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ABSTRACT

Global Solar Radiation (GSR) stands as a crucial renewable energy source for electricity and 
heat generation without emitting greenhouse gases. Fuelled by escalating fossil fuel prices, 
the necessity to curb greenhouse gases (GHG) emissions, and the rapid advancement of solar 
technology; the role of GSR becomes pivotal in shaping the energy landscape. So, it becomes 
imperative to understand the variability and availability of GSR on various time scales in the 
temporal domain. This research conducts an in-depth comparative analysis of various ma-
chine learning models, including Long-Short Term Memory (LSTM), Bidirectional LSTM 
(BiLSTM), Gated Recurrent Unit (GRU), Convolutional Neural Networks (ConvNet), Mul-
tilayer Perceptron (MLP), Generalized Additive Model (GAM), Gaussian Process Regression 
(GPR), and Linear Regression (LR) for GSR prediction to recommend the best method/s for 
the purpose. Employing robust evaluation metrics such as: Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE), Mean Biased Error (MBE), and the coefficient of determination 
(R2), the study examines the predictive capabilities of these models. The numerical experi-
mental results show that BiLSTM emerges as the standout performer, having minimal devia-
tion from actual values and slightly positive bias. Its remarkable R2 value (99.26%) highlights 
its predictive capability.
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INTRODUCTION

Global solar radiation is important for a number of rea-
sons. First, it is a renewable energy source that can be used 
to generate electricity and heat without emitting green-
house gases (GHG). Second, it is a distributed source that 

is available in most parts of the world. Third, it is a cost-ef-
fective and is becoming increasingly affordable as solar 
technology continues to improve. In 2022, the global solar 
energy market was worth $160 billion. It is expected to grow 
to $280 billion by 2027 [1]. The growth of the solar energy 
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market is being driven by a number of factors, including 
the increasing cost of fossil fuels, the need to reduce GHG 
emissions, and the growing availability of solar technology.

Predicting GSR ahead of time is important for several 
reasons. First, it can help to better understand the cycle of 
the Earth’s energy balance and climate. Second, it can be 
used to optimize the design and operation of solar energy 
systems. Third, it can help to mitigate the effects of cli-
mate change. However, despite its periodicity, GSR model-
ling is challenging. As Fig. 1 shows, there are variations in 
hourly GSR averages over 24 hours on different days (Fig. 
1a) and monthly GSR averages over 12 months in different 
years (Fig. 1b). The GSR data was collected at King Fahd 
University of Petroleum & Minerals (KFUPM) from 2012 
to 2020. Research on GSR prediction is ongoing globally. 
Scientists are working to develop more accurate and reli-
able models that can be used to support the development 
and operation of solar energy systems [2–5]. Researchers 
are making efforts to develop models to estimate the effects 
of GSR intensities on climate change.

In recent years, numerous studies have been conducted 
to investigate solar radiation prediction models and their 
applications in various fields [6]. Sun et al. [7] studied the 
effect of solar radiation and other meteorological vari-
ables on the its predictability using autoregressive moving 
average combined with exogenous variable–generalized 
autoregressive conditional heteroscedasticity (ARMAX–
GARCH) and multivariate GARCH (MGARCH) models. 
Authors reported good correlations between GSR and sun-
shine duration compared to ambient temperature. Alsina 
et al. [8] used Artificial Neural Networks (ANNs) to pre-
dict Monthly Average Daily GSR (MADGSR) over Italy 
and achieved better performance with MAPE ranging from 
1.67% to 4.25%. The ANN best configuration included 

seven relevant input parameters, highlighting the efficacy 
of ANN for solar radiation prediction.

The authors [9] experiments in remote areas for milk 
storage systems using solar thermal energy and adsorption 
cooling. The authors [10] research by creating a pollution 
monitoring and forecasting system for healthy breathing 
and living. Sharnil The authors [11] conducted research to 
build a framework based on sensor fusion and deep learn-
ing for virus outbreaks. The authors [12] build a framework 
for the MQTT multicast messaging protocol for IoT-related 
problems. The authors [13] conducted research on the 
effect of the filling and emptying process of PCM with par-
affin and AI2O3 additives at three locations. The authors 
[14] carried out experiments to analyse and theorise on 
exhaust manifolds with uncoated ceramics and with AI2O3, 
TiO2 and ZrO2 coatings. 

The authors [15] conducted research to study the dry-
ing of coriander seeds in a photovoltaic thermal collector 
with a solar dryer. The authors [16] undertook research 
into the design and manufacture of a two-stage, ener-
gy-efficient, nickel-chromium-reinforced pyrolysis reac-
tor for plastic waste applications. The authors [17] carried 
out research on the effects of emissions from DI-based 
sources that may cause adverse health effects. Kumar et 
al. [18] reported global challenges and emerging trends 
being faced by the scientific and engineering community 
in forecasting thermal performance degradation of WTG 
gearboxes. Thermal performance of WTG gearboxes 
degradation in relation to plant loads was carried out by 
experimental measurements of temperature flux measure-
ments with condition monirtoring systems by Kumar et 
al. [19] Dhabale et al. [20] conducted on the multi-objec-
tive optimisation of friction stir welding process parame-
ters for copper particle reinforcement in aluminium alloys 

Figure 1. (a) Hourly and (b) Monthly GSR samples [6].
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using Taguchi-based Grey Relational Analysis (GRA) and 
ANOVA. Raghavendrakumar et al. [21] investigated the 
analysis of central atmospheric temperature variability data 
from the SABER satellites.

 A comprehensive perspective on machine-learning 
models for GSR was presented by reviewing 232 papers, 
exploring input parameters, feature selection methods, and 
model development techniques [22]. The authors reviewed 
machine-learning models for GSR forecasting and sources 
of input data. Additionally, they reviewed. Rabehi and 
Lalmi [23] compared the performance of different mod-
els (multi-layer perceptron (MLP), boosted decision tree, 
and hybrid models combining MLP with linear regression) 
for predicting solar radiation. The results showed that the 
MLP model performed the best with a normalized RMSE of 
0.033 and an R2 of 97.7%.

Ramedani et al. [24] developed four models (Support 
Vector Regression (SVR) with polynomial and radial basis 
function (RBF) kernels) to predict GSR. Results showed 
that SVR with RBF had better accuracy compared SVR with 
polynomial, ANFIS, and ANN models. 

The present research compares the predictive perfor-
mance of LSTM, BiLSTM, GRU, ConvNet, MLP, GAM, 
GPR, and LR for GSR prediction. Present study selected 
recurrent models (LSTM, BiLSTM, and GRU) based on 
their better capability of capturing long-term temporal 
dependencies, which is crucial for time dependedent pre-
dictions. For benchmarking purpose, the study includes 
the GPR and GAM regression models. For model perfor-
mance evaluation, RMSE, MAE, MBE, and R² error matrics 
is used.

METHODOLOGY

This section provides the description of methods used 
in this paper. The methods include LSTM, BiLSTM, GRU, 
ConvNet, MLP, GPR, GAM, and LR. The performance of 

these methods is compared using the error measures, men-
tioned earlier. 

LONG-SHORT-TERM MEMORY (LSTM) AND 
BIDIRECTIONAL LSTM (BILSTM)

The Long-Short-Term Memory (LSTM) neural net-
works [25] technique is employed in the study for GSR 
forecasting. This model is an advanced form of RNN and 
incorporates a recurrent network delay which enables the 
association of the network’s output for a given t-th sam-
ple with prior inputs, as illustrated in Figure 2. The LSTM 
architecture addresses the issue of diminishing gradients 
through the implementation of specialized logic gates, spe-
cifically the input (i), forget (f), and output (o) gates [26]. 
Moreover, the model is equipped with weights that link the 
gates, which are the input weights U, consisting of Uf, Ui, 
Uo and Uc, the recurrent weights W, comprising of Wf, Wi, 
Wo and Wc, and the bias terms b, including bf, bi, bo and 
bc [26]. The input at the t-th sample, denoted as Xt along 
with the hidden state from the preceding sample ht-1, are 
processed by the LSTM cell to produce the current hidden 
state ht using the steps outlined below:
(1)	The forget gate (ft) determines the information to be 

discarded from the unit state, which is executed accord-
ing to the subsequent equation:

	 	 (1)

where σ(z) is the sigmoid function given by:

	 	 (2)

(2)	The input gate (it) identifies the information that should 
be retained in the unit and selects the values using the 
following equation:

Figure 2. LSTM unit structure.
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	 	 (3)

(3)	The unit state is updated with the candidate value ŝt 
based on the following equation 4:

	 	 (4)

where τ(z) is a tangent-hyperbolic function given by:

	 	 (5)

The candidate unit state is further used to determine the 
unit state values as follows:

	 	 (6)

where are the operators ⊕ and ⊗ represent element-wise 
summation and product, respectively.
(4)	Next, the output ot and the hidden state ht is determined 

using the following calculation:

	 	 (7)

while the hidden state of the unit is given by:

	 	 (8)

The Bidirectional LSTM (BiLSTM) (Fig. 3) is an exten-
sion of the LSTM unit where the unit has two-way access. 
BiLSTM utilizes two LSTM models instead of just one, 
training in opposite directions on the input sequence. This 
means that while the first LSTM is designed to understand 
the sequence in a forward manner, the second LSTM is 
tasked with learning the sequence in reverse order. In the 
present approach, the LSTM is trained using LM method 

[27] for fast convergence. The LM algorithm is deemed 
particularly appropriate for this application, which neces-
sitates a moderate quantity of units and layers. The update 
of weights (Δu) within the LM method is characterized by 
the following:

	 	 (9)

where J represents the Jacobian matrix that maps the par-
tial derivatives of the error function relative to the weight 
vector of the model [28]. The error function is evaluated 
by the discrepancy between the actual values (y) and the 
predicted outputs (ŷ). The scalar (λ) controls the magnitude 
of the step size, which is augmented if the updates lead to 
a reduction in the error function and is reduced otherwise. 
The methodology employs a maximum number of itera-
tions set at T = 200. 

GATED RECURRENT UNIT (GRU)

The GRU is a type of RNN architecture that is designed 
to capture long-term dependencies in sequential data 
while mitigating the vanishing gradient problem [29] 
Mathematically, the GRU (Figure. 4) can be described as 
follows: 
(1)	Update Gate (zt): The update gate determines how much 

of the previous hidden state (ht-1) should be retained 
and combined with the new candidate hidden state (h~t) 
at the current time step (t). It takes input features xt and 
ht-1 and produces a value between 0 and 1 to represent 
the proportion of information to keep.

	 	 (10)
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Figure 3. Bidirectional Unit.
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(2)	Reset Gate (rt) determines how much of the previous hid-
den state (ht-1) should be ignored while calculating the 
new state (h~t). It produces values between 0 and 1.

	 	 (11)

(3)	Candidate Hidden State (h~t) is the new hidden state at 
time step t, which combining the current input features 
(xt) and previous hidden state (ht-1) based rt.

	 	 (12)

(4)	Final Hidden State (ht) at time step t is a combination 
of ht-1 and h~t weighted by zt. It determines how much 
information from the previous hidden the candidate 
hidden state should be incorporated.

	 	 (13)

To use the GRU to predict GSR at time step xt+1, given 
the previous GSR values x1, x2,..., xt, the following steps are 
taken:
•	 Initialize state h0 to a vector of zeros.
•	 For each time step t from 1 to T, compute the update 

gate (zt), reset gate (rt), candidate hidden state h~t, and 
the final hidden state (ht) using the formulas mentioned 
above.

•	 At time step t + 1, use the final hidden state ht as the 
context or representation of the sequence x1, x2,..., xt. 
Then, compute the predicted GSR value xt+1 using this 
context ht as input to a fully connected layer or regres-
sion layer.

	 	 (14)

BPTT is used to train the model along with weights 
and biases to minimize the error. These steps arerepeated 
over multiple epochs till the model achieves satisfactory 
performance.

CONVOLUTIONAL NEURAL NETWORKS 
(ConvNet)

The ConvNet [30], originally designed for image clas-
sification, has shown exceptional results surpassing other 
leading methods in that domain. Given the 2D ConvNet’s 
impressive outcomes in image-centric tasks, a 1D variant 
is created to analyse 1D signals and sequences [30]. This is 
achieved by isolating significant features at both high and 
low levels within the input data sequences. The ConvNet 
structure consists of a sequence input layer, a convolutional 
layer, a fully connected layer, and a regression layer. In this 
context, the width of the time series, denoting the feature 
count, is represented by K, and its length by N [31]. The ini-
tial phase involves a convolution operation that progresses 
along a set direction from the start to the end of the time 
series, utilizing convolutional filters that match the series 
width but may vary in length. The primary function of 
the convolutional layer is to extract features from the time 
series, followed by the subsequent pooling stage where vec-
tors from the convolutional layer are aggregated into a new 
vector in what is known as the pooling layer.

This model was enhanced by incorporating an adaptive 
moment estimation (ADAM) optimizer [32]. The update of 
each weight wi is obtained as follows:
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Figure 4. GRU architecture. 
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(15)

where α and β are the learning and decay rates. The oper-
ation of element-wise vector division is indicated by the 
symbol ⊘, and the calculation of the first moment m is 
executed in the subsequent manner.

	 	 (16)

where ∇we(w) symbolizes the vector differential operation 
of the error function e with respect to the weight w. The 
computation of the second moment vector v is carried out 
in the following way.

	 	 (17)

The learning rate α can assume any positive real num-
ber value, whereas the decay rates β1 and β2 are real num-
bers that are greater than 0 but less than 1.

MULTI-LAYER PERCEPTRON (MLP)

The MLP [33] is utilized as a standard for comparing 
the performance of LSTM. MLP possesses a notably sim-
pler architecture compared to LSTM. Unlike LSTM, MLP 
employs a feed-forward structure that processes data in a 
sequential manner from the input layer to the output layer. 
The output of the k-th hidden unit, denoted as hk(t), for the 
t-th input vector, is mathematically expressed as follows.

	 	 (18)

where Vk represents the input weight matrix. In this paper, 
the number of hidden units used is K = 20. With these val-
ues for the hidden units established, the output of the MLP 
is determined by the following equation.

	 	 (19)

This study employs gradient descent with adaptive 
learning rate (lr) backpropagation for training the MLP 
[27]. This algorithm is applied to compute the derivatives 
of the error function, denoted as dE, relative to the weight 
and bias variables w. The performance of this approach is 
expressed as follows.

	 	 (20)

Each weight is updated based on the following gradient 
descent equation.

	 	 (21)

During each iteration, if the output diverges from the 
target, the learning rate is augmented by a factor of Δlr = 
1.05. Conversely, if the error escalates beyond the threshold 
of ΔEmax = 1.04, the adjustment that caused the increase in 
error is reversed, and the learning rate is reduced by a factor 
of Δlr = 0.7. The training process concludes once the maxi-
mum iteration count, set at T = 1200, is attained.

GAUSSIAN PROCESS REGRESSION (GPR)

Gaussian Process Regression (GPR) [34] is a non-para-
metric Bayesian regression method that builds the rela-
tionship between the target variable and the independent 
variables as a Gaussian process. GPR is useful with small 
datasets. Mathematically, GPR can be expressed as follows:

	 	 (22)

where mt+1 is the mean function at time step t + 1 given by 
the historical GSR values x1, x2,..., xt. Kt+1 is the covariance 
matrix at time step t + 1. To use GPR for predicting GSR 
at time step t + 1 (xt+1) given the previous GSR values x1, 
x2,..., xt, you need to estimate the mean function mt+1 and 
the covariance matrix Kt+1. This involves finding the hyper-
parameters of the mean and covariance functions that best 
fits the training data. Once the mean function mt+1 and the 
covariance matrix Kt+1 are estimated, one can make predic-
tions for the GSR value at time step t + 1 using the condi-
tional distribution of yt+1 given the observed historical GSR 
values x1, x2,..., xt. The predicted GSR value at time step t 
+ 1 is the mean of this conditional distribution, which is 
given by mt+1.

GENERALIZED ADDITIVE MODEL (GAM)

Generalized Additive Model (GAM) [35] is a type of 
generalized linear model that extends linear regression to 
accommodate non-linear relationships between predictors 
and the response variable. Mathematically, a GAM can be 
represented as follows. For a regression task, let’s consider 
a single response variable y and p predictor variables (X1, 
X2,…, Xp). The general form of a GAM can be written as.

	 	 (23)

Where y is the response variable, β0 is the intercept 
term, (f1(X1), f2(X2),…, fp(Xp)) are smooth functions of 
the predictor variables. These functions are represented by 
splines, polynomials, or others. ϵ is the error term and fol-
lows a normal distribution for regression tasks. The GAM 
fitting process involves estimating the parameters β0 and 
the smooth functions fi(Xi)  from the training data. This is 
estimated by minimizing a loss function that penalizes the 
complexity of the model to prevent overfitting. The penal-
ization term discourages overly complex functions, encour-
aging smoothness in the fitted functions.
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LINEAR REGRESSION (LR)

Linear regression [36] is a simple and widely used sta-
tistical method for modelling the relationship between a 
dependent variable and one or more independent variables. 
In the context of predicting global solar radiation (GSR) at 
time stept + 1 (xt+1) given previous GSR values x1, x2,..., xt, 
linear regression can be used to establish a linear relation-
ship between the historical GSR values and the target GSR 
value at time t + 1.

	 	 (24)

Here, β0, β1,..., βt are the coefficients of the model that 
represent the intercept and the slopes associated with each 
of the historical GSR values. ε represents the error term, 
which captures the discrepancy between the predicted GSR 
value and the actual GSR value at time t+1. The result-
ing yt+1 represents the predicted GSR value at time t+1. 
The coefficient vector β is calculated using the following 
formula.

	 	 (25)

where XT is the transpose of the design matrix X. The 
inverse of the matrix (XT X)-1 is generated from the multi-
plication of XT and X. The matrix XTy is resulting from the 
multiplication of XT and the target vector y.

DATA AND ERROR MEASURES

The measured meteorological data was obtained from 
the station located at 26⁰18’26”N latitude and 50⁰08’29”E 
longitude at King Fahd University of Petroleum & Minerals, 

Dhahran, Saudi Arabia. The meteorological parameters 
(global solar radiation intensity-GSR, ambient tempera-
ture, relative humidity, wind speed, wind direction, and 
surface pressure) are scanned every five seconds and saved 
as averages over one hour. The data, used in the present 
study, spans over a length of nine years from 01/01/2012 to 
12/31/2020. The experiment in this paper relies on a single 
dataset from one location, which may limit the generaliz-
ability of our findings. However, the dataset covers a sub-
stantial period of 8 years, offering robust temporal coverage 
that effectively captures various patterns and trends in solar 
radiation.

A sample of data set of GSR values (W/m2), between 
01/01/2015 and 31/12/2017 is shown in Figure 5. It is evi-
dent from the sample data set that the GSR intensity val-
ues vary from a minimum at the start of the year (winter 
time) and after reaching a maximum during summer time 
touches back the minima at the end of the year. This pro-
cess is repeated from year to year but with varying magni-
tudes. Similarly, the daily variation of GSR intensity values, 
shown in Figure 6, start increasing from the early hours of 
the day and then keep on increasing with the passage of 
time and after reaching a maximum at around noon time 
tend to touch the minima back again at sun set. This pro-
cess, as indicated in Figure 6, keeps on repeating day after 
day but with different values of GSR intensities. 

Since the dataset is a time series, so is not shuffled when 
loaded. The data is divided into training, validation, and 
test portions of 60%, 20%, and 20%, respectively. The 24 
hours lag GSR-values are considered input to give a desired 
input structure into a model, and the model predicts the 
next hour. Error measures, such as RMSE, MAE, and R2, are 
commonly used to assess the accuracy and performance of 
predictive models, including those used for GSR prediction. 

Figure 5. GSR intensity values over a period of three years (01/01/2015 to 31/12/2017).
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RMSE [37] is calculated by taking the square root of the 
average of the squared differences between the predicted 
GSR values (yp) and the actual GSR values (y).

	 	
(26)

MAE [38] is another error metric used to measure the 
average absolute difference between the predicted GSR val-
ues and the actual GSR values.

	 	 (27)

MBE is used to measure the average difference between 
the predicted GSR values and the actual GSR values. It pro-
vides the model’s tendency to under and overestimation.

	 	 (28)

R2 [39–41] measures the proportion of variance in the 
GSR values that can be explained by the predictive model. 
The R2 values range between 0 and 1.

	 	
(29)

RESULTS AND DISCUSSION

The GSR values predicted using different proposed mod-
els are compared with the measured values and the resulting 
error parameters are summarized in Table 1. The error values 
obtained for different methods show that BiLSTM performs 
the best in terms of RMSE, indicating that the predicted val-
ues have the smallest overall deviation from the measured 

Figure 6. GSR intensity values over a period of nine days (22/06/2016 to 30/06/2016).

Table 1. Models Accuracy

No Methods RMSE MAE MBE R2 (%)
1 BiLSTM [31] 30.84 17.21 11.65 99.26
2 LSTM [25] 45.87 23.97 14.36 98.17
3 GRU [29] 45.039 21.99 -9.16 98.25
4 ConvNet [30] 57.75 36.86 21.68 97.23
5 MLP [27] 40,60 15.76 1.77 98.40
6 GPR [34] 43.77 14.69 -0.15 98.14
7 GAM [35] 41.09 17.98 2.01 98.36
8 LR [36] 44.83 19.75 3.33 98.05
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Figure 7. Scatter Plot of predicted and actual data using (a) BiLSTM, (b) LSTM, (c) GRU, (d) ConvNet, (e) MLP, (f) GPR, 
(g) GAM, and (h) LR.
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values. Additionally, it has the highest R2, suggesting that 
BiLSTM method resulted in the closest agreement between 
the predicted and measures GSR values. LSTM is outper-
formed by BiLSTM, with larger values of RMSE and MAE 
relative to other models. However, R2 of 98.17% is slightly 
lower than BiLSTM. GRU model performed poorly with 
high RMSE and negative MBE values. However, a R2 value of 
98.25% comparable to LSTM, represents a good fit. ConvNet 
methos, slightly under performed than the BiLSTM, LSTM, 
and GRU models in terms of RMSE and MAE. The associ-
ated R2 value of 97.23% is observed to be the lowest, showing 
a weaker correlation, Table 1.

Traditional machine learning approach, like MLP, also 
demonstrated a relatively good performance with the low-
est magnitude of MAE. The coefficient of determination 
value is found to be moderate with R2 of 98.40%, suggesting 
a good fit to the data. GPR performed reasonably well with 
low MAE and RMSE values. The lower MBE and high R2 
value of 98.14% show a minor bias and a good fit to the 
data, respectively. GAM showed a good performance with 
low values of RMSE and MAE. The MBE and R2 values of 
2.01 and 98.36% show a positive bias and a good fit. The 
model LR performed slightly below expectations with 
higher RMSE and MAE values compared to some other 
techniques. 

The plots in Figure 7, show that BiLSTM (Figure 7a) is 
the best- model, closely followed by MLP (Figure 7e) and 
GAM (Figure 7f). Overall, these models show better per-
fromance to predict GSR values with better accuracy. On 
the other hand, LSTM and GRU also performed reason-
ably well, but with varying degrees of biases and accura-
cies. Figure 8 shows the comparison of the predicted and 
actual GSR values obtained using BiLSTM, LSTM, GRU, 
ConvNet, and MLP methods.

CONCLUSIONS

The present sudy carried out state of the art analysis 
of predicting the Global Solar Radiation using different 
modern machine learning methods. Accurate GSR pre-
diction ahead of time is crucial for better and commercial 
implementation of solar energy applications. These appli-
cations may include power production, solar cooling and 
heating, water desalination, green hydrogen production 
and so on. The study explored deep learning architec-
tures (BiLSTM, LSTM, and GRU) and traditional machine 
learning methods (ConvNet, MLP, GPR, GAM, and LR). 
Among these, BiLSTM is found to be the best performing 
model, exhibiting the minimum RMSE and maximum R2 
values. It demonstrated the ability of retaininglong-term 
dependencies of solar radiation patterns for accurate pre-
diction of GSR ahead of time. MLP and GAM models 
followed interms of robust performance and capturing 
temporal patterns of GSR. The recurrent models (BiLSTM, 
LSTM, and GRU) showed effectiveness in predicting the 
time-dependent patterns of GSR. Other deep network 
model, like ConvNet, also provided comparable perfor-
mance. The identification of BiLSTM as the most accurate 
model, the present study provides a reliable method for 
predicting GSR high accuracy. This, for sure, lead for more 
efficient resources allocation and utilization, energy man-
agement, and improved decision-making in solar energy 
applications.
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