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ABSTRACT

Weibull distribution has been used vastly for modeling the fracture strength of ceramic and 
composite materials. Estimating the Weibull modulus is an important problem, particularly 
in cases where the sample size is small due to high experimental costs. The Ordinary Least 
Squares (OLS) method is the most commonly used method by materials scientists. Numerous 
probability estimators have been proposed using the OLS method, and most of these studies 
focused on unbiased estimation. Weighted Least Squares (WLS) is a promising alternative to 
OLS, yet, there are only a few studies on this subject. This work followed a systematic analysis 
to develop a new probability index for unbiased estimation of Weibull modulus using WLS. 
For sample sizes less than 60, the performance of the new index is shown to be significantly 
superior to currently used OLS methods and is better or as good as the Maximum Likelihood 
Estimation method.
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INTRODUCTION

The Weibull distribution is one of the most widely 
used probability distributions in life testing and reliability 
studies. The distribution was developed by Weibull [1] and 
has found use in many different areas of application such 
as wind-speed data analysis [2–5], unemployment dura-
tion analysis, survival analysis as well as reliability analysis 
[6]. One major application area is the modelling statistical 
variation in the fracture strength of many materials such 
as advanced ceramics, metallic matrix composites and 
ceramic matrix composites [7–9], and strength of micro 
and nano structures [10]; it is also used to describe the 

fracture toughness behavior of steels in ductile-brittle tran-
sition region [11], and fatigue behavior of metals [12,13]. 

The two-parameter Weibull distribution function is 
given by

(1)

where m is the shape parameter or Weibull modulus, s0 is 
the scale parameter or characteristic strength of the distri-
bution, and F is the fracture probability of the material at or 
below uniaxial tensile stress s. Weibull modulus, m, reflects 
the inherent variability in strength of a material: the higher 
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the m the lower the dispersion of fracture stress. It is gen-
erally independent of the size of the material, assuming the 
material composition and microstructure remain consis-
tent. For example, if test specimens with different cross-sec-
tional areas used in uniaxial compression and extension 
tests, their Weibull modulus remains the same. The scale 
parameter, on the other hand, is closely related to the mean 
fracture stress, and it changes with the cross-sectional area.

The Weibull parameters m and s0 are estimated from a 
sample of strength measurements. High experimental costs 
limit the number of samples to be tested. Therefore, meth-
ods achieving high estimation precision with small sample 
sizes are highly desirable [14]. In practice, the Ordinary 
Least Squares (OLS) method and the Maximum Likelihood 
Estimation (MLE) method have been the most commonly 
used methods for estimating these parameters in general 
reliability applications [15]. In materials science, the OLS 
method remains the most popular due to its simplicity 
and ease of use [16], while the MLE method is considered 
a standard method in important references such as [17] 
due to its well-known distributional optimality properties 
in large samples [15]. Both of the methods produce biased 
estimators, therefore there are many studies for bias cor-
rection. One approach is using empirical correction factors, 
[18] is an example for MLE, and [19–21] are some recent 
studies for OLS; and the other approach is to satisfy unbi-
asedness through developing a probability index to be used 
in OLS. Davies [16,22] provides a detailed literature review 
and a thorough discussion of how such indices can be 
developed. Despite this focus on the two-parameter model, 
recent research has explored the potential of the three-pa-
rameter Weibull distribution in materials science, although 
its practical application remains limited [23–27]. 

One disadvantage of OLS is that it treats each measure-
ment equally under the assumption that the variance of 
the error term is a constant. However, this assumption is 
violated for the OLS method used for Weibull parameter 
estimation. Several authors have proposed the Weighted 
Least Squares (WLS) method as a remedy, proposing dif-
ferent weight factors [28–33]. Their studies showed that the 
WLS methods show significantly superior performance as 
compared to the OLS methods. 

On the other hand, the WLS methods also result in 
biased estimators, and there has been no study in the litera-
ture for unbiased estimation of Weibull parameters by WLS 
to the best of our knowledge. Therefore, the main purpose 
of this study is to develop one such method for the unbi-
ased estimation of the Weibull modulus. As in the OLS case, 
empirical correction factors and developing a new proba-
bility index are two viable approaches. This study prefers 
the latter because it allows decreasing estimation variance 
both through weight factors and fine-tuning coefficients 
used in the probability index. 

Finally, all the Monte Carlo simulations are coded and 
run in the R programming language which uses Mersenne-
Twister random number generator as the default generator 

whose cycle period is 219937-1 [34]. The following sections 
are organized as follows: After a concise discussion of the 
OLS and WLS methods, a systematic analysis is introduced 
to develop a new probability index for unbiased estimation 
of Weibull modulus using Monte Carlo simulations as the 
basic tool. The probability index, proposed as a result of 
this analysis, is then compared with the MLE, the OLS and 
the WLS methods using different criteria. Finally, imple-
mentation on a practical example is discussed. 

Ordinary Least Squares (OLS) Method
Eq. (1) becomes a straight line by a double logarithmic 

transformation:

	 	 (2)

In order to apply the OLS method, the measurements 
are ranked from the smallest to the largest. F-values are 
assigned according to the rank i of a measurement, si denot-
ing the ith smallest: s1 ≤ s2 ≤ ...  ≤ sn. Then, in Eq. (2), F(s) 
can be replaced by F(si), and ln s can be replaced by ln si. 
The most commonly used probability estimators of F(si), 
which are simply denoted as Fi, are median rank,

	 	 (3a)

mean rank,

	 	 (3b)

and hazen rank, 

	 	 (3c)

There are many other estimators proposed for this pur-
pose [16]. Considering the familiar form of a regression 
equation, Y = aX + b, the left side of Eq. (2) corresponds to 
Y, ln s corresponds to X, m corresponds to a, and  -m ln s0 
corresponds to b. Using si and Fi pairs in Eq. (2), a and b are 
obtained by the OLS procedure. Then the Weibull param-
eter estimates are calculated as  = a and . 

Weighted Least Squares (WLS) Method
Weighted least squares (WLS) extends ordinary least 

squares regression by incorporating weights into the sum of 
squared residuals. These weights, denoted by wi for the ith 
observation, downplay the influence of data points si with 
higher variance or lower reliability. The regression model in 
Eq. (2) has non-constant error variance. As a result use of 
the weighted least squares method gives estimates with bet-
ter statistical properties: Bergman [30], Faucher and Tyson 
[29] and Hung [31] proposed using the following weight 
factors in the WLS method, respectively:

	 	 (4a)
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	 	 (4b) 

	 	
(4c)

where hazen rank is used in Eq. (4a), and median rank is 
used in Eq. (4b) and (4c). Lu et al. [28] showed that Z = -ln 
(1 - F(s)) in Eq. (2) follows a standard exponential distribu-
tion. Then Eq. (2) takes the form of 

	 	 (5)

where Zi is the ith order statistic of the standard exponential 
variable. Using the expectation and variance of this vari-
able, Lu et al. [28] proposed the following approximate for-
mula for the weights:

	 	 (6)

where  and . 

Note that this formula does not involve a probability index. 
Also, they went on to compare these four WLS methods: 
They pointed out that the denominator of Hung’s weight 
factor in Eq. (4c) is constant, thus Hung’s weight factor 
is the same as Bergman’s in Eq (4a). They concluded that 
Bergman’s weight factor (as well as that of Hung) gener-
ates a larger Mean Squared Error (MSE) than the others. 
Faucher and Tyson’s weight factor in Eq. (4b) and their 
method show similar levels of performance. 

As a result, we decided to use Faucher and Tyson’s 
weight factors (Eq. 4b) in this study due to its ease of use. 
These weight factors were derived independently from 
median ranks [29] and should approximately work for any 
probability rank value between 0 and 1.

WLS computations are performed by various statistics 
packages such as MINITAB® and SPSS®. Microsoft Excel® 
spreadsheets can also be used for this purpose using the 
following closed-form formulae: 

	 	
(7a)

and

	 	
(7b)

where

	 	 (7c)

	 	 (7d)

and wi are computed by Eq. (4b). As a side note, wi are set to 
1 for OLS computations.

In both OLS and WLS /m is a pivotal statistic. In 
Monte Carlo simulations, therefore, choosing m=1 will suf-
fice for all practical purposes. Similarly, the scale parameter 
will be fixed as s0 = 1. 

A New Probability Index Formula for Unbiased WLS
This section and following sections develop a new 

probability index producing an unbiased estimator of m, 
that is, E() = m. Numerous probability indices have been 
proposed for F in addition to Eq. (3a)-(3c). Davies[16] 
has recently provided a comprehensive list of them. These 
probability indices are all developed for the ordinary least 
squares method and conform to the general form of 

	 	 (8)

where 0 ≤ a ≤ 1 and b > -a (because 1 - Fi in Eq. (2) has to be 
between 0 and 1 for all i = 1, ..., n to avoid negative terms in 
the logarithms). For example, a = 0.3 and b = 0.4 for median 
rank in Eq. (3a). The coefficients a and b are usually con-
stant [16]; however, some studies aiming at minimizing 
the coefficient of variation of  [35,36] or making  unbi-
ased [16,37,38] proposed a and b values as functions of n. 
One problem with this approach is that the values change 
inconsistently with changing n which leads to the lack of 
expressions for F which are valid for all materials engineer-
ing relevant values of n [16]. Therefore, this study aims to 
compute a as functions of n, and b as a constant such that 
WLS produces  values that are unbiased and have mini-
mum variation. 

The basic simulation procedure employed in this study 
involves generating a sample of n values from a Weibull 
distribution with parameters m=1 and s0 = 1; estimating  
using WLS with certain a and b values in Eq. (8) (or any 
index function with two constants such as in Eq. (10) as will 
be discussed below) and repeating this R times to compute 
the sample mean and the standard deviation of .

In this procedure the sample mean of , ave, can be 
considered as a stochastic function g(a, b, n, R). For a given 
n, finding the values of a and b producing an unbiased esti-
mator (ave = 1) is equivalent to finding the root of g(a, b, 
n, R) -1. The root-finding procedure employed to compute 
the a-b combination in Eq. (8) is (or in Eq. (10) as will be 
discussed shortly) as follows: While keeping b at a certain 
value b', a is increased incrementally by δ, and at any step 
going from a' to a' + δ, if ave, estimated by the basic sim-
ulation procedure, goes from a value less than 1 to a value 
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greater than 1, or the vice versa, this indicates that there 
exists an unbiased estimator for b = b' and the values of a' 
+ δ / 2 and b'  can be considered as the approximate values 
producing an unbiased estimator. The precision of the pro-
cedure depends on the choice of δ. This is repeated for all b 
values in a given search interval in increments of δ: ....b' - δ, 
b', b' + δ, ...

As an initial attempt to produce approximate a and b 
values in Eq. (8) a small group sample sizes n = 6, 15, 30, 
75, 100 and 150, are selected. In Eq. (8) b is usually between 
0 and 1 [16], hence 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. The root-find-
ing procedure was repeated for each sample size with δ = 
0.01 and the simulation run number is R = 105. However, 
in order to avoid numerical errors, the values of 0 and 1 
for a were avoided throughout all the simulations in this 
study; 0 is always replaced by 0.001 and 1 by 0.999 (a = 
0.001, 0.01, 0.02,  ... 0.99, 0.999 and b = 0, 0.01, 0.02, ..., 0.99, 
1). This simulation, unfortunately, was not able to produce 
a constant b value producing an unbiased estimator for all 
n values. Further analysis with b values larger than 1 also 
showed that as the b value increased the amount of bias 
became larger.

Therefore, the probability index, used for OLS, cannot 
be used for WLS. This necessitates another index form suit-
able for WLS. Another such form used in probability plots, 
in general, has the following form [28,39]:

	 	 (9)

When this formula is tried for the same group of sam-
ples sizes, the root finding procedure was able to find an 
unbiased estimator for each sample size with δ = 0.01 and 
R = 105 (consider b = 1). Next, we decided to try a more 
general formula with two constants as in Eq. (7):

	 	 (10)

This allows choosing among a range of b values pro-
ducing an unbiased estimator with the smallest variance. 
Following the discussion on bounds for Eq. (8), 0 ≤ a ≤ 1 
and a < b.

Search for a Value Of b with the Smallest Variance
The root-finding procedure is repeated for Eq. (10) with 

the same group of sample sizes, changing b from 1 to 3, a 
from 0 to 1 (strictly speaking from 0.001 to 0.999) with δ 
= 0.01 and R = 105. This procedure produced an unbiased 
estimator except for b > 2.6. Among all b values between 1 
and 2.6, the standard deviations, multiplied by  for nor-
malization, are averaged over all sample sizes. The smallest 
average value is produced by b = 1.57. Figure 1 shows the 
normalized standard deviations for selected b values; note 
that the minimums are achieved at different values of a 
for each n, which are not presented here. It indicates that 
change in b may cause significant differences in the stan-
dard deviation for n ≤ 30; also, the value b = 1.5, which is 

close to value of b = 1.57, consistently produces small stan-
dard deviation values for each sample size. This can be seen 
in Figure 1 for n = 6 and 15. As a result of this analysis b = 
1.57 was fixed as a constant in Eq. (10).

Computing Values of a as a Function of n When b = 1.57
The next task is to compute values of a as a function of 

n. Our initial trials with the newly computed index function

	 	 (11)

revealed the stochastic function ave = g(a, b, n, R) is a con-
siderably flat function with respect to a. When δ = 0.01 and 
R = 105 were used, this caused the function value to fluctu-
ate above and below 1 for neighboring values of a, making it 
difficult to specify a precise a value producing an unbiased 
estimator. Increasing δ and R simultaneously and running 
the simulations for all n are expected to result in total sim-
ulation times that will be prohibitively long.

A two-step solution is proposed for this problem: In the 
first step, R = 105 was increased to R = 106 while keeping δ 
= 0.01 for a larger set of selected sample sizes n = 6, 8, 10, 
12, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 120, 
130, 140 and 150. Then, using the root-finding procedure, 
approximate values of a were computed. Using them, values 

Figure 1. Samples size vs. normalized standard deviations 
of  for selected b values.
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for all n were approximated: for example, if a = 0.63 for n = 
10 and a = 0.65 for n = 12, then as a ≈ 0.64 for n = 11. 

In the second step, δ = 0.01 was reduced to δ = 0.001 
along with R = 106. The root finding procedure was applied 
to an interval of length 0.024 centering the previously com-
puted values of a for all n = 6,…, 150. The length 0.024 was 
determined by some trial-and-error; it was to be kept to a 
minimum because newly selected values of δ and R consid-
erably increased the simulation time. This particular inter-
val length managed to produce values of a for all n; values 
of a are provided in the appendix. 

In order to fit the values to the sample size, the following 
function is proposed to be used in Eq. (11):

	 	 (12)

The fit is considerably good with an R2 value of 0.9989, 
residual standard error of 0.0015 and a maximum percent 
error of 0.45. The values and fitted function are shown in 
Figure 2, which visually shows a very good fit.

Consequently, this study proposes using the WLS meth-
ods with the probability index in Eq. (11) together with 
coefficients in Eq. (12) using the weights in Eq. (4b). 

COMPARISON WITH OTHER METHODS

It is tricky to select methods for comparison purposes, 
because there is no WLS method developed for unbiased 
estimation of the Weibull modulus m. We selected Davies’ 
[16] probability index formula as the first method of com-
parison; it is designed for unbiased estimation of the mean 
of m (he proposed others for median and mode) to be used 
with OLS. While OLS can be seen as a special case of WLS, 
where all the weight are one, OLS and WLS are treated as 

two separate methods in this study. Davies [16] showed that 
the formula results in unbiased estimates with low varia-
tion. As the second and third methods of comparison, the 
MLE method and Faucher and Tyson’s WLS method [29] 
are selected. While their estimates are biased, they may 
still produce estimates close to the true value, which can be 
measured by the Mean Squared Error (MSE): MSE = E( 
- m)2. MSE is also related with bias: MSE = Var() + (E() 
- m)2, where the second part of the summation is the square 
of the bias of . Note that this part is zero for the proposed 
method and Davies’ method because of their unbiasedness. 

The basic simulation procedure described previously 
is used with the selected methods for comparison and 
selected sample sizes; that is, parameters are set as m=1 and 
s0 = 1 for Weibull random number generation; the simula-
tion run number is set as R=106. The MSE values as well as 
the sample means of  are shown in Table 1.

First, let’s look at the precision of the unbiasedness: the 
first column of the proposed method in Table 1 should be 
ideally 1, but there are slight deviations which are due to 
the simulation error and the errors incurred during the root 
finding procedure. Davies’ method is designed for n ≥ 10, 
this explains the relatively high deviations for n = 6 and 8. 

Before comparing the methods let’s note that for two 
estimators, 1 and 2, the ratio of their MSEs are called 
relative efficiency, defined as RE[1, 2] = MSE(1)/
MSE(2). A RE value of 0.80 implies that the necessary 
sample size for the method using 1 is 80% of that needed 
for 2 to achieve approximately equal MSE value [15]. This 
may translate as the approximate percent saving in testing 
costs when the method of 1 is preferred to that of 2.

When the MSE’s of the two unbiased methods are 
compared, Table 1 shows that Davies’ method has sig-
nificantly larger values than the proposed method for all 

Figure 2. Sample size vs. a values, provided in the appendix, and the fitted curve in Eq. (12).
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sample sizes. It is to the degree that the levels achieved by 
the proposed method can be achieved with an additional 
five test specimens (e.g. n = 15 vs n = 20) for n ≥ 20, and 
with an additional 10 specimen for n ≥ 35; this result can 
be seen by comparing MSE values for different n values, 
and also agrees with the RE column (note that RE produces 
an approximate result). Note that, since these methods are 
unbiased, MSE of  is equivalent to the sample variance of 
, (strictly speaking, they are approximately equal due to 
small deviations from unbiasedness).

While the MLE method has been a popular alternative 
to OLS and WLS, it suffers from severe overestimation bias 
in small samples. For instance, in Table 1, the MLE estimate 
for n = 10 (1.1698) overestimates the unknown Weibull 
modulus by 16.98%. Table 2 decomposes MSE values in 
Table 1 into bias and variance components, revealing that 
the bias becomes negligible (below 2%) for sample sizes 
exceeding n = 70; note that MSE = (Bias)2+Variance (here, 
for n = 10, 0.1517 = 0.16982 + 0.1229). Table 2 highlights the 
substantial bias in MLE estimates for small samples signifi-
cantly impacts the overall MSE.

The MSE values of the MLE method are at least 10% 
larger than those of the proposed method for n ≤ 30. The 
difference is so severe that the levels achieved by the pro-
posed method for n ≤ 12 can be achieved by the MLE 
method with an addition of at least three test specimens. 
However, as the sample size increases, the MLE methods 
starts to show better performance as a result of its optimal-
ity properties in large samples. For n ≥ 60, the MLE method 
starts to perform better, and the MSE for the proposed 
method becomes 14% larger than that of the MLE method 
at n = 150.

When compared with the proposed method, Faucher 
and Tyson’s method has smaller MSE values for all sam-
ple sizes, and the bias is not severe as can be seen in Table 
2. The proposed method’s MSE is about 6% above that of 
Faucher and Tyson’s method for n ≤ 15, but as the sample 
size increases, this percentage goes below 2% after n ≥ 35 
and below 1% after n ≥ 60. These results do not indicate 
that Faucher and Tyson’s method is better than the pro-
posed method, because it has significant bias. It underesti-
mates  and approximately 5% underestimation should be 
expected for n = 6-20. The percentage of underestimation 

Table 1. Sample mean and MSE values of  for the compared methods

Proposed (P) Davies (D) MLE (M) Fau&Tys (F)

n Mean MSE Mean MSE RE(P,D) Mean MSE RE(P,M) Mean MSE RE(P,F)
6 1.0008 0.2130 1.0368 0.2420 0.8802 1.3341 0.4848 0.4394 0.9752 0.2031 1.0487
8 1.0000 0.1289 1.0111 0.1453 0.8871 1.2249 0.2399 0.5373 0.9511 0.1193 1.0805
10 0.9996 0.0924 1.0030 0.1067 0.8660 1.1698 0.1517 0.6091 0.9459 0.0859 1.0757
12 0.9988 0.0719 0.9997 0.0854 0.8419 1.1358 0.1081 0.6651 0.9454 0.0676 1.0636
15 0.9998 0.0545 0.9998 0.0670 0.8134 1.1055 0.0749 0.7276 0.9495 0.0519 1.0501
20 1.0000 0.0389 0.9998 0.0498 0.7811 1.0762 0.0482 0.8071 0.9558 0.0376 1.0346
25 1.0003 0.0303 1.0005 0.0399 0.7594 1.0598 0.0352 0.8608 0.9617 0.0295 1.0271
30 1.0001 0.0249 1.0004 0.0334 0.7455 1.0489 0.0276 0.9022 0.9661 0.0244 1.0205
35 1.0004 0.0212 1.0006 0.0288 0.7361 1.0418 0.0227 0.9339 0.9701 0.0208 1.0192
40 1.0002 0.0184 1.0002 0.0254 0.7244 1.0362 0.0191 0.9634 0.9730 0.0182 1.0110
45 1.0000 0.0163 0.9999 0.0226 0.7212 1.0318 0.0166 0.9819 0.9753 0.0161 1.0124
50 1.0001 0.0147 0.9998 0.0205 0.7171 1.0286 0.0146 1.0068 0.9776 0.0145 1.0138
55 1.0001 0.0133 0.9999 0.0187 0.7112 1.0261 0.0131 1.0153 0.9795 0.0132 1.0076
60 0.9999 0.0122 0.9996 0.0172 0.7093 1.0236 0.0118 1.0339 0.9808 0.0121 1.0083
65 0.9999 0.0112 0.9999 0.0159 0.7044 1.0217 0.0108 1.0370 0.9821 0.0112 1.0000
70 0.9999 0.0105 0.9999 0.0148 0.7095 1.0202 0.0099 1.0606 0.9833 0.0104 1.0096
75 1.0000 0.0098 1.0001 0.0139 0.7050 1.0189 0.0092 1.0652 0.9844 0.0097 1.0103
80 0.9998 0.0092 1.0000 0.0131 0.7023 1.0176 0.0085 1.0824 0.9852 0.0091 1.0110
85 1.0000 0.0086 1.0001 0.0123 0.6992 1.0166 0.0080 1.0750 0.9862 0.0086 1.0000
90 0.9999 0.0082 1.0001 0.0117 0.7009 1.0156 0.0075 1.0933 0.9868 0.0081 1.0123
95 1.0000 0.0077 1.0001 0.0111 0.6937 1.0148 0.0070 1.1000 0.9876 0.0077 1.0000
100 0.9999 0.0073 1.0001 0.0105 0.6952 1.0140 0.0067 1.0896 0.9881 0.0073 1.0000
125 1.0000 0.0059 0.9999 0.0085 0.6941 1.0113 0.0052 1.1346 0.9905 0.0059 1.0000
150 0.9999 0.0049 0.9996 0.0071 0.6901 1.0093 0.0043 1.1395 0.9920 0.0049 1.0000
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becomes less severe as the sample size increases and goes 
below 2% for n ≥ 60.

Practical Example
An application of the proposed method was carried out 

on the results of an experimental study [40]: 19 identical 
composite specimens were prepared from quasi-isotropic 
carbon-epoxy sheets with (0°)3 configuration, 0.89 mm 
thickness, and 295 gr/m2 weight and the tension experi-
ments were carried out using an Instron 8516+ universal 
testing machine. The measured fracture strength values are 
presented in Table 3.

To enhance the application study in terms of sample 
size, in addition to the original data set given in Table 3, 
two random subsets of sizes 6, 10, and 15 were drawn from 
the same data set. These subsets consist of {522, 532.7, 
476.5, 521.6, 439, 507.3} for n = 6, {513.6, 552,519, 521.6, 
439,450.9, 463.5, 497.5, 476.5, 477} for n =10, and {532.7, 
502.5, 442, 519, 502.7, 477, 552, 522, 439, 513.6, 521.6, 
450.9, 476.5, 507.3, 463.5} for n = 15.

To implement the proposed method, Eq. (7) is used 
where Fi is computed by Eq. (11) and Eq. (12). The follow-
ing Table 4 gives the estimated Weibull modulus values. As 
n increases, the MSE decreases as can be seen from Table 1, 

Table 2. Decomposition of MSE values of  for biased estimation methods

MLE (M) Fau&Tys (F)

n Mean MSE Bias Variance Mean MSE Bias Variance
6 1.3341 0.4848 33.41% 0.3732 0.9752 0.2031 -2.48% 0.2025
8 1.2249 0.2399 22.49% 0.1893 0.9511 0.1193 -4.89% 0.1169
10 1.1698 0.1517 16.98% 0.1229 0.9459 0.0859 -5.41% 0.0830
12 1.1358 0.1081 13.58% 0.0897 0.9454 0.0676 -5.46% 0.0646
15 1.1055 0.0749 10.55% 0.0638 0.9495 0.0519 -5.05% 0.0493
20 1.0762 0.0482 7.62% 0.0424 0.9558 0.0376 -4.42% 0.0356
25 1.0598 0.0352 5.98% 0.0316 0.9617 0.0295 -3.83% 0.0280
30 1.0489 0.0276 4.89% 0.0252 0.9661 0.0244 -3.39% 0.0233
35 1.0418 0.0227 4.18% 0.0210 0.9701 0.0208 -2.99% 0.0199
40 1.0362 0.0191 3.62% 0.0178 0.9730 0.0182 -2.70% 0.0175
45 1.0318 0.0166 3.18% 0.0156 0.9753 0.0161 -2.47% 0.0155
50 1.0286 0.0146 2.86% 0.0138 0.9776 0.0145 -2.24% 0.0140
55 1.0261 0.0131 2.61% 0.0124 0.9795 0.0132 -2.05% 0.0128
60 1.0236 0.0118 2.36% 0.0112 0.9808 0.0121 -1.92% 0.0117
65 1.0217 0.0108 2.17% 0.0103 0.9821 0.0112 -1.79% 0.0109
70 1.0202 0.0099 2.02% 0.0095 0.9833 0.0104 -1.67% 0.0101

Table 3. Fracture strength of carbon-epoxy composite material specimens (megapascals)

Test No. 1 2 3 4 5 6 7 8 9 10
Fracture strength [MPa] 532.7 502.5 442 473 519 502.7 477 510 522 552
Test No. 11 12 13 14 15 16 17 18 19
Fracture strength [MPa] 522 439 513.6 497.5 521.6 450.9 476.5 507.3 463.5

Table 4. Weibull modulus estimates () for the fracture strength data

n Proposed (P) Davies (D) MLE (M) Fau&Tys (F)
6 16.0764 14.5886 21.9916 15.3496
10 13.8474 15.2852 15.6205 13.2601
15 15.6385 16.2970 17.3370 14.9150
19 17.6756 18.1770 18.8625 16.9160
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hence estimates with larger sample sizes have higher preci-
sion. Therefore, the estimates for n = 19 should be closer to 
the true, unknown Weibull modulus value.

The estimates for n = 19 are close to each other due 
to their small MSE values (check the values for n = 20 in 
Table 1). However, the smallest MSE’s belong to the pro-
posed WLS method and Faucher and Tyson’s WLS method, 
thus their estimates, 17.6756 and 16.916 can be argued to be 
closer to the true m value. 

For smaller n values the estimates are farther away 
from each other, due to increased MSE and increased bias. 
Consider n = 6: MSE is a measure of expected distance of 
an estimate from the true value, and they are 5-10 times as 
large as those for n = 20. Also, due to the substantial overes-
timation problem in the MLE method, which can be seen in 
Table 2, MLE estimates are larger than the others in Table 4. 

CONCLUSION

This research introduced a novel probability index that, 
for the first time, offers unbiased WLS estimators of the 
Weibull modulus with a satisfactory degree of precision. 
To this end, a systematic study was carried out to com-
pute parameters of a probability index to be used with the 
WLS method for the unbiased estimation of the Weibull 
modulus. First Faucher and Tyson’s weights were selected 
among several weighting schemes. Then two parameters 
of a generic probability index were computed by using a 
step-by-step approach. The result is a simple index formula 
presented in Eq. (10) wherein the single parameter a, pro-
duced from simulations, is fitted as a function of the sample 
size in Eq. (11). Use of two parameters in this study allowed 
variance reduction of the estimator as well as satisfying 
unbiasedness.

The proposed method requires only the use of the new 
probability index along with Faucher and Tyson’s weights. 
It is the only WLS method with unbiased Weibull modulus 
estimator in the literature. When compared with a recent 
OLS method proposing a new probability index producing 
unbiased Weibull modulus estimators, it exhibited signifi-
cantly smaller variance. MSE is used for comparison among 
methods producing biased estimators. Results showed 
that the proposed method performs better than the MLE 
method for sample sizes less than 60, and its performance 
is close to that of Faucher and Tyson’s method, but with 
slightly larger MSE values. The advantage of the proposed 
method is most prominent in the range of sample sizes 
smaller than 125 where the percent bias in the aforemen-
tioned biased methods is greater than 1% and they should 
be used with caution. 

In materials science, high experimental costs limit the 
number of samples to be tested; and in general, smaller 
the sample size are preferred. In general, sample sizes are 
less than 60 in such experiments, which makes the pro-
posed method advantageous in terms of its smaller MSE 
and unbiasedness property. While this paper focuses on 

materials science applications, it should be pointed out that 
the proposed method can be used in other application areas 
such as wind speed analysis and reliability analysis.

In conclusion, the implementation of the proposed WLS 
method is almost as simple as that of the OLS method and 
we hope that this helps materials scientists and engineers 
who generally prefer OLS and MLE in practice.
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APPENDIX

Table A. values of a to be used in Eq. (11) for WLS

n a n a n a n a n a
6 0.5025 35 0.7485 64 0.7695 93 0.7795 122 0.7825
7 0.5475 36 0.7485 65 0.7715 94 0.7795 123 0.7835
8 0.5805 37 0.7505 66 0.7705 95 0.7795 124 0.7845
9 0.6055 38 0.7535 67 0.7735 96 0.7795 125 0.7795
10 0.6235 39 0.7515 68 0.7725 97 0.7775 126 0.7835
11 0.6395 40 0.7545 69 0.7725 98 0.7755 127 0.7805
12 0.6525 41 0.7555 70 0.7745 99 0.7795 128 0.7825
13 0.6625 42 0.7565 71 0.7735 100 0.7815 129 0.7825
14 0.6735 43 0.7565 72 0.7745 101 0.7805 130 0.7815
15 0.6805 44 0.7585 73 0.7745 102 0.7795 131 0.7835
16 0.6885 45 0.7585 74 0.7745 103 0.7805 132 0.7845
17 0.6955 46 0.7595 75 0.7755 104 0.7805 133 0.7835
18 0.6995 47 0.7605 76 0.7765 105 0.7785 134 0.7815
19 0.7045 48 0.7615 77 0.7785 106 0.7785 135 0.7825
20 0.7095 49 0.7635 78 0.7755 107 0.7805 136 0.7845
21 0.7145 50 0.7625 79 0.7755 108 0.7815 137 0.7805
22 0.7175 51 0.7635 80 0.7755 109 0.7795 138 0.7795
23 0.7215 52 0.7655 81 0.7765 110 0.7795 139 0.7825
24 0.7235 53 0.7645 82 0.7785 111 0.7805 140 0.7855
25 0.7275 54 0.7645 83 0.7755 112 0.7805 141 0.7795
26 0.7295 55 0.7665 84 0.7755 113 0.7795 142 0.7805
27 0.7315 56 0.7685 85 0.7775 114 0.7795 143 0.7815
28 0.7335 57 0.7675 86 0.7795 115 0.7795 144 0.7825
29 0.7375 58 0.7675 87 0.7765 116 0.7805 145 0.7825
30 0.7385 59 0.7685 88 0.7765 117 0.7805 146 0.7815
31 0.7395 60 0.7695 89 0.7775 118 0.7795 147 0.7825
32 0.7435 61 0.7695 90 0.7755 119 0.7805 148 0.7825
33 0.7455 62 0.7715 91 0.7775 120 0.7815 149 0.7815
34 0.7465 63 0.7695 92 0.7775 121 0.7825 150 0.7815


