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ABSTRACT

This article aims to examine the dynamics of the fractional epidemic model of covid 19. The 
model in question incorporates the notion of a compatible derivative. Given their consistent 
and worldwide characteristics, fractional derivatives are presently employed to address nu-
merous practical issues. In addition, we employ two numerical techniques, namely the con-
formal differential transform and the variational iteration approach, to provide an approxi-
mate solution for the given model. The research closes by providing an in-depth analysis and 
visually representing the numerical findings. Furthermore, it has been demonstrated that the 
solution obtained is convergent.
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INTRODUCTION

Epidemiology, also known as the “science of epidemics,” 
is a crucial discipline within the subject of public health. 
Epidemiology, commonly referred to as “epidemia,” is a 
field of study that examines the causative elements behind 
the occurrence and transmission of diseases within a spe-
cific timeframe and setting. Mathematical epidemiology 
has become a valuable scientific discipline for assessing the 
occurrence and death rates of epidemics, as well as identi-
fying their underlying causes.

Epidemic disease models are a crucial component of 
contemporary mathematical modeling investigations. 
Several renowned organizations, such as the World Health 
Organization, the Centre for the Mathematical Modeling 
of Infectious Disease in England, and the BC Center for 

Disease Control in Canada, engage in comprehensive 
research on disease modeling.

Mathematical models are employed across various 
fields such as biology, chemistry, psychology, and eco-
nomics to enhance our understanding of real-world phe-
nomena. Financial models often use stochastic equations, 
while ordinary differential equation systems are essential 
for forecasting the progression of infectious diseases. It is 
important to highlight the application of fractional analy-
sis in studying the history of the event. This is because the 
current trend in mathematical modeling involves utilizing 
different types of fractional derivatives and solution meth-
ods to accurately, approximately, or numerically solve the 
system under investigation.

Compartment models for epidemiology are models that 
look at the kinetics of transmission and have been explored 
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since the early 1900s [1-3]. These models have been used 
to generate pretty accurate estimates for many [4-6] and 
are still in use today for the Covid-19 [7-8]. Compartment 
models establish discrete divisions, known as compart-
ments, within a society that is isolated or self-contained. 
Each compartment is designated by a capital letter. For 
example, the variable S represents the total number of 
individuals who are at risk of infection. The variable E rep-
resents the total number of individuals who are infected 
but not yet contagious. The variable I represents the total 
number of individuals who are infected and capable of 
spreading the infection. The variable R represents the total 
number of individuals who have recovered from the infec-
tion. The concept derives its name from the compartments, 
which are named after the specific disease-related states 
of individuals. The SIR model, sometimes referred to as 
the classical compartmental model, can be employed to 
develop new models for a wide range of diseases and situa-
tions. The SEIR model incorporates an edible compartment 
E (exposed) to represent the stage when a patient has been 
exposed to the disease but has not yet developed active 
symptoms in the body. Furthermore, the integration of dif-
ferent situations allows for the creation of epidemic illness 
models that encompass a range of compartments, including 
SIS, SEIR, SEIRS, and MSEIR.

 They have formulated the model with five compart-
ments. The mentioned model is given by:

	 	

(1)

 In this section, we present a mathematical system for 
the population at the time of COVID-19 and divide it into 
five parts [9]. S is susceptiblele, E is exposed, I is infected, Q 
is quarantined, and R is recovered.

It is important to mention that scholars have previously 
and now utilized integer derivatives to simulate a diverse 
array of biological and physical phenomena. Fractional 
mathematics has gained significant attention in the scien-
tific world in the past two decades due to its importance. 
Mathematicians have diligently endeavored to formulate 
and analyze a diverse array of biological phenomena by 
employing fractional derivatives. Utilizing fractional deriv-
atives offers numerous benefits. The Caputo and Riemann-
Liouville definitions of fractional derivatives have nonlocal 
characteristics, such as the ability to retain information 
from the past and predict future behavior. It is important to 

remark that the aforesaid topic is being more and more uti-
lized in engineering and research domains such as optics, 
signal processing, viscoelasticity, fluid mechanics, elec-
trochemistry, biological population models, and electro-
magnetics. Scientific and technical phenomena have been 
represented using fractional order differential operators 
to improve understanding of these phenomena. Moreover, 
as mentioned in reference [10], noninteger order systems 
have been utilized to accurately examine damping effects. 
The authors utilized fractional derivatives [11-14] to study 
chaotic systems. They also conducted studies on epidemic 
models [15-20] using fractional order derivatives. These 
derivatives are valuable for making predictions about past 
events and implementing necessary interventions in epi-
demics. Various authors have employed the fractional 
derivative to investigate the delay[21-22]. In a similar man-
ner, they compose written content. The authors in reference 
[23] employed fractional derivatives to analyze systems of 
stochastic differential equations. These operators, known 
as fractional-order operators, have demonstrated consistent 
behavior over the last few decades, enabling the solution 
of complex problems in various scientific fields. Findings 
derived from fractional order calculations are more precise 
compared to those obtained from whole numbers. By con-
sulting references [24-28], one can acquire comprehensive 
information regarding fractional calculations.

Non-integer differential equation structures offer the 
benefit of increased degrees of freedom and the inclusion 
of the memory effect in the model. We employ fractional 
conformable order differential equations [29-30] in con-
junction with a mathematical model for Covid-19. CD does 
not contain any memory terms and is occasionally seen 
as a fractional order local differential operator. A number 
of academics have lately employed this operator in their 
research; for further details, refer to [31-32]. The conform-
able fractional operator [31-32] addresses the limitations of 
prior fractional operators and provides the following ben-
efits: it enables standard calculus operations such as Rolle’s 
theorem, the product of two functions, the derivative of the 
quotient of two functions, and the mean value theorem.

Furthermore, mathematical models including frac-
tional derivatives are built upon memory systems that are 
present in several biological systems. The references [33-
38] encompass the latest research conducted in this partic-
ular area.

The conformable derivative (CD) is a fractional local 
differential operator that does not include a memory term. 
A recent project has been finished. Based on the above 
logic, employing fractional differential operators to exam-
ine diverse real-world issues is more accurate than utiliz-
ing regular derivatives. Due to their reduced flexibility and 
non-local nature compared to integer derivatives, frac-
tional order derivatives offer a higher degree of freedom 
in approximating real data than classical derivatives. Given 
the presence of these characteristics, we employed the frac-
tional derivative formulation of the Covid 19 model. In this 
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context, the current study extends the Covid-19 model (1) 
from integer to fractional order. We analyze the model in 
the context of CD. Model (2) encapsulates our cognitive 
framework.

Equation (1) can be rewritten as follows:

	 	

(2)

In addition, the initial conditions are described as 

	 	
(3)

Fractional differential problems exhibit a greater level 
of flexibility, as previously mentioned. However, obtaining 
an accurate analytical solution for each problem is a highly 
laborious endeavor. Furthermore, calculating the analytical 
and closed solutions to the aforementioned challenges can 
frequently be a challenge. Therefore, there is a continuing 
demand for the most effective numerical approximation 
techniques. In order to analyze the area stated above for 
simulations, scientists have developed a range of computa-
tional tools. Due to our ability to understand the resolution 
of these difficulties and investigate their potential appli-
cations Several numerical approaches for fractional order 
difficulties have already been developed and are commonly 
referred to as [38-40]. The qualitative theory is a power-
ful tool for determining the existence of a solution to the 
problem with fractional order. Furthermore, the presence 
and singularity of the solution are vital stages in the proce-
dure. In order to obtain the desired findings, we commonly 
utilize fixed point theory and functional analytic methods 
[41-44].

In addition, we employ a numerical method outlined in 
reference [45] to approximately solve the given model (4) 
in order to replicate our findings. We will employ Euler’s 
methodology, which is the most straightforward technique 
in the literature, to estimate the solution. Furthermore, 
the method proposed in [46-47] has been used to prove 
the positivity and boundedness of the solution. Recently, 
researchers have devised efficient techniques for solv-
ing nonlinear fractional integral equations and nonlinear 
Volterra-Fredholm integral equations [48-50]. Studies on 
random differential have been undertaken in recent years 
[51-53].

The study is designed as follows: Chapter 2 con-
tains basic definitions. Chapter 3 contains the theoretical 

analysis of the Covid 19 model. Chapter 4 contains the solu-
tions obtained from the conformable fractional differential 
transformation method (CFDTM) and variational ıteration 
method (VIM) and the comparison of these solutions. The 
fifth section contains the conclusion.

PRELIMINARIES

Definition 1. The conformable derivative of function 
 with order  is given [31-32,39-40]

 for every , on 

condition that if .

Definition 2. The conformable fractional integral of a 
function function  with order  is 
given by

, for every , on 

condition that the integral on the right exists.
Lemma 1. Under the continuity of , we 

have the given results.

, for every .

Lemma 2. Besides, we have the following result.

THEORETICAL ANALYSIS OF THE COVID-19 
MODEL

Positivity and Boundedness
We follow the procedure described in [46-47] and we 

can conclude that the solution of the considered model is 
positive:

Thus, the Covid-19 model is positive if the initial con-
ditions are positive. 

Theorem 3.1.1. The Covid-19 model is bounded and 
the existence holds in the feasible region given by

	 	 (5)

Proof: Let N be total population at time say ζ. Thus, we 
have 
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	 	 (6)

Taking CFOD p > 0 of (6), one has 

	 	
(7)

Since 0 < I(ζ) ≤ N(ζ) the term δI(ζ)is neglected. As a 
result, the solution is limited, and we can express the appro-
priate region as shown in (5). Taking conformable Laplace 
transform of both sides, and using ζ → ∞, we have  

Equilibrium Points 
The disease epidemic and free equilibrium points have 

been computed in [9] as  and E* = (S*, E*, 
I*, Q*, R*) where 

We get the equations. Here, a1 = (α + v2 + δ + μ), a2 = (σ 
+ μ), a3 = (θ + μ) and  a4 = (v1 + v3 + μ)

The Basic Reproduction Number (ℜ0)
ℜ0 denotes the mean number of secondary cases that 

arise from a patient, who is infected by that patient, in a 
community where everyone is vulnerable to the infectious 
disease. The term “ℜ0” denotes the fundamental reproduc-
tion number of the Covid-19 model. It is employed in [9] 
for the purpose of determining the next generation matrix 

technique. The following equation provides the numerical 
value.

Based on the value of ℜ0, there are three potential out-
comes for the transmission or decline of a disease, which 
are as follows:

If the value of ℜ0 is less than or equal to 1, each exist-
ing infection results in less than one new infection. In this 
scenario, the sickness undergoes a gradual decrease and 
ultimately comes to an end. If the basic reproduction num-
ber ℜ0 is equal to 1, each existing function results in a new 
infection. The sickness remains extant, although it does not 
propagate. If the basic reproduction number ℜ0 is greater 
than 1, each existing infection leads to the occurrence of 
numerous new infections. The pathogen is transmitted to 
humans, leading to an outbreak of the disease. Figure 1 
displays the three-dimensional profile of ℜ0. We utilize the 
quantitative values presented in Table 2.

Analyzed was the impact of parameter modifications 
on the Basic Reproduction Number, utilizing the forward 
normalized sensitivity index. Contour plotting is a valu-
able and efficient graphical method frequently employed to 
present results of the Basic Reproduction Number. These 

Table 2. Parameter values used in the model [18-19] [obtained from authors solution]

Parameter Definition Value
Λ Recovery rate of individuals 750
ϕc Contact rate for Covid-19 transmission 0.0000124
σ Exposure rate of individuals 0.000011618
μ Rate of natural deaths 0.00324588
v2 Relapse rate of individuals 0.001466848
δ Death rate from Covid-19 0.00286
θ Survival rate of individuals in quarantine 0.0766169
α Detection rate of infectious individuals 0.010939586
v1 Survival rate of infectious people 0.1109289
v3 Rate of returning individuals to the susceptible class 0.0022927

Table 1. Description of variables and parameters of the 
model (1)

Variable Description
S(t) At time t, the number of susceptible humans was
E(t) Number of people who were exposed at time t
I(t) At time t, the number of infectious humans was
Q(t) Humans in quarantine at time t
R(t) At time t, the number of recovered humans was
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Figure 1. Three-dimensional representation of the ℜ0 value in the Covid-19 model

Figure 2. Contour plot of representation for ℜ0 of the Covid-19 model.
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plots are especially valuable for identifying and analyzing 
the spread of shocks and abrupt changes. 

NUMERICAL SCHEME FOR THE COVID-19 

MODEL 

The Conformable Fractional Differential Transformation 
Method

Assume that ℱ is an infinitely differentiable function in 
[20,22] for some q with 0 < q ≤ 1. The fractional power series 
expansion of ℱ(w) around the point w = 0 is as follows:

	 	 (8)

where,  denotes the application of the frac-

tional derivative for k times. Conformable fractional differ-
ential transform of ℱ(w) is defined as 

	 	 (9)

The definition of the inverse conformable fractional dif-
ferential transform of ℋ(k) is as follows: 

	 	 (10)

The conformable differential transform approach 
involves performing fundamental mathematical operations.
(i)	 If ℱ(w) = (w - w0)p,  then ℋq(k) = δ(k - (p/α)), where 

	 	 (11) 

(ii)	If ℱ(w) = Tqu(w), then ℋq(k) = q(k + 1)Uq(k + 1).

Application of conformable fractional differential 
transform Method for Covid-19 model

	 	

(12)

Hence, recurrence relation is obtained as

	 	

(13)

With initial conditions, S(0) = 5000, E(0) = 2003, I(0) = 
416, Q(0) = 404, R(0) =115 and and parameter values are 
given in table 2.

Variational Iteration Method 
To illustrate the fundamental concept of the variational 

iteration method, let us examine the given nonlinear differ-
ential equation in operator form:

	 	 (14)

H represents the linear operator, N represents the non-
linear operator, and h represents any real function referred 
to as the inhomogeneous term. The correction function 
corresponding to equation (14) is presented as follows:

 	 	 (15)

Here, λ is the general Lagrange multiplier [54-57], 
which is best described by variational theory [44], and  
is constrained variation, i.e. .

Theorem 1. Consider a Banach space B equipped 
with a norm ‖.‖. Let the series  be defined in B. 
Assume that the initial guess y0 = u0 is contained within 
the solution ball y(x). The series solution  con-
verges if there is a value of r for which the inequality [54]  
‖un+1 ‖ ≤ r ‖ un ‖ holds.

Theorem 2. Examine the second conformable differen-
tial equation. The variational iteration formula is expressed 
as follows:

	 	

(16)

where Sn, En, In, Qn, Rn  are nth approximation, Tq is the 
conformable derivative of order q, and  Iq is the fractional 
integral of order q ∈ (0,1]

Proof. Equation (2) may be rewritten equivalently as
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(17)

Multiplying equation (17) by a general Lagrange multi-
plier λ1(t), λ2(t), λ3(t), λ4(t) and λ5(t) yields

	 	

(18)

Now, upon applying Iq to the both sides of equation (18) 
will give	

	 	

(19)

Then, the correction functional of equation (2) will be 
read as follows:

	 	

(20)

In this case, calculating the value of λi(t), for i = 
{1,2,3,4,5} from equation (20, which is a fractional integral 
functional, is difficult. Equation (20) can be written as:

	 	

(21)

Where  and  are the restricted variations 
with  and . 
From equation (21), we obtain

	 	
(22)

	 	
(23)

	 	
(24)

	 	

(25)

	
(26)

Using integration by parts, equation (22) becomes for 
equations (23),(24),(25) and (26) are similar to proof of 
equation (22)

 	 	

(27)

The lagrange multipliers λ1(t), λ2(t), λ3(t), λ4(t) and λ5(t) 
can be obtained by λ'i(τ) = 0 for all i = {1,2,3,4,5} with bound-
ary condition: 1 + λi(t) = 0 for all i = {1,2,3,4,5}. Solving the 
last initial value problem for λi for all i = {1,2,3,4,5}, the gen-
eral Lagrange multiplier λi is found to be 

	 	 (28)

Thus, substituting λi into the corresponding smoothing 
function (20) yields the iteration formula:
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(29)

Application of the variational iteration method
Applying the variational iteration method using Teorem 1,

	 	

(30)

With initial conditions, S(0) = 5000, E(0) = 2003, I(0) = 
416, Q(0) = 404, R(0) = 115 and and parameter values are 
given in table 2, we obtain
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Figure 2. The CDTM solutions of for system (13) at different q values.
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Figure 2 illustrates that the number of susceptible, 
exposed, and infected individuals grows as the fractional 
order derivative drops during the first seven days. However, 
after this period, the number of individuals in these 

categories decreases. The number of individuals who have 
recovered increases over time, whereas the number of indi-
viduals under quarantine decreases as the fractional order 
derivative decreases. 
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Figure 3. The VIM solutions of for system (30) at different q values.
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Figure 3 displays the VIM solutions for system (30) at 
various q values.

The result of equation (4)’s epidemic system is com-
pletely in line with the result of the conformable fractional 
differential transformation approach. Figure 2-3. Figure 3 
demonstrates that as the fractional order derivative declines, 
there is an increase in the number of susceptible, exposed, 
and infected individuals during the initial 7 days, followed 
by a reduction after 7 days. As the value of the fractional 
order derivative declines, there is an observed increase in 
the number of persons who have recovered over time, while 
the number of individuals in quarantine decreases. It is evi-
dent that the solution acquired from the CFDTM in Figure 
2 and the solutions produced from the VIM method in 
Figure 3 are compatible for various values of the fractional 
order q [58]. 

Below, the approximate analytical S(t) solution obtained 
from the VIM method and the convergence analysis for this 
solution are given.

If we examine the convergence by choosing t = 1, q = 1.

It converges because its values are less than 1 [54-55].

Table 4.Table for numerical solutions of the Covid-19 model for q = 0.9 with VIM 

t S(t) E(t) I(t) Q(t) R(t)
0.0 5000. 2003. 416. 404. 115.
0.1 5099.008371 2005.733396 416.7290149 400.1455378 117.5004699
0.2 5184.657369 2008.162796 417.3897214 396.8428549 119.6005287
0.3 5265.844571 2010.521633 418.0410085 393.7391713 121.5381523
0.4 5344.237772 2012.851421 418.6923496 390.7670265 123.3608975
0.5 5420.598995 2015.170437 419.3474747 387.8951332 125.0915734
0.6 5495.365463 2017.488820 420.0081702 385.1052755 126.7438936
0.7 5568.820372 2019.812931 420.6753546 382.3854843 128.3271556
0.8 5641.161773 2022.147076 421.3494972 379.7272671 129.8481617
0.9 5712.535743 2024.494343 422.0308120 377.1242679 131.3121552
1.0 5783.054353 2026.857034 422.7193594 374.5715396 132.7233368

Table 3. Table for numerical solutions of the Covid-19 model for q = 0.9 with CFDTM

t S(t) E(t) I(t) Q(t) R(t)
0.0 5000. 2003. 416. 404. 115.
0.1 5096.186981 2005.678857 416.7191853 400.2668463 117.4063418
0.2 5181.260454 2008.163002 417.4071349 397.0205933 119.4249899
0.3 5262.087376 2010.629044 418.1047249 393.9860365 121.2472211
0.4 5340.155114 2013.111987 418.8165406 391.1008331 122.9215621
0.5 5416.169854 2015.627333 419.5424076 388.3340727 124.4747571
0.6 5490.546773 2018.183646 420.2805261 385.6667078 125.9251287
0.7 5563.559537 2020.786264 421.0283768 383.0855310 127.2867593
0.8 5635.402119 2023.438816 421.7830748 380.5806647 128.5712595
0.9 5706.219127 2026.143916 422.5415349 378.1443197 129.7886583
1.0 5776.122446 2028.903568 423.3005544 375.7701077 130.9479015
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Comparison 
In order to compare accuracy of the obtained results by 

CFDTM and VIM, Table 3,4 are presented. 
Once again, it has been noted that the solution 

derived from the Conformable Fractional Differential 
Transformation Method is consistent with the solution 
acquired from the variational iteration method.

CONCLUSION

In this study, we employed two numerical approaches to 
provide approximate solutions for the Covid 19 epidemic 
model. These techniques rely on conformable derivatives, 
which have recently become prominent. By employing the 
q-derivative, we initially redefined the concerted differential 
transformation method and variational iteration approach. 
Through the application of the suggested techniques to the 
Covid 19 epidemic model, we have showcased their effec-
tiveness and precision. Our variational iteration method 
successfully obtained the approximate solution matching to 
the concerted differential transformation method, which is 
in total agreement with it. Moreover, our methods can be 
readily applied to a diverse array of epidemic models, such 
as fractional order avian influenza, swine flu, SIR, SEIR/
SEIRS, and SIS, due to their simplicity in mathematical 
application to many physical problems.
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