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ABSTRACT

Induction motors play an important role in a variety of industrial applications but are partic-
ularly sensitive to electrical faults, such as rotor-related problems such as broken rotor bars. 
Eliminating such faults is critical to reducing maintenance costs and preventing serious finan-
cial losses. This study presents a method based on detailed feature extraction for identifying 
broken rotor pull-out faults in induction motors. The process is initiated by generating spec-
trograms from sensor-based signals. However, instead of using these spectrograms directly, 
the resulting power spectral density data is converted into an optimized image format suitable 
for processing by pre-classified deep neural networks. To utilize these networks’ capabilities, 
the developed features are fed into nearest neighbor (k-NN) and random forest classifiers 
for fault detection. The programmatic method was tested on a publicly available dataset of 
a three-phase step-down motor operating under various load conditions. In particular, the 
DenseNet201 model’s improved features from the mean pooling structure yielded a remark-
able accuracy of 99.75% using the random forest classifier. This result demonstrates a power-
ful and sensitive fault detection tool in induction motors by effectively integrating the conven-
tional circuit techniques with detailed extraction by the proposed method.
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INTRODUCTION

Induction motors (IMs) are critical components in 
industrial environments thanks to their fundamental role 
in converting electrical energy into mechanical energy and 
are known for their high efficiency and robustness [1]. 
However, during operation these motors are subjected to 
constantly changing stresses such as radial and rotary elec-
tromagnetic forces and thermal distortion. These stresses 

can lead to various structural failures within the engine. 
Stator problems are often caused by the weakening of the 
insulation around the copper windings that can cause elec-
trical short circuits. Rotor failures can occur for several 
basic reasons. Electrical problems such as overcurrent and 
electrical discharges can cause rotor bars to overheat and 
damage. Mechanical stresses such as vibration and mis-
alignment can lead to cracks, while material defects in rotor 
components can lead to structural weakening. Additionally, 

https://sigma.yildiz.edu.tr
https://orcid.org/0000-0003-4074-2503
https://orcid.org/0000-0002-5371-7238
http://creativecommons.org/licenses/by-nc/4.0/


Sigma J Eng Nat Sci, Vol. 43, No. 5, pp. 1473−1483, October, 20251474

thermal factors such as overheating and insufficient cooling 
cause thermal cycles that lead to wear on rotor materials 
[2]. Among rotor-related problems, broken rotor bar (BRB) 
failures are particularly common. These faults can seriously 
affect engine performance, causing increased vibration, 
decreased efficiency, overheating and electrical instabilities. 
Such disturbances can cause unpredictable torque output, 
which creates significant problems, especially in applica-
tions requiring precise control. Furthermore, BRB faults 
can increase maintenance and repair costs, increase the 
risk of motor failure, increase spare parts costs, and lead to 
operational downtime. Therefore, early detection and regu-
lar maintenance of these problems are crucial to maintain-
ing the efficiency and lifespan of IMs.

Among BRB fault detection methods, Motor Current 
Signature Analysis (MCSA) can non-invasively identify 
faults by analyzing harmonic changes in the current’s fre-
quency [3,4]; vibration analysis reveals mechanical defects 
by evaluating the motor’s abnormal vibration patterns[5]; 
thermal imaging detects overheating areas, visualizing 
problematic regions[6-8]; and frequency analysis detects 
faults through changes in operating frequency[2].

With the advancement of technology, tools such as 
artificial intelligence (AI) [9-11], machine learning (ML) 
[12,13], and advanced signal processing techniques [14,15] 
have been incorporated into broken rotor bar (BRB) fault 
detection methods. By leveraging big data analysis, AI and 
ML offer the opportunity to identify and predict faults by 
detecting abnormal behaviors based on data obtained from 
various sensors such as motor current, vibration, and tem-
perature. Advanced signal processing techniques such as 
wavelet transform [16] and Fourier transform [17] enable 
more precise fault detection by revealing details and pat-
terns in motor signals. In light of these advancements, sev-
eral studies have introduced different methodologies for 
BRB detection and classification. Lizarraga-Morales et al. 
have developed an approach based on homogeneity as an 
index. The approach analyzes one phase of the induction 
motor startup-transient current, leveraging the homogene-
ity calculation. The arthurs also develope a hardware-pro-
cessing unit based on a field programmable gate array 
device for online BRB detection and classification. The 
results demonstrate an accuracy greater than 99.7% for half, 
one, or two BRBs [18]. Chisedzi et al. have used decision 
tree classification, deep learning and artificial neural net-
work methods for detecting BRB faults. Arthurs describe 
the process of identifying the faults by transforming the 
measured line-current signatures from time domain to 
frequency domain using discrete Fourier Transform. The 
decision tree method shows higher accuracy rates of 95% 
and 98% for 3BRB and 6BRB conditions [19]. Rayyam et 
al. have presented an approach using a combination of an 
ant lion optimizer (ALO) and an unscented Kalman filter 
(UKF) for broken bar fault monitoring in squirrel-cage 
induction motors (SCIM). The developed ALO-UKF algo-
rithm adjusts the noise matrices for accurate fault detection. 

Simulation results showed better performance in broken 
bar detection compared to traditional methods such as the 
simple-UKF and EKF algorithms [20]. Ullah et al. carried 
out a study on fault detection and classification in induc-
tion motors using ANSYS Maxwell based simulations. 
Considering various loading conditions, stator current and 
leakage flux data were produced in normal and faulty cases 
(broken bar faults, full pole gap, static eccentricity). A deep 
neural network (DNN) algorithm was proposed and com-
pared with support vector machines (SVM) and random 
forest classifiers (RFC) for fault detection and classifica-
tion. Especially under 100% loading conditions, the DNN 
algorithm provided higher accuracy with leakage flux data 
compared to SVM and RFC. However, its performance 
was not as effective with stator current data [21]. Lee et al. 
proposed the combination of symmetric uncertainty (SU) 
and genetic algorithm (GA) to improve feature selection in 
induction motor fault classification. The SU-GA method 
was applied to four different engine cases and analyzed with 
the Hilbert-Huang transform (HHT). SVM classification 
was performed using SU, GA and SU-GA methods, and the 
SU-GA method achieved higher accuracy with fewer fea-
tures. Additionally, simulations with varying levels of white 
noise confirm the effectiveness of the proposed method in 
classifying motor faults [22]. A feature fusion residual CNN 
with a double branch (DBF-CNN) for BRBs in IMs is pro-
posed in [23]. This network utilizes the Hilbert transform 
to highlight fault features and employs a residual structure 
to prevent degradation. Furthermore, a double-branch 
structure extracts global and local features separately, while 
an attention-based feature fusion method addresses feature 
loss. Each of these studies contributes to the field of BRB 
fault detection and highlights the importance of combining 
traditional diagnostic methods with advanced technologi-
cal advancements to increase the reliability and efficiency 
of IMs.

In the field of signal processing, utilizing advances in 
image analysis by converting signals into visual formats 
and enhancing their interpretive capabilities is attracting 
increasing interest. This technique combines the funda-
mental principles of signal processing with the advanced 
analytical power of image analysis. Numerous studies in 
the literature present this approach, encompassing different 
methods and applications. Some studies that explain this 
concept are summarized below.

Barrera-Llanga et al. proposed a Convolutional Neural 
Network (CNN) to detect broken rotor bars in squir-
rel-cage rotors. Using the Finite Element Method Magnetics 
(FEMM) software, they converted the current–angular 
position signals of a 28-bar squirrel-cage rotor into images 
and generated a dataset containing up to six broken bar 
scenarios at each location. Six different CNN architectures 
were evaluated in the study: Inception V4, NasNETMobile, 
ResNET152, SeNET154, VGG16, and VGG19. The 
VGG19 model performed best with an accuracy rate of 
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approximately 99% and achieved high precision, sensitivity 
and F1-score [24]. 

Shao et al. proposed a deep learning-based machine 
fault diagnosis method using time-frequency distributions 
obtained from wavelet transforms. In the study, the per-
formance of the pre-trained models was compared with a 
CNN model trained from scratch on the same data. The 
proposed method was tested on three different datasets, 
and satisfactory results were obtained [25]. Huang and col-
leagues also detected machine faults using time-frequency 
distributions obtained from wavelet transforms. The Deep 
Continuous Convolutional Network (DCCN) uses multi-
layer perceptrons with Gaussian masks to parameterize 
continuous convolution kernels and multiplicative Gabor 
filters to increase noise resistance. Furthermore, depth-sep-
arated convolutions with residual connections are applied 
to increase computational efficiency. The effectiveness of 
DCCN has been validated using two laboratory datasets 
and one public dataset. The method achieved an aver-
age macro F1 score of over 98.69% in diagnosing various 
machine faults and an average score of 86.43% in a special 
test with reduced training data [26].

Our study also aims to detect BRB faults in electronic 
devices by adopting the principle of converting signals 
into visual representations. First, the signals collected from 
sensors on the electronic device are converted into spec-
trograms. However, instead of using these spectrograms 
directly, Power Spectral Density (PSD) data is converted 
into a visual format. Then pre-trained DNNs are used to 
extract features from these images. The resulting features 
are analyzed with k-Nearest Neighbor (k-NN) and Random 
Forest (RF) classifiers, to obtain accurate fault detection. 
The effectiveness of this technique has been validated using 
a dataset obtained from the University of São Paulo, Brazil, 
which includes normal and BRB fault conditions at four 
different severity levels and eight different load cases (from 
no load to full load). Among the 11 pre-trained DNN mod-
els, features extracted from the mean pooling layer of the 
DenseNet201 model, in particular, achieved an impressive 
accuracy rate of 99.75% when used with the RF classifier.

The remaining sections of this document is organized 
as follows: Section 2 details the proposed methodology and 
discusses the pre-trained DNNs along with the used clas-
sification techniques. Section 3 presents the performance 
evaluation. Section 4 concludes the study.

MATERIALS AND METHODS

The proposed method for detection of BRB faults is 
given in Figure 1. As indicated in the figure, vibration and 
current signals received from the sensors first undergo a 
preprocessing phase. During this preprocessing stage, the 
spectrogram of the signals is generated, followed by the 
conversion of the resulting PSD values into images. This 
preprocessing is executed independently for both the cur-
rent and vibration signals. Following this, deep features 

are extracted from the resulting images using pre trained 
DNNs. The obtained features are combined and fed into RF 
and k-NN classifiers to assess their effectiveness. 

PREPOCESSING

A spectrogram is a time–frequency representation that 
visualizes the evolution of a signal’s frequency components 
over time [27]. It is obtained by applying the Short-Time 
Fourier Transform (STFT) to the signal x(n) which reveals 
how its frequency content changes with time. The STFT can 
be calculated as shown in Equation (1): 

(1)

In this equation:
x(n) is the signal being analyzed.
w(n-m) represents the window function, centered at 

time m.
e-jωn is the complex exponential function, where ω

denotes the angular frequency.
As previously mentioned, this study does not directly 

utilize the spectrograms of the signals. Instead, it focuses on 
the Power Spectral Density (PSD) values deriven from the 
spectrogram process. The PSD is obtained with Equation 
(2):

(2)

Where N denotes the sample length while f_s indicates 
the sampling frequency. 

The PSD values obtained are converted into a logarith-
mic scale, 10*log10(PSD), significantly improving the visu-
alization of the signal’s time-frequency content.

Deep learning models typically require input data in a 
three-channel (RGB) image format. To meet this require-
ment, we converted our initial single-channel dataset to a 
three-channel format by concatenating it. This way, each 
channel contains the same information; while this may 
seem unnecessary, it is essential to comply with the model’s 
structural input format requirements. This format simpli-
fies the process of the usage of advanced pre-trained models 
without the need of specific retraining for single-channel 
input, allowing for the efficient use of existing deep learn-
ing architectures.

Feature Extraction
DNNs are deep learning models commonly used in 

tasks such as image recognition. Layers like convolutional, 
pooling, fully connected, and activation functions make up 
a typical DNN. The network needs more computational 
power as layers are added because there are more param-
eters to learn. While training models on larger datasets 
give better performance, this process can be time-con-
suming. Therefore, transfer learning has become wide-
spread. Transfer learning allows pre-trained models to 
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be reused for different tasks. Furthermore, using knowl-
edge from similar tasks can require less data than train-
ing from scratch. Many different DNN architectures have 
been developed over the years such as VGG, DenseNet, 
SqueezeNet, ResNet, MobileNet, AlexNet and Inception. In 
this study, 11 pre-trained models which are VGG-16, VGG-
19, DenseNet-201, SqueezeNet, ResNet-50, MobileNetV2, 
AlexNet, Inception V3, NasNetMobile, DarkNet53, and 
Inception-ResNet-v2 are used for feature extraction. 

The VGG-16 and VGG-19 models, created by the 
Visual Geometry Group (VGG) at the University of Oxford 
and first presented by Simonyan & Zisserman in 2014, 
are renowned for their structural simplicity and reliance 
on just three 3x3 convolutional layers [28]. The VGG-16 
model has 16 layers (13 convolutions, 3 fully connected) 
while the VGG-19 model has 19 layers (16 convolutions, 

3 fully connected). Although they have simple design both 
models performed well in the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) and are now among the 
main reference models for image classification. The VGG 
models are widely used feature extractors in many appli-
cations, particularly in deep learning research, due to their 
simplicity and practicality.

With 201 levels, DenseNet-201 is an enhanced ver-
sion of the DenseNet architecture [29]. When compared 
to other deep architectures, this model has demonstrated 
exceptional performance on common benchmarks such 
as the ImageNet dataset, effectively addressing the vanish-
ing-gradient problem and yielding higher accuracy with 
more economical parameter usage.

Researchers at DeepScale, Stanford University, and the 
University of California, Berkeley developed SqueezeNet in 

Figure 1. Block diagram of the proposed method.
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2016, which presents the novel idea of “fire modules” [30]. 
These modules, which are designed to compress (squeeze) 
input channels before expanding them, effectively replace 
conventional convolutional layers, significantly reducing 
the model’s parameter count. As a result, a remarkably 
small network is produced, which is perfect for installation 
on devices with limited processing power or in embedded 
systems. 

ResNet-50, a variant of the Residual Network (ResNet) 
designed by Kaiming He and his team at Microsoft 
Research, features a total of 50 layers (encompassing 177 
sub-layers) [31]. ResNet broke the previous record in the 
2015 ILSVRC competition with an error rate of just 3.37%. 
ResNet-50’s depth and effectiveness have made it a popular 
model for a variety of computer vision applications, high-
lighting its importance in the field.

Introduced in 2018 by Google’s research team [32], 
MobileNetV2 is a distinguished CNN architecture within 
the MobileNet series, designed to deliver models of high 
efficiency suitable for devices constrained by their com-
putational power. Inverted residuals and linear bottleneck 
modules are integrated in this version, which advances 
from its predecessor, MobileNetV1. Distinct from con-
ventional residual blocks that upscale dimensionality 
before convolution, MobileNetV2’s innovative bottleneck 
approach initially compresses dimensionality, conducts 
convolution, and subsequently restores the dimensional-
ity. This approach minimizes model dimensions and max-
imizes computing performance, making it very beneficial 
for mobile systems. Moreover, MobileNetV2 makes use 
of depthwise separable convolutions, which significantly 
reduce computational burden and parameter count by 
splitting a normal convolution into a depthwise convolu-
tion and a 1x1 pointwise convolution.

AlexNet is a deep learning architecture introduced by 
Krizhevsky, Sutskever, and Hinton [33] that significantly 
advanced developments in computer vision. AlexNet 
consists of eight main layers; five convolutional layers 
and three fully connected layers. When pooling, ReLU 
(Rectangular Linear Unit), normalization, and softmax 
layers are included, the total number of layers of the archi-
tecture reaches 25. Having 62 million trainable parameters, 
AlexNet is designed to process 227x227 images, highlight-
ing its complexity and capacity in processing visual data. 
With 62 million trainable parameters, AlexNet is designed 
to process images of size 227x227, underscoring its com-
plexity and capacity for handling intricate visual data.

Google’s 48-layer deep, pre-trained convolutional neu-
ral network model, Inception V3 network, is an additional 
development in CNN utility [34]. It performed admirably 
in the ILSVRC-2015 competition, achieving a top-5 accu-
racy rate of 92.8%. The use of tiny convolution kernels 
rather than huge ones is one of Inception V3’s primary 
architectural innovations. This is achieved by breaking 
down conventional bigger convolutions into a mix of one- 
and two-dimensional convolutions, i.e., into sequences 

of 1xN and then Nx1 convolutions. By using a strategic 
decomposition the model’s parameter count is dramatically 
reduced, improving its efficiency without compromising 
performance.

The NasNetMobile, a creation of the Google Brain 
team unveiled in 2017, embodies a design rooted in neu-
ral architecture search (NAS) principles [35]. The regular 
cell and the reduction cell are two different kinds of build-
ing components used in this construction. Multiple layers 
in normal cells improve feature map resolution, allowing 
for more in-depth picture analysis. Reduction cells, on the 
other hand, reduce the amount of data to be processed by 
reducing the spatial resolution of feature maps, thus ensur-
ing more efficient processing. The final design is built by 
carefully placing these components in the right order to 
maximize the neural network’s depth and efficiency.

DarkNet53, an artificial intelligence model developed 
by Joseph Redmon, serves as the cornerstone of the YOLO 
(You Only Look Once) algorithm [36]. This model is 
widely used in deep learning and image processing fields, 
and shows high performance especially in real-time object 
detection applications. With the elements from the Deep 
Residual Network and DarkNet19 architectures, DarkNet53 
is based on the sequential use of 1x1 and 3x3 convolutional 
layers with residual connections. This structure improves 
the model’s ability to efficiently process and analyze visual 
data, enabling it to identify objects in images with high 
accuracy and speed.

The Inception-ResNet-v2 model which stands out for 
its 164-layer architecture expertly blends the advantages 
of the ResNet (Residual Networks) and Inception models 
[37]. The goal of this combination is to improve computer 
vision capabilities by combining ResNet’s superiority in 
training very deep networks through residual connections 
with the Inception architecture’s skill on processing multi-
scale picture information. This model which is designed to 
process 229x229 pixel image inputs, consists of a complex 
hierarchy of convolutional, pooling and dense layers. The 
model’s effectiveness in feature extraction and recognition 
is improved by this deliberate layering, which makes it a 
powerful tool for a variety of computer vision applications.

CLASSIFICATION METHODS

Random Forest (RF)
RF is a powerful technique that employs multiple deci-

sion trees to perform both classification and regression 
tasks [38]. It builds these trees by randomly sampling n 
datasets from the original training data using the bootstrap 
method. At each node of every tree, a subset of m variables 
is randomly selected, and the best split is determined based 
on the Gini index [39]. After choosing the optimal split, 
the tree is further divided into two branches. This process 
continues until each leaf node represents a single class [40]. 
The performance of each tree is evaluated by its Out-of-Bag 
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(OOB) errors, which are a measure of prediction accu-
racy on data not included in the bootstrap sample. Trees 
with lower OOB errors are considered more accurate and 
are given higher weight whereas those with higher errors 
receive lesser weight. When making predictions, each tree 
casts a vote weighted by its accuracy. The final classification 
decision is based on the majority of these weighted votes 
across all n trees, with the class garnering the most votes 
being declared the final outcome.

k- Nearest Neighbours (k-NN)
The k-Nearest Neighbors (k-NN) algorithm is a

straightforward machine learning method widely used for 
classification and regression tasks such as image classifi-
catio, power load forecasting, fault detection and medical 
diagnosis. In this approach, predictions for a given data 
point are determined based on the labels or values of its 
closest k neighbors. The algorithm typically identifies these 
neighbours using a distance metrics such as Euclidean, 
Manhattan and Minkowski Distance. In classification cases, 
the most frequent class label among these neighbours is 
returned as the output; in regression, it calculates the aver-
age of these neighbours output values. The effectiveness of 
this method heavily depends on the correct determination 
of the ‘k’ value.

In this study, the Euclidean distance metric is employed 
to compute the distances between neighbors. The calcula-
tion of Euclidean distance between two points, r and s, in 
an n-dimensional space is defined as shown in Equation (3) 
[41].

(3)

RESULTS AND DISCUSSION

In this study, a dataset containing data from an induc-
tion motor with broken rotor bar faults, made publicly 
available by the University of São Paulo in Brazil, was used 

[42]. The data set includes a four-pole, three-phase motor 
with an output power of 1 hp, a supply voltage of 220/380V, 
and a nominal speed of 1785 rpm. Faults are divided into 
four levels (from 1 to 4) according to the number of bro-
ken rods, and a separate category is defined for fault-free 
engines (health class). 

To comprehensively evaluate these categories, eight 
different load cases were determined, with torque values 
ranging from 0.5 Nm to 4.0 Nm, in 0.5 Nm increments. For 
each condition, 10 experiments were conducted to com-
prehensively collect both electrical and mechanical signals. 
The experimental setup for the dataset is shown in Figure 
2.Some sample examples of the images transformed from
PSD values for healthy and broken rotor bar under different 
load conditions are given in Figure 3.

Due to the varying sizes of each signal recorded from 
sensors, in this study, 1001000 data points are used for 
current signals (Ia), and 140000 data points for vibration 
signals (Vib_acpi). As stated before there are 8 different load-
ing conditions and 5 fault classes, and each experiment 
repeated 10 times, resulting in a total of 400 image data. 
This dataset is randomly split into 80-20% for training and 
testing. To ensure more stable and accurate results, this pro-
cess is repeated 10 times.

The classification accuracy results for 11 different DNN 
models, showing the performance analysis at various lay-
ers using k-NN and RF methods, along with the standard 
deviations are given in Table 1 Among these architectures, 
DenseNet201 (avg_pool) and InceptionV3 (avg1) have 
given the highest performance with almost perfect accu-
racies of 99.75% and 99.25%, respectively, with the RF 
classifier. Meanwhile, InceptionResNetV2, NasNetMobile 
(global avgpooling2d), and AlexNet (fc8) achive lower 
accuracies of 78.25%, 80.62%, and 81.87%, respectively, 
when using the k-NN algorithm. These results show that 
most models perform better with RF compared to k-NN, 
suggesting that RF’s model utilizes the deep features gener-
ated by these networks more effectively.

Figure 2. Experimental setup.
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If a closer look is taken at the standard deviation values 
as illustrated in Figure 4, it can be observed that the k-NN 
algorithm follows a trend ranging between 1.21 and 4.94, 
while the RF classifier exhibits standard deviation values 
between 0.79 and 3.45. These values clearly demonstrate 
that the RF classifier provides more consistent results in 
solving the BRB fault detection problem.

In the literature, there are studies that attempt BRB 
fault detection using only current data. Consequently, this 

study has also examined the impact of Ia current signals 
on fault detection results. When reviewing the results in 
Table 2, it is observed that classifications carried out using 
the k-NN method generally provide better outcomes 
compared when using the combined features. While for 
the RF method, the use of combined features are found 
to be more effective. The highest overall result is once 
again obtained using the DenseNet201 model (avg_pool) 
combined with RF classification. The standard deviation 

Table 1. Classification accuracy results using Vib and Ia signals

Deap feature k-NN RF
AlexNet (fc7) 88.37±2.5 97.87±1.56
AlexNet (fc8) 81.87±4.80 96.75±2.14
DenseNet201 (avg_pool) 96±1.64 99.75±0.53
MobileNetV2 (global avg pooling2d) 93.62±2.32 99±0.79
DenseNet201 (fc1000) 95.5±1.21 97.62±1.09
InceptionV3 (avg_pool) 89.12±1.96 99.25±1.05
Vgg19 (fc7) 91.5±2.02 98.75±1.18
Vgg16 (fc7) 94.37±2.52 98.37±1.03
SqueezNet (pool10) 82.6±3.03 93.12±3.45
DarkNet53 (avg1) 98.50±1.64 98.75±1.56
NasNetMobile (global avg pooling2d) 80.62±3.50 96.12±2.08
Inception-ResNetV2 (avg_pool) 78.25±4.94 92.62±2.24
ResNet50 (fc1000) 89.75±3.67 98.62±1.37

Figure 3. PSD-Image transformed samples for healthy and broken rotor bar under different load conditions.
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results consistently demonstrate that the k-NN method 
is significantly more effective when extracting features 
solely from Ia signals.

The method introduced in this study is evaluated against 
previous research, as outlined in Table 3, all using the same 
dataset. References [43,44] and [45] implement a trans-
formation of signals to images, with significant variations 
in approach. Whereas, reference [23] applies the Hilbert 
transformation to signals and feeds the transformed data 
into a dual-branch CNN model. In contrast to other stud-
ies in the comparison, reference [23] addresses a three-class 
problem involving 1BRB, 2BRB, and 3BRB and achieves 
an accuracy of 99.86%, whereas the others tackle a more 
complex five-class scenario, including HLT, 1BRB, 2BRB, 
3BRB, and 4BRB. Moreover, both References [43] and [44] 
create spectrogram images from signals. However, the used 

methodologies are different; reference [44] uses only cur-
rent signals and the short time fourier transform (STFT) for 
spectrogram generation, while reference [43] incorporates 
both vibration and current signals, employing the contin-
uous wavelet transform (CWT) to produce spectrograms, 
this approach yields an accuracy score of 100%. Reference 
[44] takes a different approach by using time-domain gray-
scale current imaging techniques coupled with CNN, yield-
ing a 99.53% accuracy.

The proposed methods in this study which employ 
PSD transformations to image format followed by deep 
feature extraction, exhibit an effective approach to the 
classification task. The first proposed model achieves an 
accuracy of 98.5% using current signals, while the sec-
ond, utilizing both vibration and current signals, reaches 
99.75% accuracy. 

Figure 4. Standard deviation results.

Table 2. Classification accuracy results using Ia signals

Deap Feature k-NN RF
AlexNet (fc7) 97.50±1.67 97.25±1.54
AlexNet (fc8) 96.37±1.24 96.12±1.71
DenseNet201 (avg_pool) 95.8±2.83 98.5±1.15
MobileNetV2 (global avg pooling2d) 93±2.84 94.6±3.44
DenseNet201 (fc1000) 93.5±2.55 96±3.05
InceptionV3 (avg_pool) 97.5±1.02 98.5±0.99
Vgg19 (fc7) 94.25±2.22 95.62±1.69
Vgg16 (fc7) 95.25±2.49 95.37±1.56
SqueezNet (pool10) 93.12±3.50 94.5±.71
DarkNet53 (avg1) 98. ±1.58 98.37±1.67
NasNetMobile (global avg pooling2d) 96.12±2.34 96.2±1.86
Inception-ResNetV2 (avg_pool) 97±1.79 96.12±1.50
ResNet50 (fc1000) 95±2.95 96.12±2.32
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CONCLUSION

This study proposes a robust method for detecting BRB 
faults in IMs using advanced deep feature extraction tech-
niques. By converting PSD data into image formats which 
can be analyzed by pre-trained DNNs, the proposed approach 
effectively utilizes different properties of motor signals. The use 
of k-NN and RF classifiers improves the fault detection process 
by enabling precise detection of faults that vary under different 
load conditions. Validation of this approach was performed 
with publicly available dataset provided the University of São 
Paulo, Brazil, containing normal and BRB fault cases at four 
different severity levels and eight different load scenarios. The 
DenseNet201 model achieved a high classification accuracy of 
99.75% with its average pooling layer along with the RF clas-
sifier using both vibration and current signals. DenseNet201’s 
densely connected architecture, parameter efficiency, and 
depth make it a powerful model. The average pooling layer 
improves performance by providing a comprehensive sum-
mary of features, providing robustness to noise, and encour-
aging balanced learning. These features allow DenseNet201 
to outperform other models, making it particularly suitable 
for complex and sensitive tasks such as BRB fault detection. 
This research sets a benchmark for future studies aimed on 
fault detection in IMs. Creating a comprehensive dataset with 
different motor types, fault conditions and operating scenarios 
will be beneficial for further development. Also, the accuracy 
and robustness of fault detection can be greatly increased by 
using ensemble methods and real-time data processing. 
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