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ABSTRACT

Scene Recognition is deeply governed by the semantic context in the scene images. The chal-
lenge introduced by diversity in intra-class spatial layouts, and similar object’s existence in 
inter-classes imposes great difficulties in adapting image characteristics. Today existing ap-
proaches either incorporate either object-based features, image-based features, and handcraft-
ed features or a combination of two feature extraction strategies. Therefore, existing models 
are unable to represent the spatial context, and overlook the distinctiveness of coexisting ob-
jects across different scenes. These issues have degraded the performance of scene recognition 
systems even over a single dataset. The work presented in this article uses distinct features 
obtained using the scene objects (object-based), complete scene images (spatial layout-based), 
and eight handcrafted features. A fully connected convolutional neural network (CNN) is 
trained on cross-domain dataset images obtained from three distinct datasets using the com-
bined features. Experimental evaluation of the framework over the test samples showed that 
the transfer learned-based CNN model was able to obtain a mean classification accuracy of 
95.84% (indoor and outdoor scenes) outperforming other better approaches. The sample 
groups for training, validation, and tests were obtained randomly from the self-generated 
dataset.
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INTRODUCTION

Humans are gifted with the best sense for quick and 
easy categorization of visual sceneries [1-2]. Within a frac-
tion of a second, a human eye in coordination with his 
brain can classify indoor and outdoor (I&O) scenes. Even 
humans are immediately responsive to basic-level categori-
zation more specifically, they can distinguish a hall, a bed-
room, a bathroom, shops, entrance, etc. [3-4]. However, the 

relevant details in the scene are not yet understood despite 
the strong categorization of humans. Literature shows that 
most of the theories belonging to the capability of humans 
are either object-based or scene-based [5]. Object-centered 
or object-based scene categorization primarily recognizes 
a single prominent object significant to the scene category 
[6-7]. Scene-centered or scene-based categorization on the 
other hand focuses on global or overall scene properties 
(such as information about spatial placements exploiting 
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object identities [8-9]). In reality, scene categorization 
is understood as either type or both and several hybrid 
approaches [10-12]. 

Outdoor scenes are responded to by selective neurons 
[13-14] of the human brain however, their sufficiency in 
categorization is ambiguous. Computationally useful, out-
door scenes depends on global properties that only account 
scenes with changing spatial layouts. Nevertheless, indoor 
scenes have identical spatial layouts and mostly differ in 
their class-defining objects. Scene-recognizing frameworks 
based on global properties within the image are not effi-
cient since their performance drops significantly when they 
are subjected to indoor scenes. Secondly, when human sub-
jects are stimulated using the global scene properties for a 
free response [15], they are unable to recognize and thus 
show poor performance. Estimates rated by humans based 
on spatial layouts are even poor performers [4]. Therefore, 
scene global properties independently are insufficient 
enough to describe the scenes effortlessly. 

Human scene distinguishing capability is driven by 
object information and suggested as the most plausible 
candidate [6-7]. Humans are familiar with various kinds 
of objects in everyday life due to their frequent ceaseless 
interactions. They are capable of identifying the scene cat-
egory merely by watching a single object. Thus, we can 
make assumptions based on such key objects when they are 
perceived at first glance. Different theories have supported 
that object details form the central part of scene categoriza-
tion. However, in the absence of objects or the presence of 
semantically inconsistent objects, humans are worse at cat-
egorizing scenes [10,11,16,17]. Neural findings show that 
brain regions identifying the scenes are activated by a single 
specific object [18] and modulated by the object’s properties 
[19]. Noticeable improvement in scene categorization per-
formance can be achieved by employing object detectors in 
the frameworks [20,21]. Friedman [7] and Biederman [6] 
validated that certain objects are sufficient to diagnose the 
type of scenes and act as a tool to instantiate the reference, 
but they are not necessary. 

The authors in [22] addressed inter-class similarity and 
variability in the case of indoor environments. They pro-
posed a dual-stream model that can efficiently extract over-
all contextual details and local information for improved 
scene recognition. The former details capture high-quality 
information and correlations across the scenes, while fine-
grained were part of the latter local features. A convolutional 
network was employed to uplift the local features. Their 
model effectively classified scenes that integrate similarly 
matching global contexts with distinct localized objects. 
They used the SRIN dataset and augmented the 1600x1200 
resolution images to prevent overfitting to distinguish five 
indoor classes that included living rooms, bathrooms, bed-
rooms, dining rooms, and kitchens. They obtained 100% 
accuracy in the case of three classes, while 91.7% and 93.8% 
for the kitchens and living rooms classes, respectively. 

Ningbo Guo et al. [23] worked on remote sensing images 
and classified seven categories of outdoor images. Their 
dual XE-Net model with multi-level features was designed 
to discriminate land use and land cover (LULC) images. 
The Xception and Efficient-V2 networks were employed 
to extract high-quality and low-level features, respectively 
using a transfer learning approach. The low, medium, and 
high-level features were fused sequentially and performed 
well on seven different datasets. 

The indoor-outdoor scene images show significant vari-
ations concerning color, textures, spectrum information, 
objects, scales, etc. Due to complex spatial arrangements, 
extracting semantic features requires effective computer 
vision (CV) methods. They also exhibit low inter-class 
variance, which requires good calibration CV techniques. 
On the other hand, high intra-class variation requires CV 
approaches that can extract similar pattern features regard-
less of their variance. The presence of varying illuminations 
in the indoor-outdoor scenes necessitates robust fea-
ture-learning techniques to mitigate the effect. The objec-
tive of the proposed multi-feature framework using CNN 
is to extract local, global, and object-level features from the 
scene images to improve classification accuracy. 

The article contributes to the following:
1. The proposed scene classification framework obtains 

quality features using object-level, image-level, and sta-
tistical handcrafted features. Objects in the scene being 
the crucial attributes, they are recognized using the 
YOLOv5 network and represented by fixed dimension 
quality features extracted using VGG19. 

2. Diverse conventional features using various quality 
descriptors are added to enhance the scene represen-
tation quality which includes fine and local attributes 
from the scenes. 

3. Color-based blind features using VGG19 are added to 
ensure chroma variations relative to foreground and 
objects. 

4. Experimental investigation on scene generated dataset 
reaveled that a finely tuned LSTM network showed bet-
ter performance on 15% test images when it was trained 
and validated using 75%:10% sample features. 

Related Work
The study of several types of research in scene rec-

ognition prominently followed three sequential steps in 
their design. It includes feature learning from distinct 
scales and positions of the scene objects, obtaining fea-
ture descriptions through pooling, and training a classi-
fier. Conventional strategies focus on low-level attributes 
which include color, edge, and texture patterns [22], and 
use handcrafted techniques such as SIFT [23], GIST [24], 
HOG [25], and SURF [26], and are enhanced by adding a 
Bag of words [27]. The middle phase used pooling tech-
niques to aggregate the descriptors using Fisher vectors 
[28] and Locally Aggregated Descriptors [29]. Whereas the 
last stage of classification involved popular and widely used 
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Support vector machines, custom neural networks, and the 
K-nearest neighbor. The tedious job of extracting several 
handcrafted features and then eliminating the redundant 
or non-significant ones and selecting the optimum features 
is nowadays exploited by blind features. Deep learning 
[30] has proven to be a better solution in many computer 
vision applications. DL is capable of learning raw images 
and extracting the features to represent the image through 
high-level details. 

As a part of a social cause, the work carried out by 
authors in [31] developed a framework that could help 
humans with visual impairment to navigate efficiently in 
their residence and live a normal life. They used the NYU 
dataset [32] to recognize the indoor scenes for the eval-
uation using a transfer learning approach through the 
DenseNet201 model, accompanied by a deep Liquid State 
Machine model for extracting features and classification, 
respectively. Subjects affected by visual deformities were 
able to use the system due to the performance improvement 
in recognition and understanding of indoor scenes through 
fuzzy color skating techniques, segmentation, and an adap-
tive World Cup optimization algorithm. They obtained a 
classification accuracy (20 classes) of 96% over some spe-
cific indoor scene images from the dataset. The work was 
limited to some specific indoor scenes only and thus lacked 
generalization ability. 

Authors in [33] worked to enhance the capability of 
indoor mobile robots to classify indoor scenes, limited to 
rooms and corridors, to different rooms. Their model was 
based on a multi-scale CNN combined with LSTM net-
works and whale optimization. The ablation experiment 
was carried out on data collected through the 2D LiDAR. 
The first two combined networks were utilized for scene 
classification, and the optimization algorithm governed 
the fine-tuning of network parameters and performance 
improvement of their model. A classification accuracy of 
approximately 99% was obtained on the real data, while 
94% on the publicly available FR079 dataset. The FR079 
dataset was limited to 11 rooms and a corridor; therefore, 
the authors added 3-CNN layers to their model. Their 
work offered low storage and clean data, and suffered mis-
classification for similar objects, especially in the office 
environment. 

Indoor scene recognition to assist MAV navigation 
was proposed in [34]. They compared the performance of 
two commonly used classifiers on three classes, including 
the corridor, room, and staircase. Handcrafted features, 
which included the GIST, enhanced GIST, and HODMG 
(Histogram of Directional Morphological Gradient) were 
extracted from the dataset images on one hand, and van-
ishing point detection based on Canny edges and lines on 
the other hand. They found that SVM was superior in rec-
ognizing the three entities with an accuracy of 99.33% over 
K-NN. 

An object feature-based scene classification model 
using computer vision and natural language processing was 

introduced in [35]. The authors at the first stage detected 
the objects from the scene image and then extracted object 
features for classification. For this, their model was built 
using the YOLOv5 network to recognize objects in the scene 
and the TF-IDF approach for classification. They trained 
the YOLO network using Open Images V6 [36], which rea-
sonably included almost covered indoor objects for 90 and 
155 classes. They chose 8 indoor rooms as classes to classify 
the images from the Places365 dataset. The proposed scene 
recognition framework was simple and cost-effective, while 
it suffered from a lack of semantic relationships among the 
scene objects and an absence of room composition learning. 

Experiments carried out on NYU V2 and SUN RGB-D 
dataset images obtained efficient and accurate results [37]. 
The authors presented a feature-based, lightweight model 
for indoor scene parsing. They used the MobileNetV2 
network to extract features and ensured that it formed the 
backbone to uplift the depth information from the color 
images. Features were concatenated from different layers 
and performed feature-level adaptive fusion to classify at 
the pixel level. Many other state-of-the-art methods found 
in the literature have efficiently used large datasets about 
scene classification with Deep Learning due to its popu-
larity and the momentum it has gained in several areas of 
computer vision. DenseNet [38], SqueezeNet [39], ResNet 
[40], VGG16 [41], GoogleNet [42], etc. are some of the 
commonly used networks that have been successfully 
incorporated for indoor and outdoor scene classification. 
Large datasets prominently include MIT [43], NYU [44], 
Places365 [45], Scene [46], SUN [47], etc. Large Nets and 
large datasets are now part of the research of interest due 
to the availability of powerful processors and improved 
deep-learning networks [48,49]. 

Two well-known datasets (SUN RGB-D & NYU Depth 
V2) for indoor scenes were part of the research carried 
out by Ricardo Pereira et al. [50]. They proposed a novel 
segmentation-based method to extract meaningful seg-
mentation-based semantic features (SSFs). The 2D-spatial 
distribution obtained using the segmentation was encoded 
and bypassed the CNN-relied image-level features obtained 
from the color image. The Image-Level Object-based 
Feature aggregation Approach exploited the normal CNN 
outputs. They claimed that their model achieved the high-
est classification accuracy of 62.3% and 77.8% over the two 
datasets. However, they failed to encompass correlated fea-
tures and hand over semantic details regarding within-scene 
objects with annotations that exist in the scene images. 

Authors in [51] worked to mitigate the failure of 
ImageNet dataset-based deep-learned networks. They 
introduced a Self-Supervised deep-learning model and 
trained it from scratch using unlabelled scene images in the 
first pretext stage. The model learned labeled scene images 
during the later or downstream stage. Their EfficientNet-B3 
CNN model, which incorporated the online and target net-
works, acted as the backbone to encode scene features using 
a cross-view contrastive learning approach. Input data was 
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augmented using geometrical transformation and subjected 
to the dual network, and the cross–view distance between 
both networks was optimized for minimum. During the 
first stage, they used low-resolution images (large batch 
size) while a smaller batch size (including all types of res-
olution images) was used at the later stage by eliminating 
the target network. They obtained about 87% and 88% 
accuracy over AID and NWPU-RESISC45 datasets, respec-
tively, for 20 classes.

MATERIALS AND METHODS

In the proposed indoor-outdoor scene classification 
framework, features from detected objects, global attributes, 
and diverse conventional features are combined to improve 
detection accuracy. Objects in the scenes are detected using 
the YOLOv5m network. However, due to the objects’ dif-
ferent sizes, the feature vectors’ length was compromised. 
Extensive experiments over several images in the dataset 
showed that a dimension of 32x32 was able to accommo-
date the smallest detected object and retain the quality of 
the largest object in any image. Therefore, the size of the 
detected object by the YOLOV5m model was reduced to 
a dimension of 32x32. Blind features were extracted using 
a VGG19 pre-trained network after removing its top layer. 
All the objects detected by the YOLOv5m network from an 
image were provided as input to the VGG19 network for 
feature extraction. The number of objects recognized and 
marked by the bounding box depended on the scene input. 
E.g., the length of the feature vector that would result from 
a scene image consisting of 5 objects would be 5x512, and 
for 10 objects, 10x512. Therefore, we added the features 
corresponding to all objects to make a uniform output of 
1x512 dimensions. Eventually, the resultant vector ele-
ments reflected a higher magnitude for more objects than a 
scene consisting of a lower number of objects. The value of 

elements is a function of the distinctiveness of the objects, 
whether they are related to indoor or outdoor scenes. The 
object-based feature extraction mechanism is depicted 
in Figure 1 by the first branch of the scene-recognizing 
framework. 

Global features were used to ensure the contribution 
of regions not belonging to the objects in the scene. Such 
regions carry useful information regarding the category 
of the scene and they explicitly conveys the overall scene 
contents. Therefore, information relating to the color depth 
was extracted using another VGG19 network separately as 
shown in Figure 1. A total of 512 feature elements were used 
to represent the complete image. Global-level information 
from scenes is important since there is a possibility that 
objects present may induce ambiguity. That is, a bicycle or 
a tea table may be present in either indoor (living room) or 
outdoor scenes (home garden). The overall details (other 
living room details or trees, sky, etc.) contributing to the 
features would then be useful for the classifier to distin-
guish the classes correctly. 

Traditional approaches as studied in the literature 
showed that even handcrafted features are effective and can 
be efficiently used for classifying scenes. Along with the 
object-level features and the global features, we extracted 
handcrafted features from grayscale input images. The 
original input images were reduced to 128x128 to reduce 
the computational complexity. This was done without los-
ing significant details of the image under consideration. 
Several quality features were added to the object-based fea-
ture and scene-based feature. This was to compensate for 
the loss due to the dimension reduction of the YOLOV5m 
detected objects in the object-based feature extraction pro-
cess. To uplift more fine details, 2310 elements using vari-
ous descriptors were added to the feature set. Table 1 shown 
below lists various descriptors used by the scene-recogniz-
ing framework.

Figure 1. The framework of the proposed scene recognition system.
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Features based on wavelets, matched filters, LBP, GLCM, 
and HOG form the feature set of handcrafted features. 

Edge-based features are obtained using a 3x3 kernel 
whose center element value=8 while the neighbors have 
value=-1. A 2D filter using the kernel was used over the 
128x128 dimension grayscale image. The coefficients of 
the filter were summed along both axis (axis=0 and axis=1) 
and concatenated to obtain a 128+128=256 element vector 
thus detailing the edge information from the input image. 
Another edge informative filter using the ‘Sobel’ operator 
was used with the value of sigma = [0.5, 1, 1.5, 2], length 
of the filter L = [ 9, 11, 13, 15] (length in Y-direction), and 
12 orientations from [0 to 165 at an offset of 15) to obtain 
32 elements in the features. Using two such edge operators, 
minimum loss due to edge miss was ensured. 

The last two components of the first-order wavelet 
decomposition are used to extract energy and magnitude 
using three Bior mother wavelets (3.1, 3.5, and 3.7), one 
Daubechies (db3), one symlet (sym3), and Haar. The abso-
lute and the square values of the vertical coefficients and 
the diagonal coefficients are summed up separately to mea-
sure the magnitude and energy of both components. These 
two measures provide information concentration in both 
directions. The effect due to the horizontal component was 
ignored since the measure was nearer to the vertical details. 
Using six mother wavelets with two measures resulted in 24 
values contributing to the feature set. Image-level informa-
tion, such as intensity disparities (contrast), overall energy, 
pixel consistencies (homogeneity), unlikeness, correlation, 
and uniformity (Angular second moment), is computed 
using the Gray Level Co-occurrence Matrix. These six 
image-level attributes were added to the feature set to boost 
the classifier’s performance. 

Textural aspects contained in the scene image were 
acquired using LBP. The textural information was obtained 

using a 3x3 kernel imposed over the image. The texture 
carrying values were added along rows (128) and columns 
(128) and concatenated to represent the textural aspect 
using 256 values. Another approach for uplifting more fine 
textures was also incorporated by representing the 3x3 win-
dow with a single clockwise pattern (read out pattern) using 
LBP. The texture pattern in 5x5 windows were then aver-
aged to reduce the feature dimension and represented by a 
26x26 array. The array was flattened into a 676 dimension 
vector to add local textural attributes. 

 A square window of 64 by 64 was used to extricate HOG 
features from the image. We used 9 orientation with Max-
normalzed details to obtain 256 elements in [0, 1] range. 
To avoid loss of details from the original grayscale image, 
mean values corresponding to 4x4 distinct cells from the 
source image were also made part of the feature set. Thus 
the mean values added another 36 element to the feature 
representation set. 

Therefore as Table 1 indicates, a feature vector of 
dimension 2310 using several handcrafted descriptor that 
was concatenated to other two features to form a vector of 
dimension 3334. Manual analysis showed that features from 
1296 to 1311 in the vector showed no variations and were 
eliminated. The remaining feature vector with 3318 length 
was normalized using the Max-Normalization technique. 

We attempted to train the network and found the 
problem of handling the zero entries in the feature set. 
The zero entries in the feature vector were filled by aver-
aging the known entries in each column. Further, to 
reduce the burden of the classifier network, four consec-
utive features along each column (image) were averaged 
to lower the dimension of the representative vector. The 
final feature vector presented to the network governing a 
single real or a fake image was 830. The real and the fake 
samples were labeled with ‘0’ and ‘1’ for authentic and fake 

Table 1. Various descriptors used for Handcrafted features with respective dimension

Descriptors Parameters Dimension
Matched Filter (Edge-Based) 3x3 Kernel 

(Neighbourhood value = -1 and center pixel = 8)
256

Matched Filter (Sobel-Based) Sigma = [0.5, 1, 1.5, 2]
L = [ 9, 11, 13, 15]
Orientation - 12

32

Wavelet Magnitude and Energy of last two components [bior-3.1, 3.5, and 3.7, 
Daubechies and symlet 3, and haar]

24

GLCM Parameters = 6 6
LBP Radius = 3 256
LBP Fine 3x3 patch

Averaging over 5x5 window
676

HOG 64x64 pixels per cell with 9 orientations 36
Original Image Mean over 4x4 patch 1024
Total Feature Vector Length 2310
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images. Thus, an input of 830 elements was presented to a 
fully connected network shown in Figure 2. The network 
comprised of a convolutional layer (CONV) followed 
by a BatchNormalization layer (BN), a LeakyRelu layer 
(ReLU), a MaxPooling layer (MPL), and a Dropout layer 
(Dl). The final layer (Dense layer) used to classify two 
classes was used with the ‘softmax’ transfer function. The 
model was compiled using the ‘RMSprop’ optimizer with 
the ‘SparseCategoricalCrossentropy’ function. Table 2 lists 
the network information used for training.

Out of 5081 images, the first randomly selected 15% 
(763 combined from both classes) samples were used 
as test samples over which the performance was evalu-
ated. Subsequently, 10% (432 samples from both classes) 
of random samples from the remaining were used for 

validation. The remaining samples (3886) after isolating 
test and validation were used for network training. The 
model was trained and tested 20 times by selecting ran-
dom samples from the feature set for cross-validation. 
The following Table 3 shows training, testing, and vali-
dation samples. 

RESULTS AND DISCUSSION

The proposed indoor-outdoor scene classification 
framework consists of three feature-based sub-frame-
works to extract image features and a fully connected 
network for classification. Each sub-frameworks uplift 
quality features concerning object-level, image-level, and 
fine plus coarse features to construct a robust representa-
tive vector of the input image. The final vector undergoes 
normalization and dimension reduction, which are pre-
sented to the properly tuned FC network. Experimental 
evaluation of the random isolated test samples shows that 
our framework achieved an average detection accuracy of 
95.84% over the unbalanced dataset for 20-fold cross-val-
idation. The dataset images are not pre-processed or sub-
jected to augmentation. 

We iterated the model for times. One of the training/
validation and loss reponses with respect to epochs (100) 
are shown in Figures 3 and 4. We cross-validataed the sam-
ples by selelcting training (75%), validation (10%) and test 
(15%) sets randomly from the available feature set. The 
classifier used RMSprop optimizer with softmax transfer 
function to classify the scene categories. The best perfor-
mance trained the network to reach 98.76% with a loss of 
0.04%. The test samples were calssified with an accuracy of 
95.84% even though the network was unable to score the 
100% mark during training. 

Figure 5 shows some examples of ambiguities for 
both classes. Both the classes have samples that cannot be 

Figure 3. Plot showing the network performance as a func-
tion of epochs.

Table 2. Parameters for the network

Parameter Value
Activation function for the layers ‘selu’
Samples used in a single batch 10
Maximum epoch 100
Learning Rate 0.01
Metric ‘accuracy’

Table 3. Randomized samples used for training, validation, 
and test

Sample Category Value
Train 3886
Validation 432
Test 763

Figure 2. Fully connected (FC) network used for classifica-
tion of ındoor/outdoor scenes.
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distinguished clearly even with naked eyes. The intra and 
inter-class similarity posses a vital challenge for a classifier. 
However, our proposed system worked better in distin-
guishing the representation accurately. Figure 6 represents 
the confusion matrix obtained over the dataset images. The 
indoor scenes were classified with lower accuracy (93.26%) 
than the outdoor scenes (98.42) due to object-only images 
as shown in Figure 5. 

Several studies have employed different advanced learn-
ing models to carry out scene classification. Many such 
research works have used different dataset images for the 
classification task. Therefore, our work findings regarding 
performance metrics may not be fair and impartial. Still, 
the anaylsis shown in Table 4 offers an insight into various 

scene classification approaches with their performance 
while the same is graphically depicted in Figure 7. 

The proposed framework outperforms other competing 
models except for the work introduced in [33] in which the 
author used the NYU depth dataset [34]. The self-generated 
dataset consists of diverse images from three datasets. The 
benchmark datasets used to generate our two-class scene 
dataset include CVPR09 datasets [45], Places365 [57], 
and UIUC Sports [58]. The motto behind the segregation 
of scene images from three distinct datasets was to inten-
tionally induce complexity in recognizing the scenes and 
to test the validity of representative features. A few ambig-
uous samples were added to the classes as shown in Figure 
7 to enhance the complexity further. Thus, the images from 
multiple datasets and ambiguous images creating a real-
world problem impose difficulty in categorizing scenes on 
the framework. Since, diverse features were extracted using 
various descriptors, the CNN classifier was able to perform 
better in such a complex environment. 

Figure 4. Plot showing network losses as a function of ep-
ochs.

(a) Samples from indoor images

(b) Samples from outdoor images

Figure 5. Ambiguous samples from indoor (a) and outdoor (a) classes.

Figure 6. Confusion Matrix for indoor/outdoor scene clas-
sification.



Sigma J Eng Nat Sci, Vol. 43, No. 4, pp. 1355−1365, August, 20251362

CONCLUSION

The scene recognition framework introduced in this 
work uses content-based, scene-based, and a variety of 
handcrafted features to distinguish indoor/outdoor scenes 
from cross-domain datasets. The dataset used for the 
evaluation uses scene images from three distinct publicly 
available datasets to increase the complexity. Experimental 
analysis revealed that our scene recognition model obtained 
an average detection accuracy of 95.84% with 20-fold val-
idation over 1000 epochs for each iteration. Thus, the pro-
posed framework possesses a generalization ability over the 
unbalanced two-class samples. Other pre-trained models 
with a transfer learning approach can be tested over the 
features. Also, the fully connected CNN at the final stage 
can be replaced by a pre-trained network. The object-based 
features obtained for small and large objects were resized to 
32x32 dimensions, which affects the quality of features, At 

the same time, the feature vector obtained for all the objects 
in the scene was summed up to obtain a single vector of 
dimension 512, which collectively represents all the objects 
in the image. Thus, larger objects eat up the contribution 
of smaller objects. Hence, a good approach is required that 
can add contributions made by smaller objects and larger 
objects by outputting a fixed dimension feature vector irre-
spective of the size of the objects and the number of objects 
in a given image. A single grayscale plane was considered 
for the handcrafted features. Using a suitable color space for 
the image would have improved the quality of the features. 
Even though the scene recognition framework introduced 
performed better in the complex scenario, the time required 
for training the network is somewhat large for 1000 epochs. 
The approach of sorting images into two classes was man-
ual, however, the validity of the sorted images with respect 
to the classes has no ground truth. Lastly, all three-stage 

Figure 7. Comparison of proposed CNN-based framework on % accuracy.

Table 4. Comparison with different baseline models

Reference Year Model % Accuracy
[33] 2023 Deep Liquid State Machine 96%
[35] 2024 Customized Network and Whale Optimization 94.35%
[37] 2022 Object detection based TF-IDF Approach 83.63%
[52] 2015 Probabilistic Approach 45.71%
[53] 2019 Deep Learning 71.44%
[50] 2023 Deep Learning 75.8%
[54] 2021 Feature fusion + Graphical CNN 75%
[55] 2020 Deep Learning 95.6%
[56] 2019 Multi-modal attentive pooling network 67.7%
Proposed Approach 2024 Diverse features + FC-CNN 95.84%
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feature extraction mechanisms can be put together, and a 
single network can be used to extract features and classify 
them as a future perspective. More images from different 
datasets can be added to the dataset or the existing data-
set images can be augmented using suitable geometrical 
transformations. The custom CNN network can further be 
improved and tuned properly for better results. 
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