
Sigma J Eng Nat Sci, Vol. 43, No. 5, pp. 1636−1650, October, 2025

Sigma Journal of Engineering and Natural Sciences
Web page info: https://sigma.yildiz.edu.tr

DOI: 10.14744/sigma.2024.00156

ABSTRACT

Rainfall forecasting is a complex and critical problem faced by many meteorologists. Classical 
forecasting models are struggle to capture the seasonal variations and long-term trends in 
rainfall data. So, it is essential to develop a more robust method to rainfall forecasting. The 
Seasonal Autoregressive Integrated Moving Average (SARIMA) and Holt-Winters Additive 
(HWA) models are used for parallel hybridization, with optimal weights determined by the 
variance-covariance matrix method. We evaluated the proposed model using monthly rainfall 
data from Jan 1990 to Dec 2017 of Northeast (NE) India. This region is divided into five di-
visions based on rainfall pattern that are West Bengal and Sikkim (WBS), Arunachal Pradesh 
(AP), Assam and Meghalaya (AM), Gangetic West Bengal (GWB), and Nagaland, Manipur, 
Mizoram, and Tripura (NMMT). The developed model is performed better than the classical 
models like SARIMA, HWA, Exponential Smoothing (ETS), Holt model, and FeedForward 
Neural Network (FFNN) across all regions. In the WBS region, it achieved an RMSE of 0.0798, 
an MAE of 0.0453, an MSE of 0.0063, an sMAPE of 0.3939, a correlation of 0.9414 between 
actual and predicted values, and an NSE of 0.8855. These results have significant implications 
for flood and drought management, climate change adaptation, and agricultural planning, 
particularly in the context of increasing climate variability.
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INTRODUCTION

Predicting rainfall precipitation is the most challenging 
research because of its time and spatial variance. So, pre-
cipitation prediction plays a significant role in society. The 
rainfall precipitation variance affects agricultural produc-
tion, industry, and hydroelectric power generation, causing 
severe strain on the economy. The scarceness of monsoon 

rainfall rigorously affects large parts of the country [1,2]. 
Rainfall forecasting is important for minimizing drought 
and flood damages, improving farming production, and 
establishing appropriate irrigation plans [3].

Classical forecasting models estimate rainfall based 
solely on previous records, resulting in insufficient accu-
racy. To mitigate this issue, statistical approaches have been 
proposed. Statistical modeling is a significant approach 
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for testing, predicting, and deciding about hydrological 
cycle components. Over the past few decades, most of the 
acadamics have employed statistical techniques to address 
hydrological challeges [4–7].

The main factors influencing rainfall forecasts include 
monthly, annual, and seasonal cycles. In this article, we 
chose monthly rainfall data. Basically, in time series fore-
casting two types of models are used to predict: univariate 
model, and multivariate model. The multivariate time series 
models [6,8] are based on multiple parameters, including 
historical data, temperature, wind, and other influencing 
factors. Similarly, the univariate time series models [5,9–
11] are based on single time series data for making short 
and long-term forecasts. To investigate the impact of uni-
variate and multivariate time series models on the fore-
casting of rainfall, several forecasting techniques have been 
developed by many researchers. For accurate forecasting, 
some researchers concentrated on multivariate models. But 
it has some limitations: the availability of the data, and the 
complex structures of the model. So, our primary aim and 
objective of this study are to forecast rainfall precipitation 
using univariate time series models.

Considering the numerous monthly and seasonal pat-
terns in model parameters and estimates, univariate time 
series models can be extremely beneficial for demand fore-
casting. In our research, we analyze various univariate fore-
casting models used by researchers worldwide to address 
hydrological issues and select suitable models for hybrid-
ization to improve forecast accuracy.

The ARIMA is a univariate time series model that is 
commonly used for forecasting. Box and Jenkins intro-
duced the ARIMA model in the early 1970s. This model is 
also useful for identifying patterns in quasi time series. The 
ARIMA model is used to build the pure Seasonal ARIMA 
(p, d, q) (P, D, Q)s model [12]. In SARIMA model, the com-
ponents P, D, and Q represent the suitable “seasonal autore-
gressive, integrated, and moving average components and 
p, d, and q represent autoregressive, integrated, and moving 
average components” [13,14]. The SARIMA model is com-
monly utilized in climatology, technology, financial sta-
tistics, and manufacturing prediction. Some authors have 
studied hydrological data prediction and used the SARIMA 
model for analyzing precipitation patterns in different 
regions [15–17].

Holt [18] modified exponentially weighted moving 
averages to provide the trend and seasonal variation. expo-
nential smoothing is a common method for forecasting sea-
sonal data. A Modified version of the exponential model is 
called the Holt-Winters model. it is a statistical forecasting 
model in univariate time series techniques. This model is 
useful for seasonal time series data, and it is predicted well 
[5,7]. 

The Artificial Neural Network (ANN) model is inspired 
by the human brain which is connected by neurons. It uses 
artificial neurons connected in layers. This model helps 
in predicting the nonlinear part of rainfall data. So, many 

researchers used ANN models to forecast rainfall data 
[19–21]. 

Similarly, A univariate time series model for examining 
the level, trend, and seasonal elements of time series data 
is the exponential smoothing model. A modified form of 
the weighted moving average that takes trend and seasonal 
fluctuations into consideration is the Holt model [18].

Accordingly, we can integrate forecasts produced from 
the most precise forecasting systems for various forecast-
ing sources and ranges to reduce their susceptibility to 
weather changes as well as other seasonal patterns. Bates 
and Granger, [22] introduced the concept of the com-
bined forecast by adding weights to attach the individual 
forecasting method. Newbold and Granger,[23] compared 
the performance of the combined forecasts in terms of the 
ratio of average squared forecast errors. Averaging distinct 
forecasts, and combining forecasts helps reduce errors [24]. 
This is especially helpful when we are unsure about the best 
forecasting technique to apply. Winkler and Makridakis, 
[25] and others have made some significant contributions 
to combined forecasts of univariate time series models 
[26,27]. The combined forecast is a very productive way to 
achieve greater accuracy with minimum effort and time. 
We employ a novel strategy for this type of research. To 
employ the strategy, we used 28 years of monthly rain-
fall data (Jan 1990-Dec 2017) in NE India. NE India has 
a peculiar climate which means that the region receives 
rainfall during summer compared to other parts of India. 
We propose a novel parallel hybrid model using SARIMA 
and HWA models to forecast the rainfall precipitation in 
NE India. This approach assembles the unique modeling 
strengths of SARIMA and HWA. In terms of popular error 
metrics, the proposed model is compared with SARIMA, 
HWA, ETS, ANN, and Holt methods predicting accuracy 
in NE India.

Many existing forecasting models have high computa-
tional complexity for large scale applications and the scal-
ability is still another significant problem. These are the 
limitations of existing models. 

Our developed model overcomes this limitation by par-
allel processing, considering univariate dataset, improved 
forecasting accuracy.

In addition to addressing the significant limitations of 
the existing models, enhancements in our methodology 
pave the way for future study and implementation in the 
metrological department.

Objectives of the Study
The primary objective of this study is to develop a par-

allel hybrid model combining Seasonal Autoregressive 
Integrated Moving Average (SARIMA) and Holt-Winters 
Additive (HWA) methods for improved rainfall forecasting 
in Northeast India.

 The secondary objective is to compare the efficacy of 
the presented parallel hybrid model with existing forecast-
ing models to demonstrate its effectiveness and advantages.
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 The remaining article is organized as follows: The 
next section discusses the study area. Section 3 describes 
the data and methodologies of the SARIMA, HWA, ANN, 
and our proposed hybrid approach. Section 4 presents the 
empirical research evidence, which is followed by conclu-
sions in Section 5.

STUDY AREA

Northeast (NE) India is the easternmost region of the 
country. In this study, we collected monthly rainfall data 
for the period 1990 to 2017 for the homogeneous region of 
NE India (Figure 1). Arunachal Pradesh, Assam, Manipur, 
Meghalaya, Mizoram, Nagaland, Tripura, Sikkim, West 
Bengal, and Gangetic West Bengal were present in the 
Northeast Homogeneous Region. Based on the homogenous 
properties of rainfall patterns, these states are combined as 
NE India. Further, the subdivisions are made to analyze the 
monthly rainfall data series. The NE region of India shares 
its borders with various countries. This region shares an 
international border with several neighbouring countries. 
It is bounded by China in the north, Myanmar in the east, 
Nepal in the west and Tibet in the northeast, Bangladesh in 
the southwest, and Bhutan in the northwest. It has a total area 
of 262,230 square kilometres which is 8% of the total area 
of India [2]. This region has a humid subtropical climate. 

That is, it has mild summers, strong monsoons, and extreme 
cold. It has the largest area of rainforest in the rest of India. 
Some parts of Northeast India receive an annual rainfall of 
2000 mm. Arunachal Pradesh and Sikkim have an alpine 
climate with cold, frigid winters and warm summers [28]. 
Cherrapunji in Meghalaya receives rainfall throughout the 
year. The average annual rainfall of this place is 11,777mm. 
It is one of the rainiest regions of the world. 90% of the total 
rainfall of this region falls during the southwest monsoon. 
April to October is the rainy season and June and July are the 
heaviest rainy months [6]. 

DATA AND METHODS

Data 
The monthly average rainfall precipitation of NE India, 

data from January 1990 to December 2017, have been col-
lected from the Open Government Data Platform India 
(OGD) https://data.gov.in/rainfall-india. The 28 years of 
time series data were analyzed using the software R. To 
picture data, elementary statistics like Mean, Standard 
Deviation (SD), Minimum, and Maximum has calculated. 
Rainfall time series data were separated into training and 
testing datasets. Seventy percent of the data, from January 
1990 to June 2009, were used as the training dataset, while 

 

Figure 1. Study Area of Northeast India.

https://orcid.org/0000-0001-9743-6924


Sigma J Eng Nat Sci, Vol. 43, No. 5, pp. 1636−1650, October, 2025 1639

thirty percent of the data, from July 2009 to December 
2017, were used as the testing dataset. NE India has sepa-
rated into five regions based on similarity characterization 
of rainfall precipitation. They are West Bengal and Sikkim 
(WBS), Arunachal Pradesh (AP), Assam and Meghalaya 
(AM), Gangetic West Bengal (GWB), Nagaland, Manipur, 
Mizoram, and Tripura (NMMT). The statistical analysis of 
the NE India rainfall data region-wise is in Table 1.

Decomposing Time Series
It is used to find the trend and seasonal components 

in time series data. It indicates basic components like an 
irregular, trend, and seasonal components. In Figure 2, The 
first row indicates the observed time series, the second row 
indicates the estimated irregular or residual component, 
the third row indicates the estimated seasonal component, 
and the final row indicates the estimated trend component 
[29]. The observed time series shows up and down pat-
tern that indicates the rainfall data series remains seasonal. 
According to Figure 2, NE India’s rainfall time series data 
have a seasonal component, with regular increasing and 
decreasing trends occurring annually. By Figure 2, WB, 
and Sikkim, from 2000 to 2015, almost the same trend 
in rainfall precipitation. Arunachal Pradesh met a down-
ward trend from the year 2014 to 2017. GWB and AP met 

an almost downscale trend in 2010. In 2014, Nagaland, 
Manipur, Mizoram, Tripura, Assam, and Meghalaya had an 
increasing trend in rainfall precipitation. 

MATERTIALS AND METHODS

Normalizing the Data
The data must be pre-processed before implementing 

the forecasting models. In data-driven modeling methodol-
ogies, data pre-processing is often employed to reduce any 
anomalies, incomplete data, or inaccurate data [8]. For the 
whole rainfall dataset, the equation as follows is applied to 
normalize the time series data:

	 	 (1)

 Here, X is time series data, and Norm(X) is normalized 
X. we further use this value of rainfall data to compute the 
models and predict. 

SARIMA Model
The SARIMA model is the best linear model for uni-

variate data analysis and forecasting. it has been used to 

Table 1. Statistical Analysis for Northeast India rainfall data

a)WBS

Rainfall Data Minimum Maximum Mean SD CV
Actual Data 0 916.6 227.5658 233.8672 102.769
Training Data 0 916.6 235.6372 240.7008 102.148
Testing Data 0 777.9 209.049 217.3862 103.988

b)AP
Actual Data 0.6 857.2 220.1321 193.7594 88.019
Training Data 1.4 857.2 221.4679 196.3434 88.655
Testing Data 0.6 724.9 217.0676 188.6143 86.891

c)AM
Actual Data 0.2 848.4 203.9932 189.0011 92.650
Training Data 0.2 848.4 208.1372 190.8406 91.689
Testing Data 0.4 729.7 194.4863 185.2894 95.271

d)GWB
Actual Data 0 633.1 132.3313 141.1562 106.668
Training Data 0 610.1 137.2491 142.7586 104.014
Testing Data 0 633.1 121.049 137.4342 113.536

e)NMMT
Actual Data 0 619.4 179.8923 158.1471 88.26
Training Data 0 619.4 186.4244 161.7294 86.753
Testing Data 0.1 543.3 164.9069 149.2949 90.532
a) WBS- West Bengal and Sikkim, b) AP- Arunachal Pradesh, c) AM- Assam and Meghalaya,  d) GWB- Gangetic West Bengal, e) NMMT- Nagaland, 
Manipur, Mizoram, and Tripura. SD is short form of standard deviation and CV is coefficient of variation.
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forecast and simulate the behaviour of univariate time 
series data [4,30]. The SARIMA modeling is based on 
correlational approaches, which must be utilized to rep-
resent components that are not obvious in the available 
data. The steps involved in predicting rainfall precipita-
tion in NE using SARIMA are stationarity check, identifi-
cation, and selection. The stationarity of time series data 
has been checked by Autocorrelation Function (ACF) and 
Partial Autocorrelation Function (PACF) values. Also, the 
statistical test, Augmented Dickey–Fuller (ADF), has been 
applied. 

its general form of ARIMA (p, d, q) (P, D, Q) s is as fol-
lows [29].

	 φ(B)φ(Bs)(1 − B)d(1 − Bs)D(Zt-μ) =  θ(B)θ(Bs)∈t	 (2)

Here, φ(B) = 1 − φ1B − φ2B2 − … − φpBp

(The p order of the AR term),
θ(B) = 1 − θ1B − θ2B2 − …− θqBq

(The q order of the MA term),
φ(Bs) = 1 − φ1Bs − φ2B2s − … − φPBPs 

(The P order of the seasonal AR term),
θ(Bs ) = 1 − θ1Bs − θ2B2s − … − θQBQs

(The Q order of the seasonal MA term)

and ∈(t) ~ WN(0, σ2),  the difference d: quasi number, s is 
the absolute value which is always higher than one. Here µ 
is 0, if d or D is greater than 0. The ACF and PACF func-
tions are used to estimate the model’s order. The param-
eterization process is computed by maximum likelihood 
approaches after the model order has been determined 
by the Akaike information criteria, Bayesian information 
criteria, and other model selection criteria. The best fitted 

 Figure 2. Decomposition of Time Series.
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SARIMA models for these regions are selected by the mini-
mum value of RMSE, MAE, sMAPE, and MSE.

Holt-Winter Additive Method (HWA)
This approach uses a weighted moving average. It is 

used to evaluate seasonality, trend, and level [31]. The equa-
tions for Holt-Winters’ additive approach for a series {Xt} 
with period m are: 

	 	 (3)

	 	 (4)

	 	 (5)

	 	 (6)

 In this case, the smoothing estimates of level, trend, 
and seasonality at time t are represented by the variables At, 
Bt, and Ct, respectively. The smoothing parameters are γ, α, 
and β. They are employed to distinguish between the effects 
of recent and old observational data. In Eq. (6), The time 
series data’s level at time n is represented by An and its trend 
at time n is represented by Bn. The trend is represented by 
ℎBn, and the seasonal effect is represented by Cn+h-m (for 
yearly data m = 12, Cn+h-12 is the expected seasonal in the 
corresponding month of the previous year). For point fore-
casting and model evaluation, we utilize the R software’s 
“forecast” package.

Feed Forward Neural Networks (FFNN)
It is a type of ANN which is very good at stimulating the 

nonlinear patterns generally present in time series data from 
the real world [19]. Layers of synthetic neurons that mimic 
the neuronal connections seen in the human brain compose 
these models. The standard form of this model is NNAR (p, 
k); here ‘p’ stands for the number of lag inputs and ‘k’ for 
the number of hidden layers. The seasonal variant of FFNN 
model is indicated as NNAR (p, P, k). its working flow is sin-
gle forward direction there is no recurrent or backward con-
nections. There are no connections between neurons in the 
same layer [20]. A single hidden layer is typically included in 
NNAR models to reduce overfitting and make training and 
interpretation easier. This model is trained using “neuralnet” 
package in R. Based on the data it will optimizes the model 
parameters for better predicting by automatically choosing 
the sizes of the lag and hidden layer.

Proposed Methodology
The idea of integrating forecasts was initially proposed 

by Bates and Granger [22], who added weights to each fore-
casting technique. By integrating the predicted values from 
various models, they developed a linear hybrid model. A 
hybrid model’s output is a linear combination of the results 

that each model predicted, with the proper weights for each 
model determined by different kinds of techniques. Simple 
summing of predicted values, proportional MSE, and pro-
portional forecast squared errors are a few ways to compute 
these weights [23, 26]. The time series models were recently 
merged by Najafabadipour et al. [27] utilizing particular 
weights that were obtained from the least squares approach.  
 Existing univariate rainfall forecasting methods have var-
ious drawbacks, as was previously mentioned. Whenever 
rainfall estimates are created with these techniques, such 
errors may compromise the reliability of distribution sys-
tems. We introduce a hybrid forecasting model designed 
especially for Northeast India to increase the precision of 
rainfall predictions. The parallel hybrid structure’s funda-
mental structure is as follows:

	 	 (7)

 Here, The entire combination variable is denoted by 𝜑, 
and the adjusted predicted value of every single model at 
time t is indicated by  (𝑖 = 1, 2, …, 𝑛) [11,32].

 Each predicted value is multiplied by its appropriate 
weight to determine the final forecast, which is obtained 
after applying the original data to each individual model. 
The parallel hybridization method, which combines a num-
ber of linear models, is used in this work to merge several 
forecasting models. The weighted forecasts from each sepa-
rate model are added together to produce the final forecasts. 

Holt-Winters Additive (HWA) and Seasonal 
Autoregressive Integrated Moving Average (SARIMA) are 
two univariate models that we unified in this study. Both 
the HWA and SARIMA models were used to generate fore-
casts for rainfall data in five different regions, and the preci-
sion of each model was evaluated. SARIMA outperformed 
HWA in most cases.

Thus, we merged the models as SARIMA-HWA or, in 
certain situations, as HWA-SARIMA. Eq. 8 yields the com-
bined prediction model, and Eq. 9 computes the forecasting 
error. The variance-covariance matrix approach is used to 
calculate the weights. Figure 3 represents the flow chart of 
the proposed methodology. The following equation is then 
used to combine the results of the two prediction models:

	 	 (8)

	 	 (9)
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 Here w1 and w2 are the weights of first model’s forecast, 
and weights of second model’s forecast, respectively. The 
predicted value for the ith model is fit. The following is how 
the weights are determined:

	 	 (10)

	 	
(11)

 SARIMA and HWA error values are e1 and e2, respec-
tively. We calculate var(e1), var(e2), and cov(e1, e2), to deter-
mine w1 and w2. Then, we derive w1 and w2 using Eq.10 
and 11. 

Performance Statistics for Model Evaluation
 This research examines the efficiency of the fitted mod-

els in terms of the statistical indicators, like RMSE, MAE, 
MSE, sMAPE, NSE and Correlation Coefficient (R)

	 	 (12)

	 	 (13)

	 	 (14)

	 	 (15)

	 	 (16)

	 	
(17)

 Here, Xi and Yi stand for real and predicted values, 
respectively. The set of data obtained is indicated by n. 
Prediction accuracy is indicated by RMSE, MSE values 
close to zero, and R and NSE values around one. When 
using real time series data to analyze and validate a hydro-
logical model, NSE is the most widely utilized efficiency 
criteria [33].

RESULTS AND DISCUSSION

As discussed earlier, the normalized rainfall data has 
been used to model the proposed methodology. This meth-
odology aims to combine univariate models to accurately 
forecast rainfall. The univariate models used for forecasting 
rainfall in Northeast India include SARIMA, Holt-Winters 
Additive (HWA), Feedforward Neural Networks (FFNN), 
Exponential Smoothing State Space Model (ETS), and the 
Holt Model When it comes to rainfall forecasting, each of 
these models is important. The performance of each fore-
casting model determines whether it should be hybridized.

SARIMA Model
The steps involved in forecasting rainfall precipitation 

using the SARIMA model include checking for stationarity, 
model identification, and selection. We conducted forecasts 
for each region of Northeast India following these steps. To 
determine the stationarity of each region’s rainfall data, 
we used the Augmented Dickey-Fuller (ADF) test with a 
p-value threshold of 0.05 and a lag order of 6. All regions of 
Northeast India had p-values less than 0.05, indicating that 
the normalized time series data for each region is station-
ary and the detailed results are presented in Table 2. The 
normalized time series data of each region of NE India is 
stationary. The SARIMA model was discovered and cal-
culated using R software. The p, q and P, Q of the model 
is derived using the maximum likelihood approach. The 
Akaike information criterion (AIC) utilized to evaluate the 
model. The model with the lowest AIC, RMSE, MAE, MSE, 
and sMAPE is among the models chosen as the best-fitted 
model. 

From Table 3, the ARIMA (1,0,1)(2,1,1)12 model was 
selected as the best fit for the data in the WBS region of 

Figure 3. Flow chart of the Proposed Methodology.
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Northeast India, with a minimum AIC value of -367.4906. 
This model has been used to forecast rainfall precipitation 
for the next 60 months, accounting for seasonal variance. 
Furthermore, ARIMA (1,0,1) (1,1,1)12 was determined as 
the most suitable model for rainfall forecasting in AP, with 
an AIC = -320.87. The ARIMA (1,0,1) (1,0,1)12 model was 
determined for AM, with An AIC = -415.86, and ARIMA 
(1,0,0) (1,1,0) 12 was chosen for GWB, with an AIC = 
-306.16. For NMMT, the ARIMA (1,0,1) (1,0,1) 12 model 
was effective, with an AIC value of -300.55. In Northeast 
India, these models were shown to be the most effective for 
predicting rainfall.

Table 4 presents the prediction accuracy of the selected 
SARIMA models for each region. The results of the 
SARIMA model for the WBS region are as follows: RMSE 
= 0.0855, MAE = 0.0539, MSE = 0.0073, and sMAPE = 
0.4611. The true and projected values had a 0.9322 cor-
relation, with a hydrological value of 0.8686 for the model. 
In the AP region, the selected model provides: RMSE = 
0.1248, MAE = 0.0879, MSE = 0.0155, sMAPE = 0.6727, 
a correlation = 0.8327, and a hydrological model value of 
0.6894. For AM, the SARIMA model gives RMSE = 0.1052, 
MAE = 0.0748, MSE = 0.0110, sMAPE = 0.5606, a correla-
tion = 0.8784, and a hydrological model value of 0.7655. In 
GWB, the selected model results : RMSE = 0.1257, MAE 
= 0.0758, MSE = 0.0158, sMAPE = 0.7533, a correlation 
= 0.8187, and a hydrological model value of 0.6549. For 
NMMT, the SARIMA model yields RMSE = 0.0992, MAE 
= 0.0737, MSE = 0.0098, sMAPE = 0.6144, a correlation = 
0.7753, and a hydrological model value of 0.9135.

The forecasting of monthly average rainfall for all 
regions of Northeast India was conducted after creating 
the appropriate time series models. The monthly data from 

January 1990 to June 2009 were used for model validation, 
while the data from July 2009 to December 2017 were used 
for testing the forecasts. Using the chosen SARIMA mod-
els, Figure 4 shows the rainfall forecasting values for all of 
Northeast India’s areas from July 2009 to December 2022. 
The blue line represents the predicted values, while the 
black line represents the actual values.

HWA Model
The Holt-Winters Additive (HWA) model was 

described in the technique section. The steps required in 
making predictions using the HWA model and analyzing 
the outcomes will be covered in detail in this section. Given 
that this model is a parametric approach, its parameters 
must be assigned weights. A higher weight means that the 
model gives the most recent observed data a higher priority 
when making predictions.

Using the best-fitting HWA models for all of Northeast 
India’s areas, Figure 5 displays the rainfall predicted values 
from July 2009 to December 2022. The blue line represents 
the predicted values, while the black line represents the 
actual values. It is evident that the HWA model predic-
tions in Northeast India follow the same seasonality as the 
historical data. To evaluate the performance of these pre-
diction models, statistical measures such as RMSE, MAE, 
MSE, sMAPE, correlation coefficient R, and Nash-Sutcliffe 
Efficiency (NSE) are summarized in Table 4.

In the WBS region, the HWA model produces an RMSE 
value of 0.0983, an MAE value of 0.0792, an MSE value of 
0.0096, an sMAPE value of 0.9981, a correlation coefficient 
of 0.9360, and a hydrological model value of 0.8262. For AP, 
the selected model yields an RMSE value of 0.1224, an MAE 
value of 0.0845, an MSE value of 0.0149, an sMAPE value 

Table 2. ADF test for monthly rainfall precipitation data

Rainfall Data Test Calculated Value Lag order P value Comment
WBS ADF -17.024 6 0.01 Stationary
AP ADF -12.88 6 0.01 Stationary
AM ADF -15.011 6 0.01 Stationary
GWB ADF -15.248 6 0.01 Stationary
NMMT ADF -13.314 6 0.01 Stationary

Table 3. Selected SARIMA model for monthly rainfall of each region of NE India

Region SARIMA model AIC RMSE
WBS ARIMA (1,0,1) (2,1,1) 12 -367.4906 0.0855
AP ARIMA (1,0,1) (1,1,1) 12 -320.87 0.1248
AM ARIMA (1,0,1) (1,0,1) 12 - 415.86 0.1052
GWB ARIMA (1,0,0) (1,1,0) 12 -306.16. 0.1257
NMMT ARIMA (1,0,1) (1,0,1)12 -300.55 0.0992
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of 0.4539, a correlation coefficient of 0.8329, and an NSE 
value of 0.6770. In AM, the HWA model gives an RMSE 
value of 0.0983, an MAE value of 0.0732, an MSE value 
of 0.0096, an sMAPE value of 0.8173, a correlation coeffi-
cient of 0.8978, and a hydrological model value of 0.7955. 
In GWB, the HWA model produces an RMSE value of 
0.1122, an MAE value of 0.1933, an MSE value of 0.0126, an 
sMAPE value of 1.1094, a correlation coefficient of 0.8583, 
and an NSE value of 0.7247. For the NMMT region, the 

HWA model results in an RMSE value of 0.1137, an MAE 
value of 0.0864, an MSE value of 0.0129, an sMAPE value 
of 0.8889, a correlation coefficient of 0.8287, and an NSE 
value of 0.9186. 

FFNN Model 
In the methodology section, the Feedforward Neural 

Network (FFNN) methodology was explained. This part 
details the processing steps for prediction using the FFNN 

Table 4. Comparison of error measures for Best fitted models of monthly rainfall data series

West Bengal and Sikkim (WBS)

Rainfall Data RMSE MAE MSE sMAPE NSE R
HWA-SARIMA 0.0798 0.0453 0.0063 0.3939 0.8855 0.9414
HWA 0.0983 0.0792 0.0096 0.9981 0.8262 0.9360
SARIMA 0.0855 0.0539 0.0073 0.4611 0.8686 0.9322
FFNN 0.0944 0.0688 0.0089 0.6474 0.8397 0.9196
ETS 0.0861 0.0613 0.0074 0.8972 0.8666 0.9370
Holt 0.5373 0.4461 0.2887 1.6844 -4.4490 0.0240

Arunachal Pradesh (AP)
HWA-SARIMA 0.1206 0.0791 0.0145 0.3765 0.6986 0.8399
SARIMA 0.1248 0.0879 0.0155 0.6727 0.6894 0.8327
HWA 0.1224 0.0845 0.0149 0.4539 0.6770 0.8329
FFNN 0.1710 0.1239 0.0292 0.6104 0.3825 0.6481
ETS 0.1628 0.1060 0.0265 0.5230 0.4402 0.6866
Holt Model 0.2263 0.1909 0.0512 0.8546 -0.0817 0.1213

Assam and Meghalaya (AM)
SARIMA-HWA 0.0961 0.0644 0.0092 0.4284 0.8046 0.8977
SARIMA 0.1052 0.0748 0.0110 0.5606 0.7655 0.8784
HWA 0.0983 0.0732 0.0096 0.8173 0.7955 0.8978
FFNN 0.1058 0.0789 0.0112 0.6411 0.7627 0.8688
ETS 0.1017 0.0746 0.0103 0.5441 0.7843 0.8934
Holt Model 0.2281 0.0520 0.1959 1.0569 -0.0139 0.0452

Gangetic WestBengal (GWB)
SARIMA-HWA 0.0169 0.0572 0.0114 0.6630 0.7503 0.8681
SARIMA 0.1257 0.0758 0.0158 0.7533 0.6549 0.8187
HWA 0.1122 0.1933 0.0126 1.1094 0.7247 0.8583
FFNN 0.1299 0.0907 0.0168 0.7851 0.6314 0.8075
ETS 0.1186 0.0798 0.0140 0.7479 0.6164 0.8469
Holt 0.3635 0.3330 0.1321 1.2120 -2.6012 -0.0575

Nagaland, Manipur, Mizoram, and Tripura (NMMT)
HWA-SARIMA 0.0834 0.0496 0.0069 0.4926 0.9382 0.8793
HWA 0.1137 0.0864 0.0129 0.8889 0.9186 0.8287
SARIMA 0.0992 0.0737 0.0098 0.6144 0.9135 0.7753
FFNN 0.1420 0.0956 0.0201 0.6802 0.6493 0.8156
ETS 0.1016 0.0757 0.0103 0.7368 0.8203 0.9094
Holt 0.4333 0.3655 0.1878 1.0205 -2.4605 -0.0839
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model, as well as the analysis of the results produced [31]. 
The artificial neural network model serves as an alternative 
to the SARIMA model for time series forecasting, captur-
ing non-linear patterns in the data. In this study, we used 
a single hidden layer FFNN with one output node. Figure 
6 displays the rainfall forecasting values for all regions of 
Northeast India. From Figure 6, it is evident that the FFNN 
model’s predictions for each region follow the same season-
ality as the historical data. The RMSE, MAE, MSE, sMAPE, 
correlation coefficient R, and Nash-Sutcliffe Efficiency 
(NSE) values for each region are summarized in Table 4.

 The ETS and Holt models were forecasted using R soft-
ware. Performance statistics for each model are shown in 
Table 4. The Holt model struggled with seasonal volatility 
when applied to this rainfall time series data. The HWA 
model outperformed the FFNN model in terms of error 
metrics, making it the best option. In comparison to the 
other models in the table, the SARIMA and HWA models 
exhibit superior performance. Although FFNN is also suit-
able for rainfall forecasting, it is less effective than SARIMA 
and HWA. Therefore, the ETS andHolt models were 

disregarded. We will proceed with combining the SARIMA 
and HWA models.

Proposed Methodology
To combine the selected forecasting models, we used the 

variance-covariance matrix method to calculate the weights 
for each model. The weights for each forecasting model 
were determined using Eq. 10 and Eq. 11. Subsequently, 
forecasts and error values for the proposed model were 
computed using Eq. 8 and Eq. 9. Figure 7 shows the fore-
casted values of all regions of NE India using the proposed 
method. Blue line denotes the predicted values and the red 
line denotes the actual values.

The HWA- SARIMA model was chosen as effective 
model for WBS region. Since, RMSE value of 0.0798, MAE 
of 0.0453, MSE of 0.0063, sMAPE of 0.3939, a correlation 
between actual and predicted values of 0.9414, and an NSE 
value of 0.8855. For AP, the HWA-SARIMA model pro-
duced an RMSE of 0.1206, MAE of 0.0791, MSE of 0.0145, 
sMAPE of 0.3765, NSE of 0.6986, and a correlation value 
of 0.8399. In AM, the SARIMA-HWA model resulted in an 
RMSE of 0.0961, MAE of 0.0644, MSE of 0.0092, sMAPE of 

 
Figure 4. Forecast from best fitted SARIMA model for rainfall data series of Northeast India.
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0.4284, NSE of 0.8046, and a correlation value of 0.8977. For 
GWB, the SARIMA-HWA model gave an RMSE of 0.0169, 
MAE of 0.0572, MSE of 0.0114, sMAPE of 0.6630, NSE of 
0.7503, and a correlation value of 0.8681. In NMMT, the 
HWA-SARIMA model achieved an RMSE of 0.0834, MAE 
of 0.0496, MSE of 0.0069, sMAPE of 0.4926, NSE of 0.9382, 
and a correlation value of 0.8793.

These results indicate that the proposed methodology 
is more accurate than the existing forecasting models. The 
proposed approach is highly effective for rainfall forecast-
ing. Table 4 demonstrates that the combined model out-
performs the individual models and benchmark methods 
such as the ETS and Holt models, confirming that combin-
ing the best individual forecasting models yields superior 
performance.

Using monthly rainfall precipitation data from 1990 to 
2017, we employed R software to forecast rainfall from 2018 
to 2022. We proposed a hybrid statistical model for each 
region of Northeast India and compared it with individual 
models, including the ANN model. The results indicate that 
the proposed hybrid model outperformed the individual 

forecasting models. Consequently, we used this model to 
forecast rainfall precipitation in Northeast India for the 
next 60 months (see Figure 7).

 Rainfall patterns in Northeast India are becoming 
more unpredictable and intense. It is a sign of larger shifts 
brought on by global climate change. Recent research indi-
cates that climate change is causing extreme rainfall and 
other weather events. From a 28-year study period of rain-
fall data, the state of Assam receives most of its rainfall in 
July, with a 21% variation when looking at historical data. 
Meghalaya receives 71% of its rainfall during the monsoon 
period. This area has decreasing trend in rainfall precipi-
tation. Arunachal Pradesh had the rainfall in July, with a 
31 percent variation. The state of Nagaland receives most 
of the rains in the month of July with 30% variation in 
monsoon rainfall when looking at historical data. Twenty-
five percent of the total rainfall has varied [34]. Manipur 
has a consistent pattern. Mizoram has shown a consistent 
trend for overall rainfall. But while analysing the monthly 
trend, it shows little variation with a significant decrease in 
the number of rainy days. Tripura has a decreasing trend, 

 
Figure 5. Forecast from best fitted Holt Winter’s Additive Model for rainfall data series of Northeast India.
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even though it is not meaningful. Sikkim and West Bengal 
Monsoon rainfall increased slightly with a 23% variation. 
The month of July received the most rain. Gangetic West 
Bengal receives its highest rainfall in the month of June 
[35].

 The choice of the preferred model based on univariate 
models may vary with different data sets. Therefore, it is 
crucial to evaluate all time series models for any location 
and hydrological factor to select the most suitable model for 
our needs. Our results indicate that statistical models are 
the most successful methods for rainfall prediction. They 
are very successful in identifying changes in rainfall time 
series components.

Applications of proposed model:
Flood Control: our proposed model is greatly benefi-

cial in flood risk assessment and management. Experts can 
lessen the impact of floods on communities that are already 

at risk by implementing early warning systems. They can 
taking preventative action when periods of heavy rainfall 
are anticipated.

Drought Preparedness: On the other hand, precise 
forecasts of decreased precipitation can help with drought 
resilience.

Infrastructure and Urban Planning: Designing and 
building sturdy structures requires an understanding of 
shifting rainfall patterns.

Policy and Decision-Making: The results highlight 
how crucial it is to incorporate climate change issues into 
national and regional policies. The model’s insights can be 
used by policymakers to create more comprehensive and 
proactive plans to tackle the long-term problems caused by 
climate change, especially in regions that are vulnerable to 
drought and flooding.

Figure 6. Forecast from Feed Forward Neural Network forecasting model rainfall data series of Northeast India.
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In conclusion, the urgent necessity for adaptation mea-
sures is highlighted by the evidence of climate change rep-
resented in our rainfall projections. Our work supports 
sustainable development in the region by contributing to 
larger efforts to safeguard against the growing dangers 
connected with climate change by offering more accurate 
projections.

CONCLUSION

The fundamental purpose of this research is the design 
of a cohesive forecasting model. In order to enhance the 
accuracy of precipitation forecasts, our proposed model 
integrates the benefits of both the HWA and SARIMA 
frameworks. In this time series data, linear trends captured 
by the SARIMA model and the HWA model is proficient in 
detecting seasonal fluctuations. Finally, we have developed 
a combination method that optimizes overall forecasting 
efficacy by combining these models.

 For rainfall forecasting, earlier studies, like [7], only 
used univariate models like HWA and ETS. But These mod-
els are not suitable for time series data that have seasonal 
variability, like Northeast India. According to our results, 
the HWA performed poorly in areas such as NMMT, with 
sMAPE values considerably greater than those derived 
from the suggested hybrid model.

 Our suggested model is appropriate for application in 
the meteorological field due to its high accuracy. It makes 
easier to analyze and predict a range of hydrological data, 
such as groundwater levels and rainfall precipitation. 
Our model’s accuracy and resilience make it appropriate 
for a variety of forecasting scenarios and useful in a wide 
range of areas. Hybrid model performs better than individ-
ual models and has applications in resource management, 
agricultural planning, and catastrophe preparedness. Its 
use could help reduce the hazards associated with extreme 
weather events like droughts and floods brought on by cli-
mate change throughout different parts of the world. 

Figure 7. Forecast from combined statistical forecasting model rainfall data series of Northeast India.
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 Future studies may investigate applying the parallel 
hybrid model to different places with diverse climatic cir-
cumstances to assess its wider application. Furthermore, 
introducing other factors such as temperature, wind speed, 
and humidity into the forecasting models could boost pre-
diction accuracy by capturing more complicated interac-
tions within the climate system.
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