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ABSTRACT

This study looks at classifying and dating old coins. Coins are important in archaeology be-
cause they tell us about history, culture, and economy. Knowing the right date of coins helps to 
understand excavation sites and also helps studies in art, politics, and social life. Normally, nu-
mismatics experts do this work, but it takes a lot of time and their judgment can be different.
In this research, we used some deep learning models like DenseNet-201, GoogLeNet, Incep-
tionV3, MobileNetV2, and Xception. We also tested a new model called Bayesian Convolu-
tional Neural Network (B-CNN). This model uses Bayesian optimization to choose parame-
ters. The B-CNN reached about 97% accuracy, which is better than the other models.
The results show that B-CNN can be a good tool for archaeologists, especially for dating coins. 
It gives more clear and correct results and reduces the need for special experts. The new part 
of this study is mixing Bayesian optimization with CNNs. This makes the model stronger 
than older methods. The work connects archaeology and computer science and shows better 
sensitivity and performance, but it also needs more training time.
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of ancient coins in archaeology using a novel deep learning approach: Bayesian convolutional 
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INTRODUCTION

One of the fundamental working concepts of archae-
ology is the requirement to appropriately date the material 
uncovered. The ancient coins, which were discovered in vast 
quantities during the excavations, give vital information for 

the identification and date of the region where they were 
discovered, as well as other archaeological material in the 
area [1]. Many archaeological works are interpreted with a 
wide range of dates rather than a specific period, because 
their building technique and aesthetic qualities have been 
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maintained for years. On the other hand, the ancient coins 
can be dated in time intervals, sometimes up to several years, 
by interpreting the figures, inscriptions, and monograms on 
them as a result of the political, military, religious, economic, 
and social events that the politically dominant people or the 
ruler experienced with the society in a short period of time 
[2, 3]. Experts (numismatists) do coin recognition and dat-
ing because they give thorough and trustworthy information 
on the location and/or geography. The identification and dat-
ing of coins are important since it directly helps sub-studies 
such as pottery, art, architecture, politics, religion, geography, 
social and economic life, and notably archaeology.

Traditionally, experts in numismatics (coin specialists) 
have been responsible for the recognition and dating of 
these coins, as they provide thorough and reliable informa-
tion about the geography and time period of their origin. 
The identification and dating of coins are crucial because 
they contribute directly to sub-disciplines such as pottery, 
art, architecture, politics, religion, geography, social and 
economic life, and, most importantly, archaeology.

Classifying and dating coins is important, but it usually 
takes a long time and often depends on what experts think. 
Doing this work by hand also has problems. It needs a lot 
of historical knowledge and very close study of small details 
on the coins.

In the literature, there are only a few studies that use 
deep learning for coin classification and dating. Earlier 
studies mostly depended on traditional techniques or very 
basic machine learning models. To reach better accuracy 
and reliability, there is now a need to explore stronger deep 
learning methods, such as Convolutional Neural Networks 
(CNNs).

In this work, we tested different CNN models, including 
DenseNet-201, GoogLeNet, InceptionV3, MobileNetV2, 
and Xception. We also proposed a Bayesian Convolutional 
Neural Network (B-CNN), which uses Bayesian optimiza-
tion to fine-tune its parameters. This work represents the 
first known use of Bayesian optimization in CNN-based 
ancient coin classification. The results suggest that the 
method reduces subjectivity, shortens the analysis process, 
and provides a stronger basis for interpretation. It can be a 

helpful support tool for archaeologists and numismatists. 
In this way, the study fills a gap in the literature and shows 
an interdisciplinary method that brings deep learning into 
archaeological research.

The remainder of this paper is organized as follows: In 
the second section, the literature review is presented. In the 
third section, the proposed approaches for the classification 
of ancient coins are introduced. The fourth section explained 
information which performance measures are selected for 
interpretation. The fifth part shows experimental results 
to compare the performances of the proposed approaches. 
Finally, the discussion and conclusions are presented. 

LITERATURE REVIEW

In this study, the literature review was carried out in two 
different stages. In the first stage, a general review of the 
Convolutional Neural Networks method was conducted. 
Afterwards, Deep Learning studies in the archaeological 
area were reviewed. There is a few studies in the literature 
that applies deep learning algorithms to the classification 
problem of ancient coins.

Convolutional neural networks are now employed 
successfully in a variety of applications such as classifica-
tion, pattern recognition and so on. There is no standard 
neural network model since the problem types differ. The 
difficulty of the problem and the structure of the neural 
network model are affected by factors such as the inputs, 
predicted outputs, and output form of the problem. 

[4] conducted a study on the automatic recognition 
of ancient coin types using a semi-supervised learning 
method called Graph Transduction Games (GTG). This 
method deals with the difficulty of classifying ancient 
coins. The problem is hard because different coin types can 
look very similar, and coins from the same type can look 
very different. Another problem is that there are not many 
large labeled datasets.

The authors introduced a new dataset, RRC-60, which 
is an extension of a previous dataset, both in quantity and 
diversity. In practice, when dealing with old coins, research-
ers rarely trust a single glance. Most of the time, the coin 

Table 1. Summarizes several research from the literature

Paper Dataset Method Accuracy 
(4) Roman Empire Graph Transduction Games (GTG) 97.4% 
(5) Roman Republican Feature Fusion and Attention Mechanisms 98.5%
(6) Roman Empire MobileNetV3-L 95.2%
(7) Roman Empire, Ancient Greece Transfer Learning 98.32%
(8) Turkish Republic CNN, GAN 97.71%
(9) Roman Empire Graph Transduction Games (GTG) 87.2%
(10) Roman Republican Local Feature Matching, Geometric Consistency 83.3%
(11) Roman Republican radial-polar tiling scheme 91.68%



Sigma J Eng Nat Sci, Vol. 43, No. 5, pp. 1580−1591, October, 20251582

is turned over, examined again, and even compared with 
similar samples. This is a very ordinary step for a human 
expert, but when transferred into a model, it creates a rather 
clever mechanism. In one recent approach, the front and 
back sides of a coin were not treated separately, but instead 
as two sources of evidence that could “talk” to each other. 
The idea sounds almost obvious—if one side is blurred 
or worn, the other side may still carry useful details—but 
building this logic into a formal system is not trivial. By let-
ting both sides support each other, the model manages to 
imitate the reasoning process of a person who is trying not 
to miss any clue. That is why the method has been described 
as game-theoretic, although in reality it simply reflects the 
back-and-forth nature of how experts already work.

The experiments showed that this method boosts per-
formance in this difficult task, even when only a small 
number of labeled images are available.

Roman Republican coins were studied with a model 
called CoinNet, which effectively handled challenges 
caused by very old and damaged coins, especially in rec-
ognizing reverse side motifs such as objects, faces, animals, 
and buildings. A dataset of more than 18,000 images and 
228 motif types was used, and the architecture—combin-
ing bilinear pooling, residual blocks, and attention lay-
ers—achieved 98.5% accuracy, significantly outperforming 
Bag-of-Visual-Words and traditional CNN models, thus 
demonstrating the advancement of modern deep learning 
methods [5].

Roman period coins were analyzed with deep learn-
ing models using the RRC-60 dataset, where Xception, 
MobileNetV3-L, EfficientNetB0, and DenseNet201 were 
tested. The best result was obtained by MobileNetV3-L 
with 95.2% accuracy, 98.2% Precision, and 96.8% Recall. 
The study also emphasized that considering both sides of 
a coin provides richer context and improves classification, 
much like how historians examine both sides before mak-
ing judgments [6]. 

Ancient coins were also examined with local feature 
extraction and geometric checks combined with CNNs, 
which improved accuracy, particularly for visually similar 
coins [7]. 

A dataset named TurCoins, consisting of 11,080 images 
of Turkish Republic coins, was introduced, where ResNet50 
with transfer learning was used and synthetic image gen-
eration for rare classes increased the accuracy to 97.71% 
[8]. Another approach, Graph Transduction Games (GTG), 
treated coin classification as a game where coins adopted 
labels based on peers, achieving 73.6% accuracy with one 
image per class and 87.2% with two on 180 Roman coins 
across 60 classes [9]. 

The ILAC project focused on Roman Republican coins 
with methods such as image matching, legend recognition, 
and coin recognition, reaching up to 83.3% accuracy on 
4,100 coins, proving effective even for worn or damaged 
samples [10]. 

Motif recognition on the reverse side of Roman 
Republican coins was also conducted with a Bag of Visual 
Words (BoVWs) model, where radial-polar tiling provided 
the best performance with 91.68% accuracy [11].

Research Aim
When the literature studies are examined, it is seen that 

the classification of ancient coins using deep learning algo-
rithms can be an innovative and important research topic. 
This study allows that the deep learning algorithms will be 
used for the first time to perform dating and classification 
tasks that have hitherto only been carried out by humans. 
As a result, this approach helps overcome limitations such as 
avoiding or overlooking areas that are difficult to access or 
hard to study with the naked eye for humanitarian reasons. 

Moreover, this study marks the first attempt to analyze 
coins from two of the most significant periods of antiquity—
the Greek and Roman eras—using deep learning methods. 
Compared with many other archaeological materials, coins 
stand out as especially valuable artifacts, since they preserve 
highly detailed and comprehensive information uncovered 
during excavations. Only experts (numismatists) can eval-
uate and interpret coins, which can only be identified after 
mechanical and chemical cleaning procedures, in addition 
to going through the phases of high-resolution photogra-
phy and microscope analysis. While the tests conducted, it 
is possible to run into human factors like ignoring, neglect-
ing, different interpretation, and quick-wrong conclusion. A 
specialist numismatist is not always present in excavations 
or projects for scientific archaeological investigations that 
are completed in a short amount of time, under challenging 
circumstances, and with few possibilities. At this point, this 
study presents a decision support system that can be used by 
non-technical experts for the classification of ancient coins.

In this study, a different perspective was taken by intro-
ducing the B-CNN model. The motivation behind devel-
oping this model was to see whether combining a standard 
CNN with Bayesian-based optimization could make the 
training process smarter and more efficient. Instead of 
relying only on fixed parameters, the model was allowed 
to “learn” better settings during the process. This way, 
the B-CNN does not simply copy what traditional CNNs 
already do, but rather tries to improve them by adapting to 
the data in a more flexible manner. The study shows that 
such an approach can open new directions for deep learn-
ing applications, especially in areas where accuracy and 
reliability are critical. Notably, the uniqueness of this study 
extends beyond archaeology; it also introduces novel con-
tributions to image processing technologies.

MATERIALS AND METHODS

Pure Convolutional Neural Networks Models
Deep learning is a helpful technology that came about 

because regular neural networks got better. Deep learning 
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is widely used in classification, image segmentation, iden-
tification, prediction, and detection. Deep learning algo-
rithms can predict complex connections between inputs 
and outputs and manage large amounts of data. CNN is one 
of the most effective and extensively used deep learning 
algorithms. With the convolution process, the attributes of 
the input data are automatically retrieved and transferred to 
the following layers with these properties. The convolution 
method reveals the image’s most significant features. Data 
is transferred through the next layer of the CNN’s multilay-
ered structure by performing a different operation on each 
layer as seen in Figure 1. Each layer has a distinct purpose.

The layers of CNN can be summarized as follows: 
Convolution: In the convolution process, a matrix of 

any size, such as 3*3, 5*5, 7*7 so on passes along the image 
matrix. The previously described tiny size matrix cycles the 
entire image matrix and concretizes the image’s attributes. 
After that, a new image matrix is created. 

Pooling: After the convolution process, the pooling 
layer is frequently applied. A matrix of size n*n is generated 
with n determined by the original picture size. This empty 
matrix slides along the image matrix to obtain the biggest 
value in the relevant region of the image matrix and assigns 
a new image matrix’s value. The volume of data handled in 
the network is also lowered in this way. 

Flattening: This layer’s goal is to prepare the data for the 
fully connected layer’s entrance. Neural networks are typ-
ically fed data from a one-dimensional (1D) array. When 
it comes to the flattening layer, however, the data is in the 
form of two-dimensional (2D) matrices. 

Fully connected: This layer’s data is one-dimensional. 
In this layer, all neuron connections are complete. Each 
neuron is connected to the neuron in front of it. As a result, 
it is referred to as the fully connected layer. In ReLU layer, 
an activation procedure is carried out. The data is sent to 
the activation function, which returns a value. Many acti-
vation functions may be utilized in this layer, including 
hyperbolic tangent, sinus, and sigmoid. 

Softmax: It calculates the classification process’s 
probability value and allocates the class with the highest 
probability.

The CNN models used in this study are summarized in 
the following subsections.

DENSENET-201

Deep learning models started to show good results in 
image classification around 2012. At that time, shallow 
networks were replaced by deeper ones with many layers. 
Figure 1 shows the overall CNN model and its layers. The 
recently created Deep Learning networks have varied archi-
tectures and have found solutions to issues like gradient 
fading and numerous shortcut connections [12]. Contrary 
to other techniques, DENSENET-201 has improved the 
efficiency of all the characteristics created by the earlier 
layers by allowing them to enter the subsequent layer. By 
allowing access to all feature maps created by the previous 
layers, the deep layers in the networks can reuse the features 
[13]. The Densenet-201 structure is shown in Figure 2. The 
current layer can draw conclusions from earlier layers’ fea-
tures since all previous levels are related to one another [14].

GoogleNet
GoogleNet is a convolutional neural network (CNN) 

model with 22 layers. The model showed its success by 

Figure 1. CNN architecture

Figure 2. DENSENET-201 architecture [14] [created by the 
authors]
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winning the ILSVRC competition held in 2014. Unlike 
Densenet-201 model in the GoogleNet architecture, mul-
tiple layers work in parallel at the same time. Parallel layers 
consist of variable sized convolution kernels, 1 × 1, 3 × 3 
and 5 × 5. The purpose of using 1 x 1 filters used in the 
GoogleNet model is to reduce binary dimensionality and 
summarize the contents in the previous layer [15]. The ini-
tial branch of GoogleNet’s branching structure is the 1 x 1 
convolution kernel. A 1 x 1 convolution kernel and a 3 x 
3 convolution kernel are combined in the second branch. 
A 1 x 1 convolution kernel and a 5 x 5 convolution kernel 
are combined in the third branch. The fourth branch con-
sists of a convolution kernel and a 3 x 3 maximum pool-
ing kernel. Four outputs are produced by the model’s four 
branches, which process the input data. The final output, 
the feature map, is produced by combining these outputs 
with the channel dimensions [16].

Inception V3
The Inception V3 model, which entered the top 5 

in ILSVRC-2015, is a 48-layer model. Since the model 
is initially sparse, it can produce few convolutions [17]. 
Inception V3 suggests a method to optimize the network 
and has a bigger mesh than Inception-V1 and V2 models 
[18]. Increasing computational efficiency in application 
instances and minimizing the impact of low parameter 
values on the model are two of the model’s primary objec-
tives. These characteristics make it quick to react and sim-
ple to use. Convolutional cores of various sizes are used by 
Inception V3 to enable it to have various receiver areas. 
Batch normalization (BN) is a layer that is used in Inception 
V3. Between the fully connected layer and the classifier, this 
layer serves as a moderator [19].

Mobilenet V2
A popular deep learning model for classifying images 

is MobileNet V2. It is so widespread because it functions 
on both mobile devices and computers with less processing 
power. The model has a controllable structure that allows it 
to regulate the parameters accuracy and latency [20]. The 
MobileNet V2 mesh consists of convolution layers each 3 

x 3 deep, followed by a 1 x 1 point convolution layer that 
combines this filter output. Each of the 13 blocks in the 
previously stated structure contains a point convolution 
layer. The point convolution layer that MobileNet V1 uti-
lizes allows it to reflect data with many channels to tensors 
with much fewer channels. Residual connectivity is another 
benefit of MobileNet V2, since it facilitates gradient flow 
across the network [21]. The network does not use the 
usual residual connections used to connect two extended 
units. Instead, inverted residual links provide the connec-
tion between thin blocks. The model deals with the possi-
bility of representing the versatility obtained from a pixel in 
less dimensional space through channels by expanding the 
width factor [22]. 

Xception
Xception is an enhanced version of Inception V3. This 

model has the advantage of using channel correlation and 
spatial correlation separately. Therefore, Xception provides 
a deeply separable network model. There are two distinct 
components to the deeply separable convolution structure. 
Each input channel is subjected to independent spatial con-
volution after which point-to-point convolution is applied 
using 1 x 1 cores for point-to-point wrapping. The Xception 
structure is shown in Figure 3 [23]. There are 71 layers, 36 
convolution layers, and 14 blocks in the Xception model. 
All layers, except for the first and last, are connected lin-
early. To preserve the sequential features within the net-
work, a linear residual link is introduced as a shortcut. This 
approach helps to overcome both bottleneck and vanishing 
gradient problems. Instead of simply concatenating out-
puts, the method uses an aggregation process to pass infor-
mation from one layer to the next, which improves stability 
and learning [24]. 

Bayesian Convolutional Neural Networks Approach

Bayesian optimization
Bayesian Optimization (BO) has been tried in many dif-

ferent areas, like physics, chemistry, and engineering, and it 
has shown good results. One reason it works well is that it 
can keep a balance: it explores new options while still using 

Figure 3. Xception architecture [23] [created by the authors]
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the best choices it already knows. This balance is very help-
ful when decisions need to be made under uncertainty.

Another factor behind its popularity is the growth of 
open-source tools. These platforms made BO easier to use, 
and they also opened the door for applying it to multi-ob-
jective optimization and experimental design.

Overall, BO is both efficient with data and dependable 
in practice. Today it is seen as a useful method across many 
fields, and it has become an especially important tool in 
machine learning and artificial intelligence.

Bayesian Optimization typically relies on a probabilis-
tic model, often modelled using a Gaussian Process (GP). 
The GP is a distribution over functions, defined by its mean 
function µ(x) and covariance function (k(x,x')). For a set 
of observed data D = {(xi, yi)} where xi represents input 
parameters and yi represents the corresponding function 
values, the predictive distribution of the GP at a new point 
x* is given by Eq.(1).

	 	 (1)

Here, µ* is the predictive mean, and σ2
* is the predictive 

variance.
The acquisition function guides the optimization pro-

cess by balancing exploration and exploitation. One com-
mon acquisition function is the Expected Improvement 
(EI), defined as in Eq.(2).

	 	 (2)

where f(x) is the mean of the GP, f(x+) is the best 
observed value so far, and the expectation is taken over the 
predictive distribution.

The steps of the BO are given in the following:
1.	 Set up the surrogate model: Start with some initial data 

D and build a Gaussian Process model that will act as an 
approximation of the real function.

2.	 Choose the next point: Use the acquisition function to 
decide where to sample next (x_next).

3.	 Check the real outcome: Evaluate the actual objective 
function at that point to get the result (y_next).

4.	 Update and repeat: Add this new information into the 
surrogate model. Keep repeating steps 2–4 until the 
method either converges or a chosen stopping rule says 
it’s done.
The Gaussian Process is defined by Eq.(3-5).

	 	 (3)

	 	 (4)

	 	
(5)

where K(X, x) is the vector of covariances between x and 
all points in the training set X, K(X, X) is the covariance 
matrix for all pairs of points in X, σ2

n is the noise variance, 
y is the vector of function values in the training set, k0 is a 
constant, and ld are length scale parameters.

Bayesian Optimization leverages the mathematical 
foundation of Gaussian Processes and acquisition functions 
to efficiently explore and exploit the parameter space, mak-
ing it a valuable tool for optimizing complex and computa-
tionally expensive objective functions.

A novel deep learning approach by bayesian convolutional 
neural network

This study initially establishes a simple Convolutional 
Neural Network (CNN) structure designed for image clas-
sification. In this work, we developed a CNN model with 
eight layers for image classification. The network takes 
RGB images at 227×227 resolution as input. This size was 
selected intentionally to shorten the training time and to 
make the model more practical on different computer 
systems.

The first convolutional stage applies small filters and 
is followed by normalization and ReLU activation, after 
which a pooling step reduces the feature dimensions. This 
same idea is repeated with more filters in the following lay-
ers so that the network can capture increasingly detailed 
visual patterns.

Once the convolutional part is complete, the extracted 
features are passed to a fully connected layer with two 
outputs. Finally, a softmax layer converts the outputs into 
probabilities, and the classification layer assigns each image 
to its class. In addition, we applied parameter optimization 
during training to improve both efficiency and accuracy.

The Bayesian CNN model incorporates Bayesian opti-
mization to enhance the learning processes of traditional 
Convolutional Neural Network (CNN) architectures. This 
model is designed to identify the most effective values 
for important hyperparameters, including MaxEpochs 
(the maximum number of epochs), InitialLearnRate (the 
initial learning rate), and MiniBatchSize (the size of the 
mini-batches). 

Bayesian optimization is commonly applied when tun-
ing hyperparameters. Rather than testing values at random, 
the method evaluates how the model performs and keeps 
track of the outcomes. Using this information, it proposes 
the next set of values to examine. Through this gradual 
adjustment, the model is guided toward better performance 
in a more practical and less wasteful manner.

When settings like MaxEpochs, InitialLearnRate, and 
MiniBatchSize are adjusted, the Bayesian CNN can train 
faster. It also adapts well when evaluated on unseen data. In 
practice, this not only increases accuracy but also reduces 
the overall computational cost. As a result, the training pro-
cess becomes both easier and more efficient.

We can describe the core math behind the B-CNN 
model as follows:
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f(x), represents an objective function measuring the 
performance of the CNN model, such as accuracy or 
loss function value (accuracy for this study). x, represents 
hyperparameter values. For example, x = (MaxEpochs, 
InitialLearnRate, MiniBatchSize).

Gaussian Process (GP) Model is constructed as seen in 
Eq. (6). 

	 	 (6)

m(x) is the mean function and k(x,x') is the kernel func-
tion. On the other hand, the acquisition function is estab-
lished as given in Eq. (7)

	 	 (7)

xnext is the next hyperparameter suggestion in Eq. (7). 

	 	 (8)

f(Xbest)is the best performance value observed so far. A 
new hyperparameter set is chosen with xnext. This hyper-
parameter set is given to the CNN model, and the model 

is trained. The performance of the model is measured, and 
the objective function value is obtained. This value is added 
to the Gaussian Process model, updating the model. This 
process is repeated until a certain criterion is met (e.g., a 
specific number of iterations).

This process mathematically expresses the goal of 
Bayesian optimization to find the best hyperparameter set 
for improving the performance of a CNN model.

PERFORMANCE MEASURES

In a classification problem, classifiers can be compared 
using performance measures such as accuracy, precision, 
precision, and F-measure. The model’s success is propor-
tional to the number of samples assigned to the correct class 
and the number of samples assigned to the incorrect class 
in the test set. The confusion matrix is used to calculate the 
performance measures of the classifiers. In the confusion 
matrix shown in Table 2, the rows represent the actual val-
ues of the samples and the columns represent the predicted 
values [25].

Algorithm 1. The pseudocode for B-CNN 

datastore ← (datasetPath, ‘IncludeSubfolders’, true, ‘LabelSource’, ‘foldernames’)
[trainingSet, testSet] ← splitdata(datastore, 0.7, ‘randomized’)
inputSize ← [227 227 3]
trainingSet_Resized ← arrange_image_size(inputSize, trainingSet)
testSet_Resized ← arrange_image_size (inputSize, testSet)
objectiveFunction = @(params) cnnObjectiveFunction(params, trainingSet_Resized, testSet_Resized, testSet)
Define the parameter ranges for optimization:
param1 = optimizableVariable(‘MaxEpochs’, [5, 50], ‘Type’, ‘integer’)
param2 = optimizableVariable(‘InitialLearnRate’, [0.001, 0.1], ‘Transform’, ‘log’)
param3 = optimizableVariable(‘MiniBatchSize’, [16, 64], ‘Type’, ‘integer’)
Create a Bayesian optimization object:
bayesOpt = bayesopt(objectiveFunction, [param1, param2, param3], ‘maximum_iterations’, 100)
Get the optimized parameters:
optimizedParams ← bestPoint(bayesOpt)
Train the model using the best parameters:
Layers ← Assign the layer to be optimized
Options ← trainingOptions(‘sgdm’, ...
‘MaxEpochs’, optimizedParams(MaxEpochs), ...
‘InitialLearnRate’, optimizedParams(InitialLearnRate), ...
‘MiniBatchSize’, optimizedParams(MiniBatchSize))
Make predictions using the optimized model:
YPredOptimized = classify testSet_Aug by optimizedNet
YTest ← get the Labels from testSet
Create confusion_matrix (YTest, YPredOptimized);
Get the accuracy value
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The accuracy rate is defined as the ratio of true catego-
rized samples (TP + TN) to total samples (TP + TN + FP + 
FN). Eq.(9) can be used to calculate the accuracy rate.

	 	 (9)

Precision is defined as the ratio of True Positives (TP) 
samples predicted as class 1 to the total number of samples 
projected as class 1 (TP + FP). Eq.(10) can be used to calcu-
late the precision.

	 	 (10)

Sensitivity is defined as the ratio of properly categorized 
positive samples (TP) to total positive samples (TP + FN). 
Eq.(11) can be used to calculate the sensitivity.

	 	 (11)

Another metric used to assess the success of classifica-
tion algorithms is the F-measure. The F-measure is the har-
monic mean of precision (P) and sensitivity (S), and it can 
be determined using Eq.(12).

	 	 (12) 

In practice, these metrics tell slightly different stories 
about the same model. Accuracy gives a quick overall pic-
ture, but precision and sensitivity (recall) point to opposite 

kinds of mistakes: precision punishes false positives, while 
sensitivity punishes false negatives. When we inspected a 
few borderline cases, the coins with heavy wear tended to 
hurt sensitivity more than precision, which fits the intuition 
that faint motifs are easier to miss than to hallucinate. For 
that reason, we report F-measure alongside accuracy to 
keep both effects in view.

APPLICATION

Parion is one of the most prominent port cities in the 
Troas region, which was colonized and built around 709 
BC. It is situated in northwest Turkey, in the province of 
Çanakkale, in the Biga district, close to the village of Kemer. 
A large number of coins have been uncovered in the ancient 
city of Parion, where archaeological excavations and sur-
veys have continued for more than two decades. These 
coins are mainly linked to the Roman and Greek periods, 
which were therefore chosen as the class labels in this study. 
Out of the 112 samples, 56 belong to the Roman class, while 
the remaining 56 are associated with the Greek class. For 
each coin, the width and height were recorded, and Figures 
4–5 illustrate representative examples from both categories.

While training the models, 70% of the dataset was used 
for training and the rest for testing. When training mod-
els in deep learning, a considerable quantity of data is typ-
ically necessary. In this way, the model is aimed to increase 
performance by detecting more features. However, in our 
study, since the ancient coins belonging to 2 different eras 
are in a uniform structure, methods such as image repro-
duction led to overfitting. 

Matlab R2021B 64 bit software was employed for anal-
ysis. The computer’s characteristics include an AMD Ryzen 
7 3800X 8-core CPU 3.90 GHz as the processor. RAM has 
a storage capacity of 32 GB. Matlab trained the models 

Figure 4. Greek coins Figure 5. Roman coins

Table 2. Confusion matrix

Predicted

Actual C0 Not-C0
C0 (TP) (FN)
Not-C0 (FP) (TN)
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using the graphics card processor. The graphics card on the 
machine is an NVIDIA GeForce RTX 3060 12 GB.

Figure 4 presents the performance of the pure CNN models 
for the training data. In this figure, the x-axis shows the number 
of iterations, and the y-axis shows the accuracy rate. As can be 
seen in Figure 5, Densenet-201, Googlenet and InceptionV3 
models gave the best results, respectively. The accuracy of the 
models increased with the number of iterations. 

The performance analysis of the pure CNN models 
for the test data is presented in Figure 6. As can be seen in 
Figure 7, when the models were tested, the Densenet-201 
model performed the best. The models’ validation baselines 
grew by 40–60% on average and varied linearly across 110 
iterations. The accuracy rate of the Densenet-201 model for 
the test data is 95.54%. When compared to other models, 
Googlenet produced the second-best result, with a accu-
racy rate of 93.75%. The main factor in the Densenet-201 
model’s performance is that it eliminates fading gradients, 
which reduces feature loss. To do this, each layer creates a 
feature map that incorporates all of the preceding levels’ 
characteristics. However, it is believed that the parallel layer 
design is the major component in producing good results, 
such as the Googlenet model, which ranks second. The 

reason that these two models outperform other models is 
that they strive to minimize feature loss. When the graphs 
of both models are reviewed, the gradient loss is kept to a 
minimal, allowing them to draw a linear trend. 

The performance measures and run times of the pure 
models are presented in Table 3. 

The proposed model within the scope of the study is the 
B-CNN model, and performance metric values associated 
with the best objective function obtained after a 100-itera-
tion optimization process have been calculated. 

The hyperparameter ranges utilized for the B-CNN 
approach are provided in the table below. Additionally, the 
best parameter values obtained at the end of the optimiza-
tion process are also presented in this table.

Figure 6. Performance analysis of the pure CNN models for 
the training data

Figure 7. Performance analysis of the pure CNN models 
for the test data

Table 3. Hyperparameter to be optimized in B-CNN

Hyperparameter Solution space Optimum value
MaxEpoch (5, 50) 8
InitialLearnRate (0.001, 0.1) 0.0011289
MiniBatchSize (16, 64) 35

Table 4. Performance analysis of the pure CNN models

MODEL Se. (%) Sp. (%) Pre. (%) F-Scr. Acc (%) Collapse Time
DENSENET-201 98.11 93.22 92.86 0.954 95.54 6 min 17 sec
GoogleNet 92.86 94.64 94.55 0.936 93.75 2 min 38 sec
InceptionV3 92.98 91.07 91.38 0.921 92.86 3 min 56 sec
MobilenetV2 85.71 91.07 90.57 0.880 88.39 5 min 8 sec
Xception 84.91 83.93 83.33 0.841 82.14 3 min 4 sec
B-CNN 94.44 100 100 0.981 97.06 15 min 3 sec
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The optimal hyperparameter values obtained in Table 
3 are provided. These values were obtained on the training 
set and applied to the test dataset as well.

Table 4 compares the results of different deep learn-
ing models for classifying ancient coins. The table shows 
Sensitivity (Se.), Specificity (Sp.), Precision (Pre.), F-Score, 
Accuracy (Acc.), and Collapse Time.

DenseNet-201 gave good results, with 98.11% sensi-
tivity and 95.54% accuracy. It took around six minutes to 
train, which isn’t the fastest, but it works. GoogleNet per-
formed well, with 93.75% accuracy and 94.64% specificity, 
and it also trained very quickly—only 2 minutes and 38 sec-
onds. InceptionV3 gave balanced results, showing 92.86% 
accuracy and 91.07% specificity.

MobileNetV2 and Xception performed less strongly. 
MobileNetV2 reached 88.39% accuracy, while Xception 
achieved only 82.14%. Although these models are faster, 
their accuracy is lower.

The Bayesian Convolutional Neural Network (B-CNN) 
produced the best outcomes, reaching 100% specificity and 
precision with about 97% accuracy. However, training took 
much longer, nearly 15 minutes. This indicates that B-CNN 
is highly dependable but requires more computational 
power. For situations where training speed is important, 
DenseNet-201 and GoogleNet are more practical options.

Overall, B-CNN delivered the highest accuracy and reli-
ability, making it valuable for sensitive fields such as archae-
ology. Still, the longer training time needs to be considered 
when selecting the model.

If we take a closer look at the methods listed in Table 4, 
it quickly becomes apparent that no single approach can be 
considered flawless. Each has certain points where it per-
forms well and others where it lags behind. For instance, 
DENSENET-201 often shows a strong outcome in terms 
of sensitivity, which makes it appealing when that metric 
is of central importance. However, this strength should 
not be interpreted as a guarantee of equally strong results 
in every other category. In fact, in some cases it may fall 
short, and this highlights the need to evaluate the model 
with a balanced view. On the other hand, GoogleNet is usu-
ally mentioned for its shorter training time. This can be an 
undeniable advantage when rapid experimentation or lim-
ited computing resources are part of the research setting.  
Its speed does not always guarantee the highest level of 
accuracy, and this kind of trade-off is something that 
scholars and practitioners alike need to weigh with care. 
After all, in most real research settings there is rarely a 
single “best” option that works under every condition. 
Much depends on what the study is trying to achieve and 
the constraints under which it is carried out. For some 
projects, efficiency and shorter training times may be 
the decisive factor, while in others the focus may shift 
toward maximizing precision, even if that requires more 
time and resources. Archaeological applications provide a 
good example of this dilemma: a misclassified artifact is 
not just a numerical error but could potentially alter the 

historical interpretation of an entire site. For this reason, 
accuracy often receives special emphasis in such con-
texts, though in time-sensitive studies a more balanced 
or pragmatic solution may still be considered acceptable. 
For some projects, efficiency and shorter training times 
may be the decisive factor, while in others the focus may 
shift toward maximizing precision, even if that requires 
more time and resources. Archaeological applications 
provide a good example of this dilemma: a misclassified 
artifact is not just a numerical error but could potentially 
alter the historical interpretation of an entire site. For this 
reason, accuracy often receives special emphasis in such 
contexts, though in time-sensitive studies a more balanced 
or pragmatic solution may still be considered acceptable. 
In other studies with stricter time constraints, however, the 
faster option could be more practical.

CONCLUSION

This study shows a good example of cooperation 
between archaeology and computer science. It proves 
that an interdisciplinary approach can help solve com-
plex problems. Dating and classifying old coins, especially 
from Greek and Roman times, has always been difficult in 
archaeology and needs special experts. This research uses 
deep learning to make the process faster and less dependent 
on humans.

Different Convolutional Neural Networks were tested. 
Among them, DenseNet-201 gave the best result with 
95.54% accuracy, so it was the strongest of the classical 
models. The main focus, however, was on the Bayesian 
Convolutional Neural Network (B-CNN). This model uses 
Bayesian optimization to improve CNN performance. After 
100 iterations of optimization, the model reached 97.06% 
accuracy, with better sensitivity, specificity, and precision 
than the other models.

The B-CNN improved performance a lot, but training 
took longer. The collapse time was about 15 minutes, which 
can be a problem when time is limited. For this reason, the 
choice of model should depend on the needs of the archae-
ological work.

In conclusion, this study shows how deep learning can 
be applied in archaeology. The use of Bayesian optimization 
makes the method different from earlier studies and gives 
high accuracy and reliability. This interdisciplinary work 
creates a base for future research and opens new ways to 
study historical artifacts with artificial intelligence.
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