Malatya Centrality Algorithm and the well-known 
centrality measures in the literature. The tests conducted on various graphs reveal the ranking 
of nodes based on their effectiveness. These rankings help identify nodes used in numerous 
problems. The tests and analyses demonstrate that the Malatya Centrality Algorithm produces 
results similar to those of established centrality algorithms in the literature and confirms its 
effectiveness across different types of graphs.
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INTRODUCTION

Graphs are essential data structures made up of nodes 
and the connections between them, known as edges. 
They’re commonly used to represent complex relationships 
in both real-world scenarios and various areas of computer 
science [1]. Solutions to these problems can be found based 

on the graph structure. One of the important metrics in 
graph structures used for solving many problems is cen-
trality. Centrality involves assigning values to the nodes of 
a graph based on various operations and parameters [2]. 
In graph analysis, centrality values assigned to nodes are 
often used to help solve problems related to the structure 
and dynamics of the graph. 
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In graph theory, centrality is used to assess how import-
ant a node is within the network, which can vary based on 
the graph’s structure and the context in which it’s applied 
[3]. Since graphs consist of nodes and edges, both are uti-
lized to determine the centrality of nodes through various 
operations performed on them. Centrality plays a crucial 
role in many fields and problems modeled using graph 
structures [1]. It is an important metric used to identify 
critical nodes that provide solutions in various domains 
and problems, including social networks, biological net-
works, transportation networks, and communication net-
works [4-6]. Numerous centrality algorithms have been 
proposed in the literature to define the centrality of graphs.

Various centrality approaches used in different fields 
and problems are present in the literature. These centrality 
algorithms employ different parameters and characteristics 
to calculate the centrality values of nodes. These approaches 
are often designed with specific problem types in mind, 
allowing them to deliver more effective results in those 
contexts. While some algorithms are suited for directed 
graphs and tackle challenges unique to them, others work 
better with weighted graphs and are tailored to the needs of 
that structure. Certain algorithms offer effective solutions 
by utilizing parameters such as the distance between nodes 
or node degrees [7,8]. Consequently, a centrality algorithm 
that produces effective results for a particular field and 
problem may not yield similar results in different contexts 
and problems. Therefore, a centrality algorithm that can 
be applied to various types of problems and deliver effec-
tive solutions in those domains would have significant and 
widespread impact.

 Centrality algorithms in the literature exhibit structural 
and behavioral differences, but it is possible to compare 
these measurements to identify influential nodes in a graph 
[9]. Various metrics are used for comparison, with one of 
the most commonly employed tests being the Kendall Tau 
test [10]. This non-parametric correlation test measures the 
ordinal association between variables and is used to assess 
the monotonic relationship between them when the vari-
ables are of ordinal data type [2]. In some graphs, centrality 
algorithms in the literature can be compared based on the 
identified influential nodes and their outcomes [11].

In this study, the effectiveness of the Malatya Centrality 
Algorithm (MCA), a robust and efficient centrality algo-
rithm, was compared with well-known fundamental cen-
trality measures. The MCA has proven to be effective in 
tackling a range of complex problems in computer science 
and graph theory, such as vertex cover [12,13], independent 
set [13], dominating set [14], text summarization[15], and 
maximum flow[16]. In this approach, a node’s centrality is 
calculated by summing the ratios between its degree and the 
degrees of its neighboring nodes. The parameters that deter-
mine the centrality of nodes are the node’s degree, the num-
ber of neighboring nodes, and the degrees of neighboring 
nodes. The MCA was compared with centrality algorithms 
used in different fields and problems in the literature. Tests 

conducted on various types of graphs, including social net-
work graphs, random graphs, benchmark graphs, lattice 
graphs, and bipartite graphs, show that the MCA produces 
similar results to these widely accepted algorithms in certain 
types of graphs. The primary motivation of the study is to 
determine the extent to which the Malatya Centrality(MC) 
metric resembles other centrality metrics in different types of 
graphs. By identifying types of graphs where there is a high 
degree of similarity, the newly introduced MC is highlighted 
as an alternative metric to many academic studies and meth-
ods developed using other centrality metrics. The results 
obtained and the effective computational approach demon-
strate that the proposed algorithm is an effective central-
ity algorithm applicable to different problems. To this end, 
the similarity and outputs of the MCA with the centrality 
measures in the literature were examined. The most funda-
mental output of a centrality algorithm is the ranking of the 
importance of nodes in the graph, which often provides node 
selection priority in solving graph problems. The MCA was 
compared with other centrality measures using the Kendall 
Tau correlation coefficient analysis, and the test results were 
comprehensively included in the study.

This study is organized into the following sections: 
Section 2 provides a review of the literature on centrality 
algorithms. In Section 3, the existing centrality measures in 
the literature and the Kendall Tau correlation test measure 
are first discussed. Following that, details of the MCA and 
the proposed algorithm are presented. Section 4 contains 
the experimental results and analyses of the proposed algo-
rithm. In the conclusion section, the results of the proposed 
algorithm are evaluated.

Motivation of the Study 
The MCA is a centrality algorithm that provides effec-

tive solutions for various graph problems and real-world 
applications. In this study, MCA was evaluated in com-
parison with several well-established centrality algorithms 
from the literature. Experiments conducted on various 
types of graphs involved ranking the nodes based on their 
level of influence. The findings demonstrate that MCA 
yields results comparable to those of other centrality meth-
ods, suggesting that it can provide effective solutions in 
graph-related problems and application domains where 
these algorithms are typically used.

Moreover, the fact that MCA can provide robust, polyno-
mial-time solutions across various graph types highlights its 
potential as an effective tool for tackling problems in domains 
where traditional centrality algorithms are commonly 
applied. For this purpose, MCA and centrality algorithms in 
the literature were evaluated in terms of node ranking and 
outcomes on graphs of different types and classes.

LITERATURE

Graph structures are widely used in modeling and solv-
ing various real-life problems. One of the key parameters 
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in solving these problems is the dominance values of the 
nodes in the graph. Depending on the structure of the prob-
lem being modeled and the solution approach, numerous 
centrality algorithms have been proposed in the literature. 
These problems and the algorithms used for their solutions 
occupy a significant place in the literature and vary accord-
ing to the specific problem. However, this study focuses on 
well-known fundamental centrality measures used in the 
literature and the solution approaches for problems where 
these measures are applied.

Hajarathaiah et al. emphasized the importance of iden-
tifying influential nodes to better understand how infor-
mation spreads within networks. They proposed a novel 
hybrid centrality measure that integrates both local and 
global structural features, demonstrating improved per-
formance over existing methods in pinpointing influential 
nodes in real-world networks [17]. Similarly, Curado et al. 
explored various centrality measures to assess node impor-
tance, with a particular focus on their application to urban 
networks [9]. Using real-world data from the city of Rome, 
they introduced a new centrality approach and evaluated its 
effectiveness against three well-established measures.

In the context of web mining that extracts information 
from user behavior, W. Xing and A. Ghorbani introduced 
the Weighted PageRank (WPR) algorithm, which consid-
ers the importance of both incoming and outgoing links 
and distributes ranking scores based on page popularity. 
Simulation studies have shown that WPR identifies more 
relevant pages compared to the standard PageRank algo-
rithm, and future research plans to analyze WPR’s perfor-
mance in more detail by using multiple levels of different 
websites and reference page lists [7]. 

In this paper, temporal centrality in dynamic complex 
networks is examined from the perspective of network con-
nectivity, defining two metrics for this purpose: Temporal 
Degree Centrality and Temporal PageRank Centrality. 
Evaluations using real-world public transportation network 
datasets reveal that the results highlight the times of day 
when the transportation system requires more attention 
and their relative importance compared to other periods 
[18].

This paper introduces two new centrality indices, 
PathRank and Icentr, for ranking graphs connected to 
metro networks, and explains their application to the metro 
networks of 34 different cities. PathRank is a generalization 
of the PageRank algorithm, while Icentr is based on node 
and edge weights. Both indices determine the importance 
of nodes by considering the topology of the graphs [6].

Evans and Chen demonstrated a nonlinear relationship 
between degree and closeness centrality measures, showing 
that the inverse of closeness is linearly dependent on the 
logarithm of degree. The results suggest that the measure-
ment of closeness in networks is largely unnecessary and 
that most networks can be approximately represented by 
shortest path spanning trees [19].

Jagadishwari and Chakrabarty introduce a new algo-
rithm for link prediction in social networks based on close-
ness centrality measures. When tested on real-time online 
social networks, the algorithm demonstrated superior per-
formance compared to baseline methods such as Common 
Neighbor (CN), Jaccard Coefficient (JC), and Adamic-Adar 
(AA) [5].

 Chen and Dietrich highlight how the positioning of 
drainage areas within urban networks significantly influ-
ences closeness centrality values—a phenomenon they refer 
to as the ‘placement effect’ [20]. Their study suggests that 
employing an idealized network model can help minimize 
this effect. They also observe that the placement effect is 
most pronounced within a 100-meter range, beyond which 
it becomes necessary to define separate drainage areas to 
ensure meaningful comparisons.

Kotlarz uses percolation theory to examine the modu-
larity and resilience of brain networks by removing nodes 
with the highest betweenness centrality, thereby identify-
ing the critical points and submodules of the network [21]. 
The results indicate that brain functions operate at a crit-
ical point and that this approach offers a new framework 
for understanding the computational efficiency of brain 
networks.

Kintali presents a randomized parallel algorithm and 
an algebraic method for computing betweenness central-
ity, which addresses one of the fundamental problems in 
large-scale network analysis: determining the importance 
of a specific node. It is also proven that no path compar-
ison-based algorithm can compute betweenness centrality 
in less than O(nm) time [22]. This paper introduces a vari-
ant of betweenness centrality based on the concept of cur-
rent flow and adapts this measure for applicability in urban 
networks. The proposed centrality, by considering urban 
network topology and data associated with nodes, allows 
for the theoretical prediction of the most frequently used 
paths and demonstrates how pedestrian flows are influ-
enced by different types of services in the city[4].

Chiranjeevi et al. introduce a novel centrality metric—
Isolation-Betweenness Centrality (ISBC)—to assess node 
influence in complex networks [23]. This measure accounts 
for both local and global structural characteristics when 
evaluating a node’s impact. Experiments conducted on real-
world datasets indicate that ISBC achieves greater propaga-
tion efficiency and maintains a reasonable computational 
complexity compared to both traditional and recently pro-
posed centrality metrics.

Agryzkov et al. [24] tackle the challenge of identifying 
key activity zones within urban infrastructure by introduc-
ing a new centrality measure inspired by the concept of 
eigenvector centrality. This measure determines the topo-
logical importance of nodes in the urban street network 
by considering the network’s topology and the geographic 
data associated with the nodes. This paper extends existing 
paired comparison models for predicting tennis matches 
by using network indicators and proposes a method based 
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on eigenvector centrality [25]. With each new match, this 
method updates players’ ratings, resulting in better predic-
tion accuracy than other models and producing favorable 
outcomes in betting scenarios.

Anastasiei et al. examine how network density and 
centrality influence individuals’ tendencies to share neg-
ative experiences. Their findings suggest that people with 
high centrality and strong connections are more inclined 
to spread negative feedback. However, in highly dense net-
works, prevailing social norms may suppress such behavior 
[26]. The study underscores the importance for companies 
to closely monitor and address negative evaluations from 
well-connected individuals to minimize reputational harm.

Yuliansyah et al. [27] propose a novel approach called 
Degree Gravity of Link Prediction (DGLP) to mitigate the 
cold start problem in network analysis. By incorporating 
degree centrality, common neighbors, and node distance, 
DGLP significantly enhances link prediction accuracy. 
Evaluation results indicate a 7.15% improvement in AUC 
values and a remarkable 99.94% success rate in predicting 
links between node pairs affected by the cold start issue. Dal 
Col and Petronetto introduce Graph Layout Centrality, a 
new centrality measure that considers both local and global 
node positions [27,28]. When compared with classical cen-
trality metrics and Graph Fourier Transform Centrality, 
their method proves to be highly scalable for large-scale 
graphs and robust against disruptions from induced sub-
graphs. Another study focuses on the ev-degree and ve-de-
gree topological indices of the Sierpiński gasket fractal. It 
highlights the mathematical significance of these indices 
and points to the potential of extending this line of research 
to similar fractal structures [29].

Shang et al. [30] develop a novel technique for detect-
ing influential nodes using the Effective Distance Gravity 
model. Unlike traditional methods relying on static 
Euclidean distance, proposed model leverages effective dis-
tance to capture dynamic information flow between nodes. 
Experimental results confirm the model’s effectiveness 
across various scenarios, particularly in dynamic informa-
tion dissemination contexts. Qi et al. [31] develop a new 
method to measure the centrality of factors in weighted 
networks. The method particularly excels in situations 
requiring the management of limited resources, such as 
counter-terrorism programs, by evaluating the contribu-
tion of nodes to the system. It outperforms other centrality 
methods and provides a suitable analytical tool for large 
and sparse social network datasets.

Sarı examines the topological spaces derived from sim-
ple, undirected graphs without isolated vertices, addressing 
the conditions for a point to be an accumulation or interior 
point [32]. Additionally, by defining relative topology on 
a subgraph, it is shown that this topology differs from the 
topology derived from the subgraph itself, and conditions 
for classifying the space as T0, T1, or Hausdorff are pre-
sented. In their proposed study, Jahanbani and Ediz com-
puted the sigma index of graphs using operations such as 

Cartesian product, composition, join, and disjunction, and 
applied their findings to the sigma indices of specific graph 
classes [33]. 

 Reviews in the literature indicate that each developed 
centrality method is proposed for solving specific types of 
problems and has been shown to provide effective solutions 
for these problem types. Therefore, there is a need for gen-
eral centrality measures that can offer effective solutions 
to various problem types. The MCA has been observed to 
produce effective solutions in many graph problems and 
real-life scenarios. Compared to other centrality methods, 
it has achieved similar ranking results. The similarity of this 
centrality algorithm’s results to those of established mea-
sures highlights its strong potential for application across a 
range of problems and domains.

PRELIMINARIES

Graph theory offers a wide range of centrality measures, 
each serving distinct purposes across various domains [1]. 
This paper reviews the most fundamental of these measures 
to provide a clearer understanding of centrality and its prac-
tical relevance. Analyzing these measures helps highlight 
both the similarities and differences with the MCA, while 
also offering insights into where the MCA can be effectively 
applied. In particular, examining these well-established 
approaches is crucial for comparing and interpreting the 
results produced.

PageRank Centrality Measure
PageRank is a centrality metric introduced by Larry 

Page and Sergey Brin in 1998 to assess the importance and 
relevance of web pages based on how they’re linked to one 
another [34]. The algorithm evaluates the influence of each 
page within a network by analyzing incoming links and 
distributing scores accordingly. Each page’s score is calcu-
lated through an iterative process, where importance flows 
from one page to another, depending on both the quantity 
and quality of the links. In essence, it’s similar to simulat-
ing a user randomly clicking through links on the web. A 
page gains significance when it’s linked by other important 
pages, allowing search engines to rank results with greater 
accuracy and quality [34].

  (1)

In Equation 1, t1… tn: represent the nodes linking to 
the node being sought, PR(tn): represents the values of the 
nodes linking to the relevant node, C(tn): represents the 
number of links each node gives to other nodes, and d: is 
the damping factor used to prevent the sum of all ratios 
from exceeding 1.

Closeness Centrality Measure 
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The closeness centrality measure is an algorithm that 
evaluates a node’s accessibility in a network by calculating 
its distances to all other nodes [31]. This measure is deter-
mined by taking the inverse of the average distance from a 
node to all other nodes. It reflects the node’s accessibility 
and centrality within the network. Nodes with high scores 
are closer to all other nodes and are positioned at the cen-
ter of the network. This algorithm determines each node’s 
closeness centrality value by computing the shortest paths 
between all pairs of nodes and inverting this value. Thus, 
the higher a node’s closeness score, the shorter its average 
distance to other nodes [35].

  (2)

In Equation 2, for the graph G=(D, K), with u ϵ D 
represents the total distance of the relevant node to other 
nodes. Equation 3 provides the calculation for cc[u], which 
determines the Closeness centrality value of the the node. 

  (3)

Betweenness Centrality Measure 
Betweenness centrality measures how often a node acts 

as a bridge along the shortest path between two other nodes 
and was introduced by Linton Freeman to identify individ-
uals controlling communication in social networks [36]. 
Calculating betweenness centrality for all nodes in a graph 
typically requires computing the shortest paths, which 
can be done in (O(V^3)) time using the Floyd–Warshall 
algorithm or in (O(|V||E| + |V|^2 log |V|)) time for sparse 
graphs using Johnson’s algorithm.

  
(4)

Eigenvector Centrality Measure 
Eigenvector centrality, introduced by Phillip Bonacich 

in 1987, is a method used to determine the importance of a 
node based on the influence of the nodes it’s connected to 
[37]. The key idea behind this measure is that not all con-
nections are equal—links to highly influential nodes con-
tribute more to a node’s score than links to less important 
ones. In essence, a node becomes more central if it is con-
nected to other well-connected nodes. This creates a feed-
back loop where high-scoring nodes tend to be linked with 
other high-scoring ones, highlighting their overall promi-
nence in the network.

Equations 5 and 6 define the mathematical foundation 
of this measure, where A stands for the graph’s adjacency 
matrix and λ represents its largest eigenvalue.

  
(5)

  
(6)

MATERIALS AND METHODS

The MCA is a newly proposed centrality algorithm 
designed to calculate node centrality values within a graph. 
It provides a robust and effective approach to addressing 
various challenges in graph theory and its practical appli-
cations. In this study, MCA was evaluated against several 
well-established and widely-used centrality algorithms, 
with a focus on ranking nodes from most to least influen-
tial across different graph types and structures. To assess 
how well these rankings align, the Kendall rank correlation 
test—a widely recognized method in the literature—was 
used. For further statistical comparison between MCA 
and the other algorithms, the Wilcoxon rank-sum test and 
Welch’s two-sample t-test were also employed.

The results and analyses from these tests are presented 
to demonstrate the performance of MCA in comparison to 
other centrality measures. As depicted in Figure 1, the over-
all methodology follows a four-stage process. In Stage 1, 
sample datasets from various domains were converted into 
graph structures, consisting of nodes and edges, to be com-
patible with centrality algorithms. Stage 2 involved applying 
MCA alongside PageRank, Closeness, Betweenness, and 
Eigenvector centrality algorithms to these sample graphs. 
In Stage 3, nodes in each graph were ranked from high-
est to lowest based on the centrality values calculated by 
each method. Finally, in Stage 4, Kendall rank correlation 
coefficients and additional metrics were computed to eval-
uate the consistency and significance of the node rankings 
across different algorithms.

The study aims to determine the relationship between 
the dominance ranking produced by MCA and that gener-
ated by other popular centrality algorithms.

Malatya Centrality Algorithm and Centrality Measure 
The pseudo code for the MCA is shown in Algorithm 

1. This algorithm takes an unweighted, undirected graph 
as input and computes a centrality value for each node in 
the graph. The centrality of each node is calculated sequen-
tially. First, a list of all the nodes in the graph is created. 
Then, for each node, a loop iterates over its neighbors. 
During this loop, the centrality value is calculated by sum-
ming the ratio of the node’s degree to the degree of each of 
its neighbors. This process is repeated for all nodes in the 
graph, and by the end of the algorithm, the centrality values 
for every node are determined.
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The symbols used in Algorithm 1 and Equation 1 are as 
follows: G: unweighted and undirected graph, V: the nodes, 
E: the edges in the graph, |V|: the number of nodes in the 
graph and Ψ(vi): the MC value of node vi., d(vi): the degree 
of node vi., d(vj): the degree of node vj.

Algorithm 1. Pseuducode of MCA

Algorithm 1. Malatya Centrality Algorithm(A,Ψ) 

Input: Adjacency matrix of G is A and G = (V, E) 
Output:Ψ

1. 

2. 

3. 

The structure of the MCA formula is presented in 
Equation 7. As observed in this equation, the centrality 
value for each node in the graph can be expressed as the sum 
of the ratios of the degree of the node itself to the degrees of 
its neighboring nodes. Thus, the degrees of all neighboring 
nodes contribute to determining a node’s centrality value. 
Consequently, the centrality of a node within the graph 
depends on both the number of neighboring nodes and 
their respective degrees. Using this equation, which forms 
the foundation of the MCA, the resulting value for each 
node can be considered its MC measure.

  (7)

In Figure 2, the MCA is explained in a practical man-
ner on the example graph from Figure 1. The MC values 

of the graph depicted in Figure 2 are also illustrated on the 
graph itself. Specifically, the calculation of the MC value for 
node (Vertex) 1 is visualized. The blue arrows represent the 
edge relations forming the degree of node 1, while the green 
arrows indicate the edge relations forming the degrees of its 
neighboring vertices. When calculating the MC value for 
node 1, its degree is proportionally compared to the degrees 
of its neighboring vertices, and these ratios are summed. 
The neighbors of node 1 are vertices 2, 6, and 7, with 
respective degrees of 4, 5, and 5. Thus, the MC value for 
node 1 is calculated as 3/4 + 3/5 + 3/5 = 1.95, The MC val-
ues of the other vertices are computed in the same manner. 
The MC values for the sample graph are shown in Figure 2 
as indicated.

Given that MCA is applied to various graph problems 
and application areas, yielding effective solutions, its anal-
yses can be performed on these problems. Accordingly, the 
time complexity and analysis of MCA are provided for the 
Minimum Vertex-Cover Problem (MVCP) [12].
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Theorem 1: MCA has effective and polynomial time 
complexity for MVCP[12]. 

Proof: Assume that G0 = (V, E) is a simple graph. δ(G0)  
is minimum node degree and Δ(G0) is maximum node 
degree.

Vc = ϕ // Vc is a vertex-cover set
vj ∈ V and vj  = arg max{ vi |Ψ(vi) = , 

1 ≤ i ≤ |V| and 1 ≤ i ≤ |V|, i ≠ j }

Vc = Vc ∪ {vj}

G1 = {V1, E1} and V1 = V - vj, E1 = E - {∀(vr, vj ) ∈ E, vr ∈ N(vj)}

This step requires maximum |V|.Δ(G) aritmetrik 
operations.

 If E1 ≠ ϕ, the same process will be applied to G1

Assume that vj ∈ V1 and vj = arg max{Ψ(vi) =  
 , 1 ≤ i, j ≤ |V1|,  i ≠ j }

Vc = Vc ∪ {vj} and
G2 = {V2, E2} and V2 = V1-vj and E2 = E1 - {∀(vr, vj )∈E, vr∈N(vj)}

The number of arithmetic operations is less then 
|V|.Δ(G).

If E1 ≠ ϕ, the same process will be applied to G2, other-
wise, algorithm is terminated.

Assume that the obtained graph series is G0, G1, G2, … 
Gm.

The total number of arithmetic operations is 

  (5)

Finally,  and T(n) is the time 
complexity of algorithm.

Corollary: Malatya centrality algorithm has polynomial 
space complexity.

Proof: Malatya centrality algorithm uses at most two 
adjacency matrices. So space complexity is O(|V|2).

Kendall Rank Correlation Coefficient 
The Kendall rank correlation coefficient is a statistical 

measure that assesses the relationship between two ranked 
variables. This coefficient evaluates the differences in the 
ranking order of two variables. For two variables X and Y, 
Kendall (τ), considers ranking pairs (xi,yi) and (xi,yi). These 
pairs are classified based on whether they are in order as 
follows:

Concordant Pairs: (xi - xj)(yi - yj) > 0
Discordant Pairs: (xi - xj)(yi - yj) < 0
Kendall (τ) is calculated using the difference between 

the number of Concordant and Discordant pairs. 

  
(8)

Here: C = number of Concordant pairs, D = number 
of Discordant pairs, T = number of Tied pairs (xi=xj), U 
= number of Tied pairs (yi=yj) [38]. Alternatively, the 

simplified form, ignoring the effect of ties, can be written 
as follows.

  (9)

Here, n represents the number of observations. The 
obtained Kendall coefficient value ranges between -1 and 1. 

If τ = 1, it means that the rankings of the two variables 
are exactly the same. All pairs are concordant and there are 
no discordant pairs. If τ = -1, the rankings of the two vari-
ables are completely opposite. All pairs are discordant and 
there are no concordant pairs. When. τ = 0, it indicates that 
there is no ordinal relationship between the two variables. 
The number of concordant and discordant pairs is equal, 
neutralizing each other [10]. 

In summary: 
- τ > 0: Positive ordinal relationship
- τ = 0: No or very weak ordinal relationship
- τ < 0: Negative ordinal relationship

Statistical Comparison Methods for Two Independent 
Samples: Welch T-Test and Wilcoxon Rank Sum Test 

Comparative analyses of the MCA with other centrality 
measures included the results of the Wilcoxon Rank Sum 
and Welch Two Sample t-tests. This addition enhanced 
the analysis by providing insights both in terms of rank-
based and group-level results. The Welch Two Sample t-test 
is typically considered a parametric test or a test of mean 
differences, while the Wilcoxon Rank Sum Test falls under 
non-parametric tests or tests for ordinal data. Additionally, 
these tests are often categorized as rank-based tests.

Welch two sample t-test 
Welch’s t-test is a parametric test used to evaluate 

whether the means of two independent samples are equal. 
Unlike the standard t-test, it does not assume that the vari-
ances of the two sample groups are equal, making it suit-
able for cases where the variances between the two samples 
differ [39]. Mathematically, it is expressed as shown in 
Equation 10 [39].

  

(10)

Here,  and  represent the group means,  and  
represent the group variances, and n1 and n2 represent the 
sample sizes. The p-value obtained from the test indicates 
whether the difference between the two groups is statisti-
cally significant.

Wilcoxon rank sum test (mann-whitney u test) 
The Wilcoxon Rank Sum test is a non-parametric 

test used to compare the central tendency between two 
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independent samples. It is employed in place of Welch’s 
t-test when the data do not follow a normal distribution. 
Instead of comparing means, this test compares the median 
ranks between groups [40].

The Wilcoxon Rank Sum test is based on ranking the 
data and calculating the sum of ranks. The two groups 
are ranked jointly, after which the sum of ranks for each 
group is compared. The formula is expressed as shown in 
Equation 11 [40].

  (11)

Here, n1, n2 denote the sizes of the two groups, and R1 
represents the rank sum for the first group.

EXPERIMENTAL RESULTS

The MCA offers solutions to a variety of graph prob-
lems independent of graph type. The behavior and out-
comes of the MCA across different classes and densities 
of graphs can potentially be effective in solving other 

problems within various graph classes. Therefore, during 
testing, a wide range of graphs of varying classes and den-
sities were evaluated, without limiting the process to spe-
cific graph types or sizes. These various types of graphs are 
widely used in defining and solving many problems in the 
literature. Additionally, test results for benchmark graphs, 
such as those from DIMACS, are included.

The analysis was conducted using a broad range of 
graphs, including random, social, DIMACS benchmark, 
bipartite, and lattice graphs. This diverse selection of 
graphs helped produce more consistent results and allowed 
for meaningful comparisons of the methods’ similarities. 
Accordingly, various test outcomes are provided to facili-
tate comparisons and evaluations between MCA and cen-
trality algorithms widely recognized in the literature. These 
results offer the opportunity to conduct extensive analyses 
and evaluations of MCA in relation to established centrality 
algorithms. 

For instance, in Table 1, graphs were generated with dif-
ferent vertices and densities using the Erdos-Renyi model 
to reveal the relationships between the methods. A graph 
with the parameter 50*0.40 has 50 vertices and 502 edges. 

Table 1. Random graphs Kendall ranking scores

M
al

at
ya

 C
en

tr
al

ity

Random Graphs V E Pagerank Closeness Betweenness Eigenvector
50*0.20 50 250 0.6228571 0.1787755 0.1869388 0.06938776
50*0.40 50 502 0.6522449 0.2457143 0.317551 -0.03183673
50*0.50 50 598 0.7322449 0.03673469 0.2604082 0.2179592
50*0.60 50 733 0.7028571 0.2636735 0.1657143 0.1771429
50*0.75 50 946 0.9559184 0.4514286 0.2620408 0.1428571
100*0.20 100 1000 0.7608081 0.1151515 0.1123232 0.08444444
100*0.40 100 1915 0.6036364 0.2181818 0.109899 0.04848485
100*0.50 100 2493 0.909899 0.1757576 0.05818182 0.03838384
100*0.60 100 2953 0.8836364 0.1232323 0.1050505 0.04646465
100*0.75 100 3711 0.9482828 0.08686869 0.2044444 0.05818182
500*0.20 500 24895 0.3073828 0.1246012 0.08301403 0.07852505
500*0.40 500 50051 0.6803848 0.0816513 0.05749098 0.03743487
500*0.50 500 62589 0.7738036 0.09125451 0.06888978 0.061499
500*0.60 500 75030 0.8132104 0.08211623 0.1271343 0.06401603
500*0.75 500 93431 0.888994 0.1099319 0.05590381 0.08327054
2000*0.20 2000 400763 0.2335968 0.01392796 0.02581391 0.02157079
2000*0.40 2000 799134 0.569958 0.01857629 0.02732466 0.009121561
2000*0.50 2000 1000139 0.7715238 0.04033817 0.03755378 0.02983792
2000*0.60 2000 1197775 0.843964 0.0218089 0.02928764 0.01924762
3000*0.20 3000 899687 0.2080182 0.01102412 0.01743603 0.0282383
4000*0.20 4000 1600045 0.1889085 0.00561665 0.01640535 0.009877969
5000*0.20 5000 2497811 0.1780263 0.00377707 0.01896523 -0.01223461
6000*0.20 6000 3603003 0.1699664 0.01321642 0.007047841 0.01228538
8000*0.20 8000 6402266 0.1684382 0.01555576 -0.00764739 -0.00515101
10000*0.20 10000 9997928 0.1267672 0.00249076 0.01327261 0.01341162



Sigma J Eng Nat Sci, Vol. 43, No. 4, pp. 1339−1354, August, 2025 1347

In the test conducted on this graph, the τ value between 
MCA and PageRank was found to be 0.652. The values 
with other methods were 0.245 with Closeness, 0.317 with 
Betweenness, and -0.031 with Eigenvector. These values 
indicate a strong positive relationship between MCA and 
PageRank for this graph. In other words, there is a signif-
icant similarity in the effectiveness rankings of the verti-
ces. Although there is also a positive relationship with 
Closeness and Betweenness methods, it is weaker com-
pared to PageRank. The result of the Eigenvector algorithm 
is negative and very close to 0. This indicates a weak neg-
ative relationship between MCA and the Eigenvector algo-
rithm. In other words, a node that is effective for MCA is 
seen as ineffective according to the Eigenvector algorithm. 

For the larger and denser random graph with the 
parameter 500*0.75, which consists of 500 vertices and 
93,431 edges, the Kendall τ values for MC were found to 
be 0.888 with PageRank, 0.109 with Closeness, 0.055 with 
Betweenness, and 0.08327054 with Eigenvector. When 
examining these values, it is evident that MC has a strong 
positive relationship with PageRank and a weak positive 
relationship with the other methods. Overall, the table 

shows that there are strong correlations between MC and 
PageRank algorithm results for all graphs. As the density of 
the graphs increases, the similarity between the results of MC 
and PageRank algorithms generally increases. Based on this 
inference, applying the MC algorithm for problems solved 
with the PageRank algorithm in high-density graphs will be 
a significant alternative. Although Closeness has a weaker 
relationship compared to PageRank, it is observed that the 
MC Kendall value increases as density increases. This trend 
is not as evident for the other methods. According to the 
table results, Eigenvector and Betweenness methods have 
a weak positive or negative relationship with MC. In light 
of these results, the MC method is also applicable to many 
real-world problems modeled with high-density graphs and 
solved using PageRank.

To determine the similarities of MC with different graph 
types, Kendall τ scores were calculated for 25 different types 
of graphs under the categories of social, benchmark, bipar-
tite, and lattice. When examining the Kendall τ scores spec-
ified in Table 2, it is observed that MC generally has a strong 
or moderate positive relationship with social, bipartite, and 
lattice graphs. For DIMACS benchmark graphs, however, it 

Table 2. Kendall ranking scores in specific graphs

M
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Graphs V E Pagerank Closeness Betweenness Eigenvector

So
ci

al

Zachary Kareta 34 78 0.422459 0.3939394 -0.1550802 0.00178253
Dolphin 62 159 0.230037 -0.098889 0.001586462 -0.0163934
Zebra 27 111 0.475783 -0.0370370 0.3048433 0.4301994
Complex 70 133 0.180124 -0.007039 -0.00207039 -0.0633540
Tribes 16 58 0.466666 0.3 0.3 0.25

D
IM

A
C

S

johnson8.2.4 28 210 -0.1428571 -0.1269841 0.4814815 0.7407407
MANN.a9 45 918 0.5171717 0.0686868 -0.1838384 -0.1919192
hamming6.2 64 1824 0.0843254 0.0317460 0.1309524 0.8769841
hamming6.4 64 704 -0.3392857 0.6021825 0.2748016 0.203373
johnson8.4.4 70 1855 -0.0973084 -0.0095238 0.2778468 0.8890269
johnson16.2.4 120 5460 0.2252101 0.0117647 0.1784314 -0.2703081
C125.9 125 6963 -0.0601290 -0.0056774 -0.09083871 -0.0345806
keller4 171 9435 0.0355693 0.0307533 -0.0897832 0.03446852
c.fat200.1 200 1534 0.0893467 0.141407 0.139598 -0.0036180
brock200.1 200 14834 0.0990954 -0.0353768 -0.08361809 -0.0730653

Bi
pa

rt
ite

 &
 L

at
tic

e

Hypercube(Q6) 64 192 0.0605158 1 0.09920635 0.2599206
Grid(9*9) 81 144 0.0617284 0.308642 0.06666667 0.01049383
Knight(5*5) 25 48 0.3733333 1 -0.1133333 0.3133333
King(4*5) 20 55 0.0736842 0.3894737 0.3578947 0.4315789
Triangular(10) 55 135 0.3185185 0.0585858 0.1973064 -0.0505050
Bethe Lattice 190 189 0.924812 0.7540518 0.7540518 0.467892
Banana Tree(4*4) 17 16 1 0.7058824 0.7058824 0.25
Folkman 20 40 0.1368421 0.4210526 1 0.1368421
Hoffman 16 32 0.8833333 1 0.1 -0.1
Horton 96 144 0.3289474 -0.1179825 -0.07105263 0.1574561
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has weak positive or negative relationships. With Closeness 
and Betweenness methods, there is a largely strong positive 
relationship in bipartite and lattice graphs, whereas it is not 
possible to generalize for social and DIMACS graphs. As 
for the Eigenvector centrality method, it acts independently 
across all graph types and does not form a strong relation-
ship with MC except for a few graphs.

When the table is examined overall, it is observed 
that the MC and PageRank algorithms generally produce 
similar results in high-density graphs. The Closeness and 
Betweenness methods produce similar results in certain 
graph types such as bipartite and lattice graphs, while they 
produce different results independent of MC in random 
and benchmark graphs. The Eigenvector method, on the 
other hand, has produced results that are distant from and 
dissimilar to MC in almost all types of graphs tested. In 
other words, regardless of the graph type, size, and density, 
the Eigenvector centrality method does not produce similar 
results to the Malatya centrality. In fact, in some graphs, it 
has produced solutions that are opposite to those of MC.

In Figure 2, to enhance the comprehensibility of the pre-
sented study, centrality methods have been applied to three 
different graphs, and the results are visually depicted. The 
size of the vertices in the visuals indicates the high central-
ity value of the respective node. For example, in the Lattice-
Grid graph consisting of 24 vertices and 46 edges, vertices 
6, 7, 18, and 19 are the most influential according to the 
centrality values, while they are less influential according to 

the Closeness centrality measure. This distinction is clearly 
highlighted in the visuals.

In the Bipartite-Knight graph, consisting of 16 ver-
tices and 24 edges, the Kendall correlation ranking score 
between the MC and Betweenness methods was found to 
be 1, meaning that the ranking results of these two meth-
ods are exactly the same. For this graph, MC establishes 
a strong positive relationship with the Closeness method, 
with a value of 0.66, while it forms a weak negative rela-
tionship with the results of the Eigenvector and PageRank 
algorithms.

In this section, methods are further analyzed graphically 
according to the Kendall score values based on graph densi-
ties. This approach provides more detailed analysis results 
regarding the variation of Kendall scores of the MCA in 
relation to density. In Table 3, the analysis process is con-
ducted on graphs generated by the Erdos-Renyi model con-
sisting of 200 vertices and edges of varying densities. An 
examination of the results in Table 3 reveals a direct cor-
relation between the MCA and Pagerank algorithms. As 
the graph densities increase, the Kendall score values also 
rise, indicating a high similarity in the ranking outcomes of 
MCA and Pagerank in densely connected graphs. In con-
trast, an analysis of the results for other centrality methods, 
such as Closeness, Betweenness, and Eigenvector, shows 
that the Kendall score values are not dependent on graph 
density.
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Figure 3. Kendall (τ) score of centrality methods and visually dominant values of vertices.
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In Figure 3, the graph of Kendall scores based on the 
graph densities provided in Table 3 is presented. Upon 
examining the linear graph, it is observed that as density 
increases, the Kendall rank correlation coefficient between 
the MC and PageRank algorithms generally increases. 
Conversely, the results of the Closeness, Betweenness, 
and Eigenvector algorithms appear to be independent of 

the graph densities. The analysis results highlight that in 
high-density graphs, the MC results are significantly simi-
lar to those of the PageRank algorithm.

The Figure 4 included in the analysis in Table 4 are derived 
from the network repository [41], a source indexed in the Data 
Citation Index. Examples were selected under various catego-
ries to enrich the types of graphs used in the analysis.

Table 3. Kendall score based on graph density

M
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Approximate Density V E Pagerank Closeness Betweenness Eigenvector
5% 200 987 0.0747738 -0.001708543 -0.001306533 0.04
10% 200 1945 0.1438191 0.05105528 0.0198995 0.004321608
15% 200 3023 0.3251256 0.07507538 0.1239196 0.0840201
20% 200 4078 0.3926633 0.09145729 0.1110553 0.09417085
25% 200 4917 0.5588945 0.06472362 0.06361809 0.001708543
30% 200 5891 0.4821106 0.06060302 0.09055276 0.009547739
35% 200 6989 0.7557789 0.1779899 0.1476382 0.1542714
40% 200 8034 0.7464322 0.2282412 0.1678392 -0.02301508
45% 200 8879 0.7460302 0.1115578 0.05829146 0.06452261
50% 200 9894 0.8540704 0.2091457 0.04502513 0.02090452
55% 200 10842 0.7654271 0.1705528 0.06321608 0.03125628
60% 200 11814 0.798191 0.08361809 0.06 0.003517588
65% 200 12995 0.8311558 0.2661307 0.1302513 0.06432161
70% 200 14011 0.8029146 0.08753769 0.05788945 0.1732663
75% 200 15055 0.8685427 0.1071357 0.1055276 0.08361809
80% 200 15888 0.9177889 0.1461307 0.007437186 0.01427136
85% 200 16956 0.8454271 0.01296482 0.004522613 0.04944724
90% 200 17905 0.8770854 0.1251256 0.07708543 0.201206
95% 200 18896 0.9446231 0.05125628 0.07698492 0.1031156
100% 200 19900 1 1 1 0.5739698

Figure 4. Kendall score based on graph density.
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Wilcoxon Rank Sum and Welch Two Sample T-Test
In this section, Wilcoxon Rank Sum and Welch Two 

Sample t-test analyses were conducted to compare the 
MCA with the PageRank, Closeness, Betweenness, and 
Eigenvector centrality methods. Through these tests, dif-
ferences between the MCA and other methods were iden-
tified. For the testing process, the results of all centrality 
methods were normalized between 0 and 1 to eliminate the 
large differences in dominance values produced by the var-
ious centrality methods. The tests were conducted on the 

Zachary Karate Club, Dolphin, Zebra, Triangular(10), and 
MANN-a9 graphs previously chosen in earlier sections.

Examining the test results on the Zachary Karate Club 
graph in Table 5, the PageRank method yielded a W value 
of 192, a P value of 2.248e-06, an effect size of 0.574, and 
a magnitude classified as large. These results indicate a 
statistically significant difference between the MCA and 
PageRank. The P value is very low, and the effect size is 
classified as large, meaning the MCA demonstrates signifi-
cantly different performance compared to PageRank.

Table 5. Wilcoxon rank sum test results

Wilcoxon rank sum test

M
al

at
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ity

Graphs Centrality Metric W P Effsize Magnitude

Zachary Kareta

Pagerank 192 2.248e-06 0.574 large
Closeness 113 1.186e-08 0.692 large
Betweenness 680.5 0.2092 0.153 small
Eigenvector 143 9.78e-08 0.647 large

Dolphin

Pagerank 1001 4.22e-06 0.413 moderate
Closeness 476 5.035e-13 0.649 large
Betweenness 2153 0.2491 0.104 small
Eigenvector 1575 0.08333 0.156 small

Zebra

Pagerank 184 0.001825 0.425 moderate
Closeness 581.5 0.0001722 0.512 large
Betweenness 590 8.916e-05 0.534 large
Eigenvector 307 0.3236 0.136 small

Triangular(10)

Pagerank 1305 0.214 0.119 small
Closeness 1758 0.1412 0.141 small
Betweenness 1974 0.00565 0.264 small
Eigenvector 1983 0.004788 0.269 small

MANN-a9

Pagerank 1548 5.236e-06 0.481 moderate
Closeness 1012.5 1 0 small
Betweenness 1552.5 4.077e-06 0.486 moderate
Eigenvector 1606.5 6.411e-07 0.525 large

Table 4. Wilcoxon rank sum test results
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Graphs V E Pagerank Closeness Betweenness Eigenvector

Sp
ec

ia
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et
w

or
ks

cat-mixed-species-
brain-1

65 1139 0.2846154 -0.00384615 -0.01923077 -0.05192308

ENZYMES-g118 95 242 0.2451754 0.06929825 0.1377193 0.1153509
cit-DBLP 12591 49743 0.1403004 0.09917071 0.2332719 0.1017
email-univ 1133 5451 0.2022181 0.2647463 0.2083309 0.2543733
130bit 584 6120 0.4284405 0.2269908 0.4136023 0.2369417
infect-dublin 410 2765 0.1066372 -0.03440873 0.004949609 0.008145984
soc-wiki-Vote 889 2914 -0.0210885 -0.01905167 0.02636326 -0.02600857
socfb-Reed98 962 18812 0.0138434 -0.00137806 -0.04876461 0.006055283
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For the Closeness algorithm, a W value of 113, a P 
value of 1.186e-08, an effect size of 0.692, and a magnitude 
classified as large were obtained. The difference between 
Closeness and the MCA is highly significant. The very low 
P value indicates a strong difference, and the high effect size 
suggests that the MCA may have a distinct advantage over 
Closeness.

When analyzing the Betweenness algorithm, the P value 
is above 0.05, and the effect size is small. This suggests that 
the two algorithms yield similar results or that the difference 
is not statistically significant. In the case of the Eigenvector 
algorithm, the P value is very low, and the effect size is large, 
indicating a significant difference between the results of the 
MCA and Eigenvector algorithms.

Table 6. Welch two sample t-test results

Welch Two Sample t-test

M
al

at
ya

 C
en

tr
al

ity

Graphs and MC 
mean value

Centrality Alg. 
and mean value

t df p confidence 
interval

Effsize Magnitude

Zachary Kareta 
(0.09745462)

Pagerank 
(0.21725293)

-2.0981 65.774 0.03974 -0.23380802 
-0.00578860

-0.509 moderate

Closeness 
(0.49914053)

-6.8653 65.301 2.94e-09 -0.5185266
-0.2848452

-1.67 large

Betweenness 
(0.10055460)

-0.05766 65.746 0.9542 -0.1104324 
0.1042324

-0.014 negligible

Eigenvector (mean) -4.2803 64.973 6.273e-05 -0.3719367
-0.1352753

-1.04 large

Dolphin 
(0.1880573)

Pagerank 
(0.4135502)

-4.9302 113.8 2.821e-06 -0.3160999
-0.1348861

-0.885 large

Closeness 
(0.5382324)

-8.9625 122 4.489e-15 -0.4275207
-0.2728295

-1.61 large

Betweenness 
(0.1582461)

0.78424 121.58 0.4344 -0.04544128 
0.10506361

0.141 negligible

Eigenvector 
(0.2862439)

-2.1599 114.3 0.03287 -0.18823722 
-0.00813604

-0.388 small

Zebra
(0.3534010)

Pagerank 
(0.5585025)

-2.8178 51.881 0.006827 -0.35117124 
-0.05903182

-0.767 moderate

Closeness 
(0.1692843)

2.1405 48.95 0.03732 0.0112546 
0.3569788

0.583 moderate

Betweenness 
(0.1166862)

3.3768 51.138 0.001408 0.09599118 
0.37743832

0.919 large

Eigenvector 
(0.5191267)

-1.6116 42.428 0.1145 -0.37318925 
0.04173781

-0.439 small

Triangular (10)
(0.5844156)

Pagerank 
(0.6251156)

-0.81444 107.41 0.4172 -0.13976211 
0.05836199

-0.155 negligible

Closeness 
(0.5182810)

1.2967 107.89 0.1975 -0.03496449 
0.16723370

0.247 small

Betweenness 
(0.4763705)

2.0145 107.51 0.04646 0.00172667 
0.21436348

0.384 small

Eigenvector 
(0.4413064)

2.714 107.87 0.00774 0.03858852 
0.24762982

0.518 moderate

MANN-a9
(0.8)

Pagerank (0.8) 1.5622e-13 88 1 -0.1694766 
0.1694766

3.29e-14 negligible

Closeness (0.8) 0 88 1 -0.1694766 
0.1694766

0 negligible

Betweenness 
(mean)

3.9056e-14 88 1 -0.1694766 
0.1694766

8.23e-15 negligible

Eigenvector (mean) 1.8096e-13 88 1 -0.1694766 
0.1694766

3.81e-14 negligible



Sigma J Eng Nat Sci, Vol. 43, No. 4, pp. 1339−1354, August, 20251352

In Table 6, Welch Two Sample t-tests were conducted 
to compare the MCA with other centrality metrics. The 
tests were conducted on the same graphs listed in Table 
5, enabling a more thorough analysis of the comparison 
results. The results under different categories are shown 
in Table 6. The mean value represents the average result 
for each centrality algorithm, and the mean value for 
the MCA is included in the column corresponding to 
each graph name. For example, for the Zachary Karate 
Club graph, the mean value of MC was determined to be 
0.09745462.

The t-value is the statistical outcome of the Welch Two 
Sample t-test, indicating the magnitude and direction of the 
difference between the MCA and the specified centrality 
metric. A negative t-value shows that the MCA has a lower 
value than the centrality metric in question. The degrees of 
freedom (df) parameter affects the reliability of the test; a 
higher degree of freedom generally indicates more observa-
tions and a stronger test. The p-value represents the signif-
icance level of the test, and values below 0.05 are generally 
considered statistically significant, indicating a meaningful 
difference between the MCA and the compared centrality 
metric. Low p-values suggest a very low probability that the 
observed differences are due to chance.

The confidence interval represents the test result’s con-
fidence range, showing where the mean difference between 
the two algorithms will lie. For instance, a confidence inter-
val between -0.23380802 and -0.00578860 indicates that the 
mean difference between these two algorithms lies within 
this range with 95% confidence. The effect size shows the 
magnitude of the difference between the two centrality met-
rics, reflecting how much the MCA differs from the other 
metric. A high effect size indicates a meaningful perfor-
mance difference between the two algorithms. The negative 
sign in this column indicates that the compared centrality 
metric has a higher value than the MCA. Magnitude clas-
sifies the effect size as follows: Negligible (no significant 
effect), Moderate (moderate effect), and Large (strong 
effect, indicating a notable difference).

Upon examining the test results for the Zachary Karate 
Club graph in Table 6, PageRank has a mean value of 
0.21725293, a t-value of -2.0981, a df of 65.774, a p-value 
of 0.03974, a confidence interval between -0.23380802 and 
-0.00578860, an effect size of -0.509, and a magnitude of 
moderate. These findings indicate a statistically significant 
difference between PageRank and the MCA. The effect size 
is moderate, showing a statistically significant performance 
difference, though not extremely high.

The results for the Closeness algorithm, with a mean 
value of 0.49914053, show a highly significant and large 
effect difference with the MCA, suggesting that the MCA 
exhibits a distinctly different performance compared to 
Closeness. For the other centrality metrics, there is no sig-
nificant difference between Betweenness and the MCA, 
indicating no notable performance difference between 
the two algorithms. However, a significant difference was 

found between Eigenvector and the MCA. The high effect 
size here demonstrates a distinct performance difference 
between these two algorithms.

CONCLUSION

The MCA is an effective centrality algorithm that can 
be used in various fields such as graph theory and real-life 
problems. This algorithm calculates the centrality values of 
any node in the graph using the degree of the node and the 
degrees of its neighboring nodes. The Kendall tau test has 
shown for which types and densities of graphs the MCA 
produces similar results to other centrality metrics. Using 
this test, experiments were conducted on different types 
of graphs, including random graphs, benchmark graphs, 
social network graphs, bipartite graphs, and lattice graphs. 

The tests and resulting solution sets suggest that MCA’s 
performance on benchmark graphs is largely independent 
of other centrality measures, showing little to no significant 
similarity. However, when it comes to bipartite and lattice 
graphs, the results are mixed—some graphs exhibit strong 
similarities, while others show weaker correlations. In the 
case of social networks, a generally positive relationship is 
observed. Notably, in high-density random graphs, MCA 
demonstrates a strong positive correlation with PageRank. 
For other metrics, the relationships are generally moderate 
or weak.

The similarity of results produced by these well-known 
centrality measures, developed for different purposes, with 
the MCA in various graph types demonstrates the effective-
ness of the MCA. Similar and effective solution sets suggest 
that the proposed method can provide solutions to graph 
theory and real-life problems addressed by centrality mea-
sures in the literature. For example, the MCA can be applied 
as an alternative to PageRank applications on graphs like 
Hoffman and Bethe lattices. The MCA has low notation 
in both spatial and temporal complexity. Therefore, it can 
provide computational and temporal advantages over other 
metrics in many large and complex graph types. The tests 
and analyses not only demonstrate the success of the pro-
posed algorithm but also indicate the potential applicability 
of the MCA in various fields and problems.

MCA’s ability to produce effective and robust results 
indicates its potential to yield impactful solutions for fun-
damental problems in graph theory and their application 
domains. Specifically, the algorithm provides efficient and 
reliable solutions for NP-hard problems, including the 
independent set problem, vertex cover problem, dominat-
ing set problem, and graph coloring problem. Additionally, 
its applicability extends to various domains, such as text 
summarization, social network analysis, and link predic-
tion, where these graph problems are commonly employed, 
demonstrating its versatility and effectiveness across diverse 
application areas.
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