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ABSTRACT

In early spring, growers prune the extra blossoms and fruitlets off the crops and trees to enhance 
the yield of berries. Numerous automated machine vision techniques for estimating floral in-
tensity have been proposed, however, their overall performance is still inadequate. The floral 
intensity is related with the harvest which will assist the government to frame the governance 
policies for business and trade. For the agricultural task of detecting the tomato blooms in crop 
images, the performance of six pretrained deep learning architectures was evaluated. This study 
presents a technique to detect tomato flowers that is reliable to occlusions, variations in illumi-
nation conditions, and orientation. The real-time crop images across the fields were acquired in 
daylight conditions using a 13 Mega-pixel RGB camera. The image acquisition technique would 
have an impact on the quality of the real-time images. One of the most important computational 
techniques utilized in the smart digital world of agricultural application is deep learning. The 
key objective of this research article is to identify the best improvement strategies for recognizing 
the tomato flowers and berries for real-time crop yield estimation and yield management, there-
by the analysis of six deep learning architectures, AlexNet, Resnet50, VGG16, Faster R-CNN, 
YOLOv3 and YOLOv5, was measured. The YOLOv5 model outperformed other existing models 
with a 0.975 F1 score on a real-time tomato flower dataset.
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INTRODUCTION

The sensors placed on agricultural farms can access pre-
cise topography, temperature, climatic forecasts, and acidity 
of the topsoil. Precision farming collects information from 

agricultural sensors, drones, and satellites to organize farm-
ing practices. In India, tomato harvesting time is based on 
Growers can use agricultural technologies to generate a map 
of their farmland, control pests, manage fertilizer, detect 
environmental threats, and crop yields, and plan to harvest.
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The count of blooms recorded and compared to the 
number of fruits counted before the harvesting phase for 
citrus trees allowed for crop yield forecast [1]. At the begin-
ning of spring, the bloom intensity in an orchard has an 
impact on crop management. The deployment of a deep 
learning model to estimate the flower count will however 
be useful for crop production forecasting, pruning of the 
parts and thinning process, which influence the produc-
tivity of the crop [2]. The ability to recognize vine harvest 
assists the growers in preparing for transporting the yield 
and scheduling the trade. Deep learning-based classifiers 
have improved over the years where they can identify crop 
diseases in agricultural farms under controlled and real-
world conditions [3]. The diseases that develop during the 
blooming and fruit development stages may have an impact 
on crop production predictions.

The significant fluctuation in luminance, fruit occlu-
sion, the shape of the fruit, uniformity in color and morpho-
logical texture of the fruits and the leaves are all significant 
concerns in agricultural scenes for computer vision detec-
tion of fruit [4–6]. Detecting blooms accurately and early in 
the growing season is crucial for timely intervention strat-
egies to mitigate potential yield losses due to factors such 
as nutrient deficiencies or pest infestations. Object classifi-
cation in agricultural sceneries using manually determined 
handcrafted parameters for features like color models, 
shape, intensity, form, the texture and the Histogram of 
Oriented Gradients (HOG), Haar-like features, and the 
local binary patterns (LBP), has been reported numerous 
times over the last decade [7]. 

Deep convolutional networks have recently been sus-
taining the future upon a diverse selection of computer 
vision applications. [8,9] developed a (Faster R-CNN) 
Faster Regionbased Convolutional Neural Network at 
Oxford. Transfer learning is used to recognize diverse fruits 
using the Visual Geometry Group network (VGGNet). A 
pretrained model has been further trained using a limited 
number of images, with F1 scores of 0.848, 0.932, 0.942, 
0.948, 0.938, 0.915, and 0.828 for rockmelon, avocados, 
mangoes, strawberries, apples, orange, and green pepper, 
correspondingly [10]. Table 1 highlights a few research 

works that have been performed applying diverse image 
processing techniques.

The training of deep learning frameworks encompasses 
the optimization of losses, and cost function which is a 
unique combination of confidence, classification, preci-
sion, recall and box regression loss for its minimum error 
in object recognition and classification. Since deep learning 
approaches have a large number of parameters, large data-
sets like ImageNet [17], PASCAL VOC [18], and COCO 
[19] are commonly used to train these models. These digi-
tal datasets provide free labelled images along with annota-
tion files for various object classes which are used for object 
detection model training and benchmarking. Although 
these datasets do not include images of tomato flowers, 
deep-learning models can indeed be reused in these other 
applications by transferring acquired key features using 
transfer learning [20,21]. The transfer learning technique 
is employed for re-training the information from a model 
learnt on a large dataset, such as convolutional weights, to 
build a new model using a smaller set of images.

A general deep learning framework for classification 
involves: 
(i)	 input image pre-processing;
(ii)	 training the pre-trained model;
(iii)	 classification of tomato flower;
(iv)	 Performance analysis.

In this research, six pretrained models for object recog-
nition employing classifiers and detectors, such as AlexNet, 
Resnet50, VGG16, Fast-er R-CNN, YOLOv3 and YOLOv5, 
were supervised and assessed for tomato blossom detection.

MATERIALS AND METHODS

Dataset Acquisition
The image datasets of tomato flowers were collected in 

a nearby field in Coimbatore, India. The images were cap-
tured using a Canon EOS 1500D digital camera, with a res-
olution measuring 3648 X 2056 pixels. Most of the images 
were captured under natural illumination with varying 
degrees of occlusion, lighting and alignment. Nearly 916 

Table 1. Diverse deep learning methods used for tomato flower estimation

Crop No. of images Method Performance Analysis Application Authors
Tomato flower 1069 Segmentation in HSV 

color space
F1 score=0.73 Detection [11]

Tomato flower 1445 Faster RCNN Precision=96.02%
Recall=93.09%

Detect and count [12]

Lemon 1113 YOLOv3 Accuracy=92% Classification [13]
Tomato flower 1400 ResNet-152 Accuracy=90.2% Classification [14]
Tomato Flower 1500 CNN Accuracy = 89.6% Disease Detection [15]
Tomato Flower 1100 YOLOv4 Accuracy = 91.7% Disease Detection [16]
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images with tomato flowers were collected and categorized 
as train sets and test sets. The samples of the input tomato 
flower image captured are shown in Figure 1.

Image Pre-Processing 
The training and testing of the datasets were imple-

mented on a high-performance Intel Core (i5 processor) 
with an NVIDIA GPU GEFORCE GTX. During training, 
various object detection algorithms resize the input range 
to a predetermined network resolution. Deep learning 
systems models employ feature extractors that require a 
square input resolution. The resolution of the network can 
be enhanced, to handle higher input images, however, this 
comes at the expense of more memory and computing. The 
Faster R-CNN model, fine-tune the input image to 600 X 
600 pixels, whereas the Alexnet, resnet50 and inceptionv3 
neural networks, resize the input image to 227 X 227, 224 
X224, 299 X 299 pixels, respectively. The YOLO architec-
ture resizes the input images to 416 X 416 pixels.

Data Augmentation
The data augmentation techniques such as cropping, 

resizing and scaling were used in this research work before 
training the model to increase the training set. The class 
label and coordinates of every ground truth with an anno-
tated bounding box in the train image datasets are required 
for object detection models to be trained. While labelling 
is a time-consuming and labor-intensive task, annotat-
ing the tiles was significantly simpler than annotating the 
entire image due to the reduced amount of flowers on each 
tile compared to the entire image. For artificially increas-
ing the dataset with label-preserving modifications, data 
augmentation is a typical approach to increase variability 
in the training data [22]. The method improves the abil-
ity of networks to generalize while reducing overfitting. To 
increase shape variety in the dataset, this study used verti-
cal flip, horizontal flip, and image rotation techniques. To 
prevent pre-computing the broad array of random augmen-
tations, augmentation was done by increasing the dataset 
during each training phase.

Data Annotation
The annotation technique was effective  since it iden-

tifies and labels a rectangular bounding box on the spec-
ified part  of the crop in the image along with location 

information and the labelled class. It is indeed essential to 
identify between the concepts of image classification as well 
as to object detection at this phase. Object detection detects 
the labelled class and position of each object from an image, 
whereas classification determines, whether an image pos-
sesses the  object class. Detection seems to be more chal-
lenging than the classification algorithm, and the number 
of samples required for object detection is greater than the 
number of images required for image classification. A sin-
gle frame in real-time agricultural images contains numer-
ous artifacts of various categories, which should have been 
assessed by using crop class probability and its orientation. 
The annotation method used in this research is time-con-
suming and comparable to that of the PASCAL Visual 
Object Classes dataset [18]. The following are the rules for 
labelling the datasets:
(i)	 Each occurrence of an object should indeed be labelled 

out when an image contains many such objects. 
(ii)	 When two objects in an image overlap, the occluded 

regions should be drawn with a box all across the visi-
ble exposed regions. It is necessary to completely wrap 
and label each object in the image.

(iii)	 If there are multiple objects  of the same class in an 
image, all the individual objects are boxed, even if the 
bounding boxes overlap. Only one bounding  box is 
drawn around the occurrences if they are physically 
interconnected.

Bloom Counting Deep Learning Models
Faster R-CNN, like most other neural network models, 

is hampered by its reliance on a vast number of higher-qual-
ity, well-labelled data. Researchers might need transfer 
learning to get around the necessity for a huge amount of 
new data. A CNN that has already been trained on a task 
with a large amount of labelled training data will be able to 
tackle a new task with significantly fewer labelled instances. 
As a reference point, the ImageNet dataset, which com-
prises nearly 1000 object classes and 1.2 million images, is 
frequently employed. Using the pre-trained CNN features 
on the ImageNet dataset, state-of-the-art actual outcomes 
have been produced on a variety of image processing tech-
niques, including image classification and image labelling. 
Figure 2 depicts the overview of the tomato flower estima-
tion using deep learning models. The classification and 

Figure 1. Sample images with tomato flowers.
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detection algorithms are trained with the real-time tomato 
flower datasets for the estimation/counting of tomato flow-
ers. The early recognition of tomato flowers can predict 
yield management in precision agriculture.

Alexnet
The Alexnet architecture is a deep CNN model devel-

oped to classify nearly 1.2 million images, with five con-
volution layers, a Rectified Linear Unit layers (ReLU), 
max-pooling layers and three fully connected layers [17]. 
The convolutional kernels for the AlexNet architecture are 
computed during the back-propagation optimization phase, 
which involves optimizing the entire cost structure with the 
stochastic gradient descent (SGD) technique. In general, the 
convolutional layers employ sliding convolutional kernels for 
constructing  feature maps, while the pooling layers gener-
ate a max-pooling operation on these feature maps to con-
solidate the data within the provided neighborhood region. 
The training is made faster using non-saturating neurons 
with an efficient GPU execution. The Alexnet framework 
utilizes a recently developed normalization technique called 
“dropout” which proved to be particularly effective in reduc-
ing the overfitting in fully-connected layers.

Resnet50
Deep neural networks are difficult to train due to the 

well-known diminishing gradient problem: since the gra-
dient being back-propagated towards the  previous levels, 
continuous multiplication can reduce the gradient to infin-
ity [13]. Besides implementing a short link to transfer input 
from one layer towards another  layer without even any 
change in the input, ResNet may have a very deep CNN 
model with approximately 152 layers. In the implementa-
tion of ResNet, there are two types of auxiliary modules. 

The first is an identity block that does not have a convo-
lution layer of any kind. In this instance, input and output 
have the same dimensions [23]. The other one is the con-
volution frame, which has a shortcut for the convolution 
layer. In this instance, the input measure  is far less than 
the resultant dimensions. In each block, 1 X 1 convolution 
layers are connected to the beginning  and at the end of 
the network  structure. The bottleneck approach is a pro-
cess for decreasing the quantity of parameters and retaining 
the network performance.

VGG16
VGG includes 3 fully - connected layers and 13 con-

volutional layers. Max-pooling layers connect consecutive 
convolution layers. Every group has three convolution lay-
ers, ranging in size from 64 at the beginning of the imple-
mentation to 512 at the completion [10]. This network was 
constructed in preparation for the ImageNet 1000 cate-
gory classification task. The most distinguishing aspect of 
VGG16 seems to be that, instead of only reaching a substan-
tial amount of hyper-parameters, the developers designed 
to generate  3x3 convolution layers of stride 1, and also a 
comparable padding and max-pool layer featuring 2x2 fil-
ter of  stride 2. The convolution, as well as the max-pool 
layers, are grouped similarly throughout the architecture. 
Finally, it has two completely connected layers and a soft-
max for output. VGG16 alludes to 16 layers with different 
weights. This network is quite huge, with over 138 million 
parameters.

Faster R-CNN
A third refinement of the network design and region 

proposal technique is the Faster R-CNN. The early 
R-CNN used the region proposal approach for recognizing 

Figure 2. A framework of the Flower estimation deep learning model.
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regions  of interest, including Selective Search, as a pro-
spective area comprising the target item. The ROIs are 
the inputs to a deep  CNN, which would extract features 
for classification by a support vector machine, resulting 
in a visual representation of the process. External ROI 
extraction methods are typically computationally intensive 
processes that slow down the entire algorithm pipeline. The 
later version employs a new method for classifying ROIs 
[8]. Rather than applying a CNN to each of the area pro-
posals, the image is fully inserted into the CNN, with the 
output inserted into a spatial pyramid pooling (SPP) layer. 
In the SPP layer, only ROIs acquired using a region pro-
posal approach are employed. This method eliminates the 
need for a full forward run through the CNN for each ROI, 
reducing execution time by 10 to 100 times at test time and 
3 times at training time. However, it still involves a comput-
ing bottleneck in the form of an external region proposal 
algorithm.

YOLOV3
YOLOv3 is an upgrade over YOLOv2 and is built on 

Darknet-53. Darknet is a C and CUDA-based open-source 
deep learning framework. The Darknet-53 is indeed a 
major feature extractor which improves upon Darknet-19 
through adding 3X3 and 1X1 convolutional layers includ-
ing residual blocks, similar with ResNet. Similar to SSD, 
YOLOv3 employs feature pyramids to automatically 
extract the features across  three levels  for box prediction. 
Lower-level feature maps are integrated using up-sampled 
extracted feature maps  from the  upper layers and then 
processed to collect  more relevant and fine-grained data. 
Similar to Faster R-CNN, YOLOv3 employs logistic regres-
sion model to estimate the objectness score for the bound-
ing boxes, however, each ground truth object only has one 
bounding box anchor. YOLOv3 employs 75 convolution 
layers as well as 3 detection layers. [3,13,19,24].

YOLOV5
The network model is a CNN architecture  that uses 

multiple convolution layers  and max-pooling layers  to 
retrieve the feature maps of various sizes from the input 
images . The backbone network generates four layers of 
feature maps, with the following dimensions: 152X152 
pixels, 76X76 pixels, 38X38 pixels, and 19X19 pixels 
[25]. The neck network integrates the feature maps from 
multiple levels  of different sizes to gain additional con-
textual information to reduce information loss. YOLOv5 

employs CSPDarknet53 and also, however the neck sys-
tem employs the Feature Pyramid Network (FPN) and 
Pixel Aggregation Network (PAN) architecture. It is com-
parable to YOLOv4 in order to improve accuracy however 
outperforms it in order of speed due to its small model 
size. The hyperparameters of the diverse deep learning 
models for the image classification and object detection 
are depicted in table 2.

DEEP LEARNING MODEL PERFORMANCE

Classification And Detection Results
The tomato flower datasets are split into three categories: 

80% training and 20% testing. The training is completed on 
the training dataset images, followed by an evaluation on the 
test set to reduce overfitting. After the training of the deep 
learning model,  parameter selection has been completed, 
and  the performance is evaluated using the  testing set. 
Non-Maximum Suppression reduces the loss  among  the 
ground truth and predicted results, and the occurrence of 
false positives in the final results, by selecting only candi-
dates with an Intersection-over-Unions (IoU > 0.5) relative 
to the primary annotated ground truth. The sample results 
of the tomato flower estimation models are summarized in 
Figure 3. To boost the robustness of every model, images 
with a specific instance were combined with images includ-
ing many objects present and many occurrences.

Performance Metrics
The pretrained deep learning architectures were 

trained, relative to the labelling annotated images using 
the train sets and the test sets. The trained neural networks 
were validated for tomato flower datasets with the perfor-
mance metrics such as F1 score, average precision, infer-
ence time and prediction rate. Also, with training data and 
testing data, the network is trained using SGD momentum 
including a learning rate of 0.01. Every epoch, the images 
in the datasets are randomized. The randomized real-time 
images are used for the testing phase, whereas the output 
is classified according to the given target specified in the 
FC layer. The accuracy and performance analysis in terms 
of F1-score, average precision, Inference time are listed in 
Table 3. 

The average of training images per class for each class 
is reflected by the ‘average precision. The results show that 
YOLOv5 model outperformed the other classification and 

Table 2. Hyperparameters of the deep learning models

Parameter Alexnet Resnet 50 VGG 16 Faster RCNN YOLOv3 YOLOv5
Learning Rate 0.01 0.1 0.001 0.001 0.001 0.01
Batch size 128 256 64 256 64 16
Momentum 0.9 0.9 0.9 0.9 0.9 0.937
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detection models for tomato flower estimation. The Faster 
RCNN model was too slow to reach the preferred frames 
per second. The evaluation of the models for the metrics is 
shown in Figure 4.

DISCUSSIONS

The models were evaluated based on how well they 
could manage various scenarios that arise in the field, 
including occlusions, illumination variations, and different 

 

Figure 3. Sample results of tomato flower detection.

Figure 4. Performance of tomato-estimation deep learning models.

Table 3. Performance analysis of the deep learning models

Models Average Precision F1 Score Inference time (ms)
Alexnet 0.918 0.932 52
Resnet50 0.953 0.935 39
VGG16 0.924 0.892 46
Faster RCNN 0.962 0.939 67
YOLOv3 0.969 0.947 25
YOLOv5 0.975 0.962 20
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orientations. Based on its precision and resilience in real-
time recognition tasks, YOLOv5 showed the best perfor-
mance among these designs, with an F1 score of 0.975. The 
YOLOv5 framework’s efficiency in processing images fast 
while retaining good accuracy is one of its standout features. 
In agricultural applications, where rapid identification 
of plant health concerns, such as deficiencies in nutrients 
indicated by bloom patterns, can greatly effect crop output 
and quality, this skill is essential. Notwithstanding its mer-
its, the research highlights a number of shortcomings that 
require further development. The accuracy of detection is 
still greatly influenced by picture quality since differences 
in lighting and image resolution might have an impact on 
the performance of the model. 

The implementation of deep learning approaches sig-
nifies a paradigm change from conventional methods, 
including inspecting manually or basic image processing 
techniques, in terms of agricultural contributions. Improved 
accuracy and flexibility provided by deep learning models 
allow automated evaluation of large-scale datasets that are 
difficult for standard methods to handle effectively. With 
proactive pest and disease control and optimum utiliza-
tion of resources, this capacity not only lowers labor costs 
but also improves decision-making, promoting sustainable 
farming practices. Deep learning has implications that go 
beyond its ability to detect. The ability of these models to 
adjust and learn from fresh data enables ongoing develop-
ment and adaptation to changing agricultural requirements. 
Through the integration of cutting-edge technology such as 
YOLOv5 into commercial process flow, stakeholders may 
take use of precision cultivation practices and predictive 
modeling to attain increased production while demonstrat-
ing resilience against environmental obstacles.

CONCLUSION

A domain-specific image dataset of tomato flower 
images for precision agriculture is discussed in this paper. 
The goal of this research is to compare the deep-learning-
based classification and detection models for real-time agri-
cultural tasks. For the agricultural task of detecting tomato 
blooms in crop images, the performance of six deep neural 
network architectures was evaluated. These studies revealed 
a system for detecting tomato blooms that is robust to occlu-
sions, lighting fluctuations, and orientation. The real-time 
image quality would be affected by the image acquisition 
technique. However, the deep learning approach is used in 
diverse agricultural tasks for smart farming. On a real-time 
tomato flower dataset, the performance of six existing deep 
learning architectures, AlexNet, Res-net50, VGG16, Faster 
R-CNN, YOLOv3 and YOLOv5, was analyzed and  found 
that the YOLOv5 framework outscored other conceptual 
methods with an F1 score of 0.975. 

The detection of tomato blooming and berry develop-
ment phase assists in the early detection of macronutrient 
imbalances. New varieties of crop  species images can be 

integrated and annotated  to the datasets in the future to 
train the architecture for tasks such as harvesting and agri-
cultural yield management.
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