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ABSTRACT

Glioblastoma is characterized as the most common and lethal primary brain tumor among 
adults, glioblastoma is associated with enormous clinical management challenges due to its 
high rate of recurrence, poor prognosis and underlying complexity. Here we propose a study 
to improve the prediction of overall survival in GBM patients treated with stereotactic radio-
surgery using advanced image segmentation and machine learning techniques. In this paper, 
we propose a novel fusion of Cat Swarm Optimization based hybrid ResNet and U-Net models 
to achieve an accurate segmentation of the tumor as well as an ensemble of machine learning 
algorithms for survival prediction enabling us to overcome limitations of conventional tech-
niques. We demonstrate that on the BraTS2020 related regions we are able to produce almost 
perfect segmentations with metrics, like 99.2% segmentation accuracy,loss of 0.023, recall 
of0.986, a mean intersection over union (IOU) of 0.991, a dice coefficient of 0.96, a precision 
of 0.991, a sensitivity of 0.991, and a specificity of 0.997. For in the field of survival prediction 
we looked at many machine learning models which we found out that the Random Forest did 
an outstanding job at handling the complex issues presented by the segmented images. Also 
we saw that the Ensemble method did very well in this area which we report to have achieved 
60.01% accuracy. We present that which is the use of in depth image segmentation in com-
bination with machine learning greatly improves results in Glioblastoma survival prediction. 
Also this approach does not only improve the prognostic accuracy but also brings to the table 
what may be game changing elements in clinical management and personalized treatment.
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INTRODUCTION

The High degree of recurrence, poor prognosis, tumor 

heterogeneity, and limited treatment options are the main 

issues in Glioblastoma. Glioblastomas’ complex and het-
erogeneous nature contribute to poor overall survival and 
also to treatment issues. While we see an increase in the use 
of Stereotactic Radiosurgery (SRS) which is very precise in 
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its delivery of radiation therapy to the tumor thus sparing 
the surrounding healthy tissue we are still have issues in 
accurate patient outcome prediction. In the area of artifi-
cial intelligence (AI) which includes deep learning (DL) we 
are seeing very promising results in the identification and 
management of glioblastomas’ but still accurate prognosis 
is impaired by tumor complexity.

Our research has put forth a new approach which is a 
combination of Cat Swarm Optimization-assisted hybrid 
ResNet and U-Net architectures for accurate tumor seg-
mentation with machine learning algorithms for very 
robust survival prediction. This we have done to out per-
form traditional models which we do so by improving seg-
mentation accuracy and at the same time we are able to 
present more reliable survival predictions. We are into this 
with the aim to improve individualized treatment plans for 
GBM patients that are undergoing stereotactic radiosur-
gery. What we have done not only improves the care we give 
to glioblastoma patients but also we put forth the wide scale 
promise of AI driven methods in oncology and personal 
medicine. Our work gives out that which may be applied 
across many cancer types which in turn bridges the gap 
between very advanced AI techniques and clinical practice.

Related Work
The inroads that machine learning (ML) has made in 

brain tumor image analysis which includes the use of MPMRI 
scans [1] is a result of initiatives like the International 
Brain Tumor Segmentation (BraTS) challenge. In this field 
Semantic segmentation is a key element which which it 
enables the tell between target objects and adjacent tissues. 
As for the methods used, Fully Convolutional Networks 
(FCN) which use up sampling methods to do accurate pixel 
level labeling have proven to be very effective.

 To better predict overall survival (OS) we have seen the 
introduction of more complex approaches. For example a 
hybrid model which puts together a DenseNet based 3D 
neural network with a position encoding convolutional layer 
(PECL) [2] has been put forth. The model described above 
applies semi-supervised learning to minimize overfitting 
while extracting essential features from T1 contrast MRIs, 
T2 MRIs, and pre-segmented sub-regions. Furthermore, as 
previously mentioned, texture features retrieved from the 
MRI are useful for biologically characterizing subtypes in 
a noninvasive manner. Numerous researchers have been 
active in the area and have created various models and 
approaches. Thuong-Cang Phan [3] used MobileNet-V2, 

Table 1. Summary of literature review

Author Name and 
Reference No

Segmentation 
methods

Prediction methods Dataset Results

Raza et al., [10] 3D deep residual 
U-Net

hybrid of the deep 
residual network and 
U-Net model 

BraTS dice score for the tumor core (TC), whole 
tumor (WT), and enhancing tumor (ET) on 
the BraTS 2020 dataset of 0.8357, 0.8660, 
and 0.8004, respectively. 

Vijay, et al.,[11] 3D U-Net  residual Spatial 
Pyramid Pooling-
powered 

BraTS average dice score of 0.883 and a Hausdorff 
distance of 7.84 on Brats 2021 cross 
validation.

Yang D et al.,[12] tumor segmented 
Manually 

Ensemble classifier - 
Random Forest

Cancer 
Genome Atlas 
(TCGA)

Area Under Curve: 
0.62: features with aerial scan 
0.61 features with coronal scan 
0.62: features with sagittal scan

Montaha et al., [13] 2D U-net 
architecture

CNN BraTS acc of 99.41% and dice similarity coeff 
(DSC) of 93%

Sangui, S et al., [14] modified U-Net 
architecture

U-Net BraTS Test acc of 99.4%

Mohammadreza et 
al.,[15]

Res-Net 
Segmentation 
method

Random Forest BraTS Segmentation acc:0.80
Survival validation accuracy:0.45
Testing acc: 0.52

Fabian, et al.,[16] U-Net Segmentation 
Method

NA BraTS Segmentation Acc 
Core: 98%
Whole:96%

Muhammad Junaid 
Ali, et al.,.[17]

2D and 3D U-Net 
Segmentation 
method

Random Forest 
Repressors

BraTS Segmentation Acc
Dice Score: 78%
Prediction Acc:48%
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ResNet-101, and DenseNet-121 for tumor segmentation 
in detail and used 3D slicer tools for MRI imaging. Eyad 
Gad [4] explored an attention-based 3D UNet model for 
segmentation and claimed to have improved the segmenta-
tion by concentrating on useful portions of the image. IKE 
Purnama [5] used a modified U-Net and claimed to have 
improved detail and accuracy in the segmented images. 
Zhao J [6] proposed Uncertainty-aware Multi-dimensional 
Mutual Learning.

Gayathri Ramasamy [7] constructed a multi-modal 
modified Link-Net model utilizing Squeeze and Excitation 
ResNet152 as a segmentation backbone for improved seg-
mentation performance. Cihan M [8] applied convolutional 
neural networks for fusion of phase MRI images: pre-con-
trast, venous, arterial, and delayed phases. With all these 
advancements, there are still limitations on the applications 
of research results. Some studies, for instance, report an 
OS prediction accuracy of merely 44.8%, illustrating ongo-
ing difficulties in achieving dependable clinical results. 
A. Durgut [9] studies image processing using parallel and 
serial programming methods and finds parallel program-
ming reduces the time required for processing both whole 
and segmented images. Whole image processing outper-
formed segmented image processing. The research high-
lights the efficiency of parallel programming in improving 
image processing tasks. Table 1 provides further insights 
into related research contributions and their respective 
metrics.

Using nature-inspired optimization methods such as 
genetic algorithms as well as hybrid filters can provide 
solutions to the issues of brain tumor image analysis[18]. 
The improvement in the use of these approaches provide 
methods for optimizing hyperparameter parameters of a 
model, reduce the effects of over fitting and improve the 
original feature extraction to enhance model accuracy 
and generalizability. Through mimicking natural behavior 
and incorporating heterogeneous filtering methods, these 
approaches present a valuable strategy to enhance produc-
tivity and applicability of machine learning models for use 
in clinical settings.

MATERIALS AND METHODS

The issue we address in this work is that of accurate 
prediction of overall survival (OS) in glioblastoma multi-
form (GBM) patients that are undergoing stereotactic radio 
surgery (SRS). GBM is known for its aggressive nature and 
poor prognosis which in turn sees the rise of SRS as a key 
treatment modality for precise tumor cell targeting. That 
said accurately prognosticating OS in GBM patients post 
SRS is still a challenge which we put down to the heteroge-
neous nature of the disease and also to the variable patient 
responses to treatment. Also included are the goals of our 
work.
•	 Preprocessing the Dataset for feature extraction and 

classification by applying a Hybrid Bilateral_Gaussian 

Filter, and normalization to reduce noise, and improve 
performance.

•	 Segmentation for tumor by Cat Swarm Optimization 
for Medical Image Segmentation (CSO-MIS) assisted 
hybrid ResNet and U-Net deep learning model.

•	 Ensemble of popular machine learning algorithms—
Random Forest, KNN models, and SVM—as well as the 
deep learning model ANN are employed to predict the 
OS.

•	 To evaluate the performance. Compare accuracy, sensi-
tivity, specificity, and area under the ROC curve metrics

Implementation
Figure 1 showcases the remarkable process of Glioma 

sub region segmentation and predicting overall survival 
in glioblastoma patients using deep learning architecture. 
First out of the gate we do in depth pre processing of the 
BRATS 2020 dataset which we do to that very meticulous 
degree which we do for the sake of accuracy. Then we do 
segmenting which in turn does what it can to improve the 
accuracy of the results. Also we put the data into train, 
test, and validate sets which we do to make our analysis as 
through as possible. We see this approach to be very effec-
tive in that it puts out very high in terms of accuracy and 
reliability in what we predict for overall survival in patients 
with glioblastoma.

Dataset
As part of an annual challenge related to the segmenta-

tion of brain tumors using multimodal MRI scans, a set of 
datasets called brain tumor segmentation (BraTS) 2020 has 
been made available. The BraTS 2020 dataset contains gli-
oma patient magnetic resonance imaging (MRI) scans from 
different medical facilities. The participating institutions 
are focused on glioma scans. To ensure accuracy and repro-
ducibility of results, standardization of protocols has been 
done. The dataset also contains expert annotated delinea-
tions for various tumor subregions, which are essential for 
training supervised learning models. The delineations are 
demonstrated through:
•	 Label 1: Non-Enhancing Tumor Core (NCR/NET) 
•	 Label 2: Peritumoral Edema (ED) 
•	 Label 3: GD-enhancing Tumor (ET) 

For each case, clinical information such as the age of 
the patient is provided. Survival data, i.e., the number of 
days the patient survived post-initial diagnosis, might also 
be available for a subset of patients.

Data Preprocessing
To preprocess BraTS2020 MRI dataset, performed 

a sequence of normalization followed by application of 
hybrid filter for noise reduction. This approach ensures 
that the data is scaled properly and noise is reduced, which 
are crucial steps for improving the performance of down-
stream tasks like segmentation and classification. A crucial 
first step in data analysis, particularly in the domains of 
machine learning and image processing, is normalization. 
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This includes setting the data values onto a common scale so 
we can stabilize training processes and improve algorithm 
performance. Normalization can account for variability in 
intensity from medical images (e.g., MRI scans) that might 
occur due to the use of different scanning protocols, or 
machine calibration during scans from other institutions.

This process generally rescales image intensity val-
ues of MRI scans to a standard range of [0, 1] or [-1, 1], 
which enhances image comparison and analysis. Perform 

the normalization and then apply a Hybrid filter as given 
in Algorithm 1 to each slice to reduce noise. As given, the 
Hybrid filter reduces noise within the MRI images while 
improving the overall image quality with local analysis of 
pixel neighborhoods. This normalization and noise reduc-
tion with the Hybrid filter prepares the BraTS2020 MRI 
dataset for more effective analysis in segmentation models 
or other machine learning tasks by fostering higher quality 
images and greater consistency throughout the dataset.

Figure 1. Architecture diagram.
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HybridBilateral_Gaussian Filter

Model
The suggested work uses a ResNet encoder and a U-Net 

decoder which captures the advantages of both networks. 
This fused method uses the efficient feature extraction of 
ResNet and the segmentation characteristics of U-Net to 
achieve feature extraction and spatial information preser-
vation concurrently. The deep layers of ResNet improve the 
fine details retrieval, and U-Net’s encoder-decoder config-
uration accurately captures the details in precise segments. 
The residual connections of ResNet also address overfit-
ting to improv generalization. This enhances the model’s 
strength on the variability and complexity of the medical 
images, which make it difficult to analyze. This fusion has 
demonstrated state-of-the-art performance across segmen-
tation tasks, offering a powerful and robust solution for 
accurate tumor segmentation.

Resnet as Encoder U-Net As Decoder
To sufficiently segment brain tumors within the 

BraTS2020 dataset using the strengths of both ResNet 
and U-Net architectures, it is important to comprehend 
how ResNet may serve as an encoder in a U-Net frame-
work and how this bestows certain advantages, along 
with its influence on the overall functionality of the net-
work. The ResNet-Unet Architecture is represented in 
Figure 2. 

The encoder portion of U-Net, harnesses ResNet’s 
capacities for deep learning while the U-Net architecture 
allows for ample amount of local context with its skip con-
nections. This allows for ResNets reliable feature extraction 
via residual blocks, particularly with deeper architectures 
such as ResNet-50 or ResNet-101. Each residual block is 
fundamentally composed of two parts: several convolu-
tional layers that are viewable as executing the main oper-
ation; and a skip connection, which sums the block input 
with the block output. This particular arrangement solves 
the issue of vanishing gradients, expediting the ability to 
train deeper network architectures without degradation in 
performance because of sufficient gradient flow. U-Net in 
both its fundamental approach and framework for model 
development as well.

The methods given above are highly specialized 
for brain tumor segmentation and their development 
needed expertise and extensive experimentation [19]. 
The network gains from the ability to encode more 
abstract and complicated information from the input 
images when ResNet is used as the encoder in U-Net. 
This is especially useful for medical imaging jobs where 
it can be critical to discern minute distinctions between 
tumor types and normal tissues, such as tumor segmen-
tation in MRI scans. ResNet’s improved depth and fea-
ture extraction capabilities enable the network to collect 

Algorithm1: Hybrid Filtering (Bilateral_Gaussian Filter)

1
2
3

4
5
6

7
8
9

10
11
12

13
14
15
16

Input:
	 Original image org(𝑖,𝑗)
	 Gaussian sigma value 𝜎 for Gaussian filtering

Bilateral Filtering
	 Apply bilateral filtering to the org image to result a Denoised image
	 Denoised img: org_denoised(𝑖,𝑗)=denoise bilateral (org(𝑖,𝑗))

Gaussian Smoothing
	 Apply Gaussian smoothing to the org image with the specified sigma value to obtain a smoothed version.
	 Smoothed image: org_smoothed(𝑖,𝑗)=gaussian_filter(org(𝑖,𝑗),𝜎)

Hybrid Filtering
	 For each pixel (𝑖,𝑗)(i,j) in the image:
		  Calculate the hybrid filtered pixel value as the sum of the Denoised pixel value
			   and the difference between the org pixel value and the smoothed pixel value.

		  Hybrid filtered pixel value: 
			   hybrid_filtered(𝑖,𝑗)=org_denoised(𝑖,𝑗)+(org(𝑖,𝑗)−org_smoothed(𝑖,𝑗))
Output:
Return Hybrid filtered image: hybrid_filtered(𝑖,𝑗)
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the finer features and the larger context required for pre-
cise segmentation.

Mathematically, a residual block in ResNet can be repre-
sented as in equation 1:

	 Output = ReLU (BatchNorm (Conv (x))) + x	 (1)

Where: x is the input to the block, Conv denotes a convo-
lutional layer, Batch Norm represents batch normalization.

ReLU is the rectified linear unit activation function 
and +x represents the skip connection. Several residual 
blocks stacked together make up the encoder part of the 
network. The encoded representation is the output of the 
last residual block. In the U-Net decoder, the segmentation 
map is generated from the encoded features through the 
sequential processes of up convolution and concatenation. 
Up convolution (also termed transpose convolution) is a 
process in the decoder that enlarges the spatial dimensions 
of the feature maps. These up sample maps are then con-
catenated with the same connected feature maps from the 
encoder, via the skip connection.This procedure preserves 
spatial hierarchies, which aids in correct localization, and 
enhances the feature maps with fine-grained information 
required for exact segmentation.Mathematically, the up 
sampling operation can be represented as in equation 2 :

	 Upsampled = Conv(Upsample(x))	 (2)

Where x is the input to be up sampled, up sample 
denotes the up sampling operation, Conv represents a 

convolutional layer. Then, to incorporate skip connections, 
we concatenated the corresponding feature maps from the 
encoder with the up sampled feature maps in the decoder. 
The combined feature maps are then processed through 
additional convolutional layers to refine the segmentation 
mask.

Optimization
In this study we present our put forth of Novel Cat 

Swarm Optimization for Medical Image Segmentation 
(CSO-MIS). This Cat Swarm Optimization which we have 
used improves medical image segmentation by fine tun-
ing the parameters of the deep learning models we use for 
tumor segmentation. We apply CSO to optimize the hybrid 
ResNet and U Net architectures which in turn improves 
their performance in accurate tumor detection. By tuning 
hyperparameters and network settings we see an improve-
ment in segmentation accuracy and efficiency which in 
turn leads to better identification of key tumor areas. In 
this algorithm cats we see exploration of promising solu-
tions and at the same time we have elements of random 
exploration which together do a good job at the balance of 
exploration and exploitation to find high quality segmenta-
tions. Our algorithm has cats which over time play in and 
out of the solution space to do what it takes to find the best 
segmentations of the medical image..CSO is inspired by the 
hunting behavior of cats and their ability to cooperate to 
solve complex tasks. Here’s a simplified version of how CSO 
can be applies for this implementation:

Figure 2. ResNet-Unet architecture.
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Randomly initialize a cats population representing dif-
ferent sets of model parameters. for each iteration, Evaluate 
the fitness of each model (cat) using the fitness function 
and the training dataset. The fitness function is as given in 
equation 3.

	 	
(3)

Where: S is the predicted segmentation mask,
G is the ground truth segmentation mask,
|S∩G| is the number of overlapping pixels between S 

and G,
|S| and |S| are the total number of pixels in S and G 

respectively.
Update the present best solution based on fitness val-

ues. Update the position of each cat using the rules of CSO 
which include both exploitation (movement toward the 
best solution) and exploration (random search). The new 
position xi(t+1) of the i-th cat at time t+1 is given by the 
equation. 4:

	 xi(t+1) = xi(t)+η⋅(global_best−xi(t))
	 + 𝜖⋅rand()⋅(upr_bound−lwr_bound)	  (4)

Where: At time t the position of the i-th cat is x_i , and 
𝜂 is the learning rate. 

 Global_best is the best solution to date, 𝜖 is the explo-
ration rate. 

rand () returns a random number between 0 and 1. 
Upr bound and lwr bound define the solution space.
Update the best solution found so far based on the 

fitness of the cats’ positions. If any Cat finds which set of 

parameters performs better for improved segmentation 
results, report that as the best solution at present. Do this for 
a fixed number of iterations or until we see that the model 
has converged. Once the optimization process is done, train 
the segmentation model with the best set of parameters 
found by the CSO on the full training dataset. Then put the 
trained model to the test on a separate validation set to see 
how it does. This step also makes sure the model does well 
on data it has not seen before.

RESULTS AND DISCUSSION

The in Figure 3 we present a ROC curve which reports 
on a classification model’s performance across three differ-
ent classes. We plot True Positive Rate (sensitivity) against 
False Positive Rate which in turn gives us info into how 
the model does at different threshold levels. A curve that 
reaches towards the top left hand corner of the plot indi-
cates better performance which in turn means high sensi-
tivity and low false positives. By looking at the three curves 
we are able to see which class the model does best at iden-
tifying as well as the models’ overall performance which 
in turn may point out areas for improvement. Also if we 
see large deviations from the ideal curve that may indicate 
issues with the models’ predictions in certain areas which in 
turn may require more refinement. The dice coefficient for 
both the training and validation datasets over 50 epochs is 
presented in Figure 4. 

The plot represents an overall upward trend, indicat-
ing that segmentation accuracy improves as training pro-
gresses. This suggests that the model is learning effectively 
and becoming more accurate with each epoch for both the 
training and validation data.

Algorithm 2: Cat Swarm Optimization for Medical Image Segmentation (CSO-MIS)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
19
20

Input: Medical image img, Number of cats 𝑁m, Maximum iterations 𝑇, Learning rate 𝜂, Exploration rate 𝜖
Output: Segmented image 𝑆eg∗
Procedure:
Initialization:
	 Randomly initialize 𝑁m cats in the solution space representing potential segmentations of the image.
	 Set best solution found so far 𝑆eg∗=None and best fitness best_fitness=∞.
Main Loop:
	 for 𝑡=1 to 𝑇 do:
		  Update each cat:
			   Move each cat towards the best solution found so far with a probability of 𝜂.
			   else, randomly explore the solution space with a probability of 𝜖.
		  Evaluate the fitness of each solution (segmentation).
		  Update best solution:
			   if any solution has a better fitness than best_fitness then:
				    Update best_fitness and 𝑆eg∗ with the best-performing solution.
Segmentation Inference:
	 Use the best solution 𝑆eg∗ obtained from CSO to segment new medical images.
Output:
	 Segmented image 𝑆eg∗.
End
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Figure 5 shows the training and validation accuracy 
(left) and loss (right) over 50 epochs. From the accuracy 
curves showing the training and validation group data, we 
see that both are shifting in a consistent upward direction, 
suggesting that the model is improving in making accurate 
predictions over time. We also see that the loss curves are 
decreasing in a consistent manner, indicating that, as train-
ing continues, the model’s predictions are making fewer 
mistakes (errors) with each epoch. The general stability in 
the training and validation accuracy and loss curves sug-
gests that the model is learning to generalize from the train-
ing data to the validation data with no signs of overfitting, 
which improves overall model performance for segmen-
tation tasks. Figure 6 shows the Training and Validation 
Mean Intersection over Union (IOU) over 50 epochs, where 

the X-axis represents the epochs and the Y-axis shows the 
Mean IOU score. Both the Training and Validation Mean 
IOU scores show a steady, nearly identical increase, indicat-
ing consistent performance and minimal overfitting. The 
values approach high accuracy in image segmentation.

The final stage of the U-Net structure assigns each 
pixel a distinct class label ( an example is shown in Figure 7 
with labels including “NOT tumor,” “NECROTIC/CORE,” 
“EDEMA,” and “ENHANCING”). While it is the U-Net 
decoder that is providing precise localization of the features, 
ResNet encoder is providing distinct feature extraction pro-
viding a segmentation (i.e., class) map that preserves high 
resolution similar to the training dataset and test ground 
truth. The segmented brain tumors additionally classi-
fied into separate classes: i.e., core, edema, and enhancing 

Figure 3. ROC curve. Figure 4. Dice coefficient.

Figure 5. Training and Validation Accuracy and loss plot.
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tumor were represented collectively as the ground truth, 
and represent a comprehensive view of the tumor classes. 
This way of representing tumor classes will ultimately assist 
in data accuracy and reliability concerning deep learning 
based brain tumor segmentation.

The 99.2% segmentation accuracy in this study shows 
a significant improvement over common Glioblastoma 
segmentation methods due to the tumor’s complexity. 
This improvement is a function of the hybrid ResNet-U-
Net that leverages ResNet’s feature extraction and U-Net’s 
good spatial accuracy, which leads to the segmenting of the 
glioma accurately. The Hybrid Bilateral-Gaussian Filter is 
also instrumental in helping reduce noise and at the same 
time maintain the edges that are important for the model 
not to receive garbage inputs into the network. Also, CSO 
helps the model with hyperparameter tuning, which opti-
mized ResNet and U-Net for better performance. Overall, 
these techniques (ResNet-U-Net, CSO, Hybrid Bilateral-
Gaussian Filter) are better than existing approaches which 
means greater precision in Glioblastoma segmentation and 
better clinical decision-making.

Survival Prediction
The BraTS2020 challenge requires the use of a dataset 

that includes features obtained from segmented MRI brain 
images, patient age, and surviving days for survival analysis 
[20]. The aim is to predict overall survival (OS) through-
out intervals like short--, mid-, and long-term. To predict 
the Overall Survival time, radiomic and image-based fea-
tures were extracted. These features have been shown to be 
successful in different studies for OS tasks [21]. In order to 
approach the task, we used a process of feature extraction 
and engineering combined clinical data and the derived 
imaging features that describe the tumor size and region 
[22]. After which we trained a number of machine learn-
ing models e.g., frequently used methods-support vector 

machine (SVM), random forest, k-nearest neighbors, and 
artificial neural networks in the combined dataset. [23].

The first step in the procedure is gathering data, which 
includes patient demographics such as age, specific survival 
durations, and MRI images that are divided into different 
tumor locations (necrotic/core, edema, enhancing). We 
combined the volumetric and location features with the 
patient’s age to train a model using linear regression [24]. 
Quantitative properties of the tumor areas, including their 
size, shape, and intensity, are extracted from these MRI 
scans and are thought to have an impact on survival rates. 
Features can generate prognostic imaging signatures for OS 
prediction and patient stratification for GBM [25]. Which 
are very effective with a small number of training data? 
Random Forest is an ensemble algorithm that is made up of 
multiple decision trees and operates on them as an ensem-
ble. It is one of the most frequent [26].

Machine learning models like Random Forests, Support 
Vector Machines, or Neural Networks are then trained on 
this integrated dataset, which combines clinical data with 
imaging-derived features. To estimate how long patients 
with similar profiles will live after diagnosis, the models are 
trained to correlate the features with survival durations. All 
models were fit with knowledge that the models were finally 
tuned and evaluated with methods such as cross-validation 
to provide a safeguard against overfitting and optimize 
hyperparameters. All models were measured with accu-
racy, precision, recall, F1-score, and area AUC-ROC. These 
statistical methods provided a capacity for predicting sur-
vival with a compelling analysis that used advanced analytic 
techniques to improve health outcomes on a patient level. 
To visualize, Figure 8 provides a pictorial of survival rates. 
The x-axis is days survived, and the y-axis is people. This 
relationship with features may allow some associations to 
be developed in survival rates that may assist in developing 

Figure 6. Mean IOU plot.
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Figure 7. Segmentation results.

Figure 8. Survival data analysis.
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beneficial treatment for variations in patients with various 
medical conditions.

Figure 9 provides insight into the dependency of sur-
vival data and segmentation, determining whether the sur-
vival rate is more dependent on the core region, edema, or 
enhancing tumor. Based on the image, it appears that the 
survival rate depends largely on the edema region. This 
information can be useful in guiding the development of 
targeted treatment strategies for patients with glioblastoma.

As we evaluated predictive survival models, we explored 
a range of supervised machine learning models, which 
included random forest classifier, SVM, KNN, and ANN. 
Random forest produced the highest testing accuracy 
(0.54) and precision (0.8) but had a relatively low training 
score (0.37), which can be an indicator of a model that is 
not learning from the training data as we want. The other 
models we explored (i.e. the SVM, KNN, and ANN models) 
had similarly low performance, especially SVM and KNN, 
and overall had lower accuracy and precision than the ran-
dom forest model for testing. We used the three best mod-
els, Random Forest (RF), Artificial Neural Network (ANN), 

and support vector machine (SVM) to then enhance the 
overall prediction accuracy of survival using an ensemble 
strategy see Figure 10.

The ensemble model is here to be defined: 
•	 Random Forest (RF): Random Forest is an ensemble 

model that builds multiple decision trees and combines 
the model outputs, so it can model complex interactions 
between variables that single models may be unable to 
decode. Random Forest also provides feature impor-
tance scores that allow for the evaluation of which fac-
tors contribute most to the survival outcomes, which is 
important for clinical interpretation and personalized 
treatment models. 

•	 Artificial Neural Network (ANN): ANN builds on lay-
ers of nodes so that identifier complex, non-linear pat-
terns are possible in large datasets.

 •	 Support Vector Machine (SVM): SVM finds the opti-
mal hyperplane for dividing classes while performing 
especially well in higher dimensional spaces.
The Ensemble method (or approach) takes advantage of 

the unique strengths of each model (where each model has 

Figure 10. Ensemble model.

Figure 9. Feature visualization.
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unique strengths: Random Forest makes robust, low-vari-
ance predictions; ANN can model highly complex non-lin-
ear relationships; SVM can handle high-dimensional 
spaces). The power of the Random Forest algorithm is its 
ability to capture the complex relationships between the 
array of different features, which is particularly useful when 
working with high-dimensional medical data (for example, 
the imaging-derived features from GBM). However, the 
Random Forest and other models could not combine and 
capture all of the patterns in the data, which is what the 
ensemble method was intended for. Each model captures 
its own features of the available data and reduces the overall 
errors in prediction because the weaknesses of each indi-
vidual model are reduced by other models. However, by 
ensemble methods, predictions are based on a combined 
model with the strength of each individual model, pro-
viding more stability and robustness by dampening indi-
vidual model biases and variability. The ensemble method 
provides improved prediction accuracy and reliability and 
could be particularly advantageous for the difficult survival 

prediction for the cohort of Glioblastoma patients. The 
overall predicted value for an input given a model can be 
represented as follows

	 Ensemble Prediction=	(WRF.PRF)+(WANN.PANN)
		  +(WSVM.PSVM)	 (5)

Where: WRF​, WANN and WSVM​ are the weights assigned 
to the RF, ANN, and SVM models, and PRF, PANN and PSVM 
are prediction probabilities of RF, ANN, and SVM models 
respectively. The confusion matrix for the survival predic-
tion is represented in Figure 11. Table 2 displays several 
different models for prediction of survival outcomes with 
metrics, including accuracy, precision, training score and 
testing score. The Ensemble model, which attained the 
highest accuracy of 60.01% out of all models presented, is 
the best model for this type of data. Moreover, the Ensemble 
model achieved a precision score of 0.85 meaning that it 
is better at correctly predicting positive survival outcomes 
when present. Its model training score of 0.63 and model 

Table 2. Evaluation metrics

Model Accuracy Precision Training score Testing score
Random forest 0.54 0.8 0.37 0.54
SVM 0.41 0.6 0.45 0.41
KNN 0.37 0.6 0.43 0.37
ANN 0.41 0.7 0.32 0.42
Ensemble 0.60 0.85 0.63 0.60
SVM: Support vector machine; KNN: K-nearest neighbors; ANN: Artificial neural networks.

Figure 11. Confusion matrix of survival prediction.
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testing score of 0.60 indicate that the model generalizes suf-
ficiently to new or unseen data making it an ideal model for 
survival prediction tasks.

The Figure 12 compares the accuracies of segmentation 
and survival predictions made by different models. Each bar 
represents a different model. The survival prediction accu-
racy figure indicates that our models have different levels of 
correspondence with survival outcomes, with attainment of 
the highest accuracy from predicted survival, while other 
models performed on a moderate level indicating that some 
potential exists for improving survival predictions. In the 
segmentation prediction accuracy figure, our models were 
shown to be superior, attaining the highest accuracy, while 
the other models had lower accuracy. Thus, the other mod-
els may be less able to perform well with precise segmenta-
tion tasks.

This study differs from typical clinical management 
methods of survival prediction in Glioblastoma patients 
using BraTS2020 dataset in that, all we did was create 
an ensemble of advanced machine learning models (i.e., 
Random Forest, ANN, and SVM) to analyze all of the com-
plex imaging data in a more sophisticated manner than 
just clinical features and subjective manual interpretation. 
Typical clinical management of glioblastoma patients often 
relies on clinical features from prior research and clinical 
decision support systems to inform their suggested man-
agement. This approach may be subjective and the reli-
ability is somewhat less refined. The study’s approach used 
an advanced ensemble of models which captured complex 
data patterns found within the dataset and produced a 
more objective and precise prediction system. The added 
benefits of this approach include the ensemble produced 
a much better accuracy (60.01%), it generalized better to 
new data, and has the potential to enhance clinical decision 
making by having a more reliable prediction system for sur-
vival during clinical management of Glioblastoma patients.

CONCLUSION

Glioblastoma is the most common and aggressive form 
of primary brain tumor in adults that poses significant clin-
ical management difficulties including high rates of recur-
rence, poor prognosis, and complexity and heterogeneity. 
This study aims to improve predictions of overall survival 
for Glioblastoma patients treated with stereotactic radio-
surgery using advanced image segmentation and machine 
learning. We used Cat Swarm Optimization assisted hybrid 
ResNet and U-Net architectures to perform precise tumor 
segmentation and additional machine learning algorithms 
as an ensemble to make strong predictions of survival time.
Utilizing the BraTS2020 dataset, we accurately delineated 
three critical tumor regions: core, edema, and enhancing 
tumor. The segmentation model achieved remarkable met-
rics, including a segmentation accuracy of 99.2%, a loss 
of 0.023, a recall of 0.986, a mean intersection over union 
(IOU) of 0.991, a dice coefficient of 0.96, a precision of 0.991, 
a sensitivity of 0.991, and a specificity of 0.997. In this study, 
we evaluated a number of machine learning models for sur-
vival prediction, and prioritized using different machine 
learning models for survival prediction while the Random 
Forest algorithm was ranked the best tool for survival pre-
diction post deriving the features from segmented images 
due to its ability to handle the complexity of the features. 
Although the ensembling approach for survival prediction 
at 60.01% improved accuracy, these results demonstrated 
that there is a lot of potential to improve survival prediction 
for Glioblastoma patients in terms of clinical management 
and prognosis by utilizing advanced image segmentation 
methods with machine learning models. In future work 
using the BraTS dataset, advanced machine learning mod-
els, particularly Transformers to process spatial data should 
be employed. In addition, we can extend the use of multi-
modal data, which may include genomic profiles and com-
prehensive medical history, to improve prediction accuracy 
and provide personalized treatment strategies. Improving 

  

Figure 12. Comparision of results.



Sigma J Eng Nat Sci, Vol. 43, No. 5, pp. 1592−1606, October, 2025 1605

methods for data handling that can ensure privacy could 
result in a more broaden data demographic for a training 
dataset dataset. Performance and randomized controll 
trails in real-time clinical decision support systems could 
foster patient outcomes helpful toward personal medicine 
management. 
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