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INTRODUCTION

ABSTRACT

Induction motors play an important role in a variety of industrial applications but are partic-
ularly sensitive to electrical faults, such as rotor-related problems such as broken rotor bars.
Eliminating such faults is critical to reducing maintenance costs and preventing serious finan-
cial losses. This study presents a method based on detailed feature extraction for identifying
broken rotor pull-out faults in induction motors. The process is initiated by generating spec-
trograms from sensor-based signals. However, instead of using these spectrograms directly,
the resulting power spectral density data is converted into an optimized image format suitable
for processing by pre-classified deep neural networks. To utilize these networks’ capabilities,
the developed features are fed into nearest neighbor (k-NN) and random forest classifiers
for fault detection. The programmatic method was tested on a publicly available dataset of
a three-phase step-down motor operating under various load conditions. In particular, the
DenseNet201 model’s improved features from the mean pooling structure yielded a remark-
able accuracy of 99.75% using the random forest classifier. This result demonstrates a power-
ful and sensitive fault detection tool in induction motors by effectively integrating the conven-
tional circuit techniques with detailed extraction by the proposed method.

Cite this article as: Okumus H, Ergun E. Broken rotor bar fault detection in induction motors
through power spectral density to image method. Sigma J Eng Nat Sci 2025;43(4):1473-1483.

can lead to various structural failures within the engine.
Stator problems are often caused by the weakening of the

Induction motors (IMs) are critical components in
industrial environments thanks to their fundamental role
in converting electrical energy into mechanical energy and
are known for their high efficiency and robustness [1].
However, during operation these motors are subjected to
constantly changing stresses such as radial and rotary elec-
tromagnetic forces and thermal distortion. These stresses
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insulation around the copper windings that can cause elec-
trical short circuits. Rotor failures can occur for several
basic reasons. Electrical problems such as overcurrent and
electrical discharges can cause rotor bars to overheat and
damage. Mechanical stresses such as vibration and mis-
alignment can lead to cracks, while material defects in rotor
components can lead to structural weakening. Additionally,
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thermal factors such as overheating and insufficient cooling
cause thermal cycles that lead to wear on rotor materials
[2]. Among rotor-related problems, broken rotor bar (BRB)
failures are particularly common. These faults can seriously
affect engine performance, causing increased vibration,
decreased efficiency, overheating and electrical instabilities.
Such disturbances can cause unpredictable torque output,
which creates significant problems, especially in applica-
tions requiring precise control. Furthermore, BRB faults
can increase maintenance and repair costs, increase the
risk of motor failure, increase spare parts costs, and lead to
operational downtime. Therefore, early detection and regu-
lar maintenance of these problems are crucial to maintain-
ing the efficiency and lifespan of IMs.

Among BRB fault detection methods, Motor Current
Signature Analysis (MCSA) can non-invasively identify
faults by analyzing harmonic changes in the current’s fre-
quency [3,4]; vibration analysis reveals mechanical defects
by evaluating the motor’s abnormal vibration patterns[5];
thermal imaging detects overheating areas, visualizing
problematic regions[6-8]; and frequency analysis detects
faults through changes in operating frequency|2].

With the advancement of technology, tools such as
artificial intelligence (AI) [9-11], machine learning (ML)
[12,13], and advanced signal processing techniques [14,15]
have been incorporated into broken rotor bar (BRB) fault
detection methods. By leveraging big data analysis, Al and
ML offer the opportunity to identify and predict faults by
detecting abnormal behaviors based on data obtained from
various sensors such as motor current, vibration, and tem-
perature. Advanced signal processing techniques such as
wavelet transform [16] and Fourier transform [17] enable
more precise fault detection by revealing details and pat-
terns in motor signals. In light of these advancements, sev-
eral studies have introduced different methodologies for
BRB detection and classification. Lizarraga-Morales et al.
have developed an approach based on homogeneity as an
index. The approach analyzes one phase of the induction
motor startup-transient current, leveraging the homogene-
ity calculation. The arthurs also develope a hardware-pro-
cessing unit based on a field programmable gate array
device for online BRB detection and classification. The
results demonstrate an accuracy greater than 99.7% for half,
one, or two BRBs [18]. Chisedzi et al. have used decision
tree classification, deep learning and artificial neural net-
work methods for detecting BRB faults. Arthurs describe
the process of identifying the faults by transforming the
measured line-current signatures from time domain to
frequency domain using discrete Fourier Transform. The
decision tree method shows higher accuracy rates of 95%
and 98% for 3BRB and 6BRB conditions [19]. Rayyam et
al. have presented an approach using a combination of an
ant lion optimizer (ALO) and an unscented Kalman filter
(UKF) for broken bar fault monitoring in squirrel-cage
induction motors (SCIM). The developed ALO-UKEF algo-
rithm adjusts the noise matrices for accurate fault detection.

Simulation results showed better performance in broken
bar detection compared to traditional methods such as the
simple-UKF and EKF algorithms [20]. Ullah et al. carried
out a study on fault detection and classification in induc-
tion motors using ANSYS Maxwell based simulations.
Considering various loading conditions, stator current and
leakage flux data were produced in normal and faulty cases
(broken bar faults, full pole gap, static eccentricity). A deep
neural network (DNN) algorithm was proposed and com-
pared with support vector machines (SVM) and random
forest classifiers (RFC) for fault detection and classifica-
tion. Especially under 100% loading conditions, the DNN
algorithm provided higher accuracy with leakage flux data
compared to SVM and RFC. However, its performance
was not as effective with stator current data [21]. Lee et al.
proposed the combination of symmetric uncertainty (SU)
and genetic algorithm (GA) to improve feature selection in
induction motor fault classification. The SU-GA method
was applied to four different engine cases and analyzed with
the Hilbert-Huang transform (HHT). SVM classification
was performed using SU, GA and SU-GA methods, and the
SU-GA method achieved higher accuracy with fewer fea-
tures. Additionally, simulations with varying levels of white
noise confirm the effectiveness of the proposed method in
classifying motor faults [22]. A feature fusion residual CNN
with a double branch (DBF-CNN) for BRBs in IMs is pro-
posed in [23]. This network utilizes the Hilbert transform
to highlight fault features and employs a residual structure
to prevent degradation. Furthermore, a double-branch
structure extracts global and local features separately, while
an attention-based feature fusion method addresses feature
loss. Each of these studies contributes to the field of BRB
fault detection and highlights the importance of combining
traditional diagnostic methods with advanced technologi-
cal advancements to increase the reliability and efficiency
of IMs.

In the field of signal processing, utilizing advances in
image analysis by converting signals into visual formats
and enhancing their interpretive capabilities is attracting
increasing interest. This technique combines the funda-
mental principles of signal processing with the advanced
analytical power of image analysis. Numerous studies in
the literature present this approach, encompassing different
methods and applications. Some studies that explain this
concept are summarized below.

Barrera-Llanga et al. proposed a Convolutional Neural
Network (CNN) to detect broken rotor bars in squir-
rel-cage rotors. Using the Finite Element Method Magnetics
(FEMM) software, they converted the current-angular
position signals of a 28-bar squirrel-cage rotor into images
and generated a dataset containing up to six broken bar
scenarios at each location. Six different CNN architectures
were evaluated in the study: Inception V4, NasNETMobile,
ResNET152, SeNET154, VGG16, and VGGI19. The
VGG19 model performed best with an accuracy rate of



Sigma J Eng Nat Sci, Vol. 43, No. 5, pp. 1473-1483, October, 2025

1475

approximately 99% and achieved high precision, sensitivity
and F1-score [24].

Shao et al. proposed a deep learning-based machine
fault diagnosis method using time-frequency distributions
obtained from wavelet transforms. In the study, the per-
formance of the pre-trained models was compared with a
CNN model trained from scratch on the same data. The
proposed method was tested on three different datasets,
and satisfactory results were obtained [25]. Huang and col-
leagues also detected machine faults using time-frequency
distributions obtained from wavelet transforms. The Deep
Continuous Convolutional Network (DCCN) uses multi-
layer perceptrons with Gaussian masks to parameterize
continuous convolution kernels and multiplicative Gabor
filters to increase noise resistance. Furthermore, depth-sep-
arated convolutions with residual connections are applied
to increase computational efficiency. The effectiveness of
DCCN has been validated using two laboratory datasets
and one public dataset. The method achieved an aver-
age macro F1 score of over 98.69% in diagnosing various
machine faults and an average score of 86.43% in a special
test with reduced training data [26].

Our study also aims to detect BRB faults in electronic
devices by adopting the principle of converting signals
into visual representations. First, the signals collected from
sensors on the electronic device are converted into spec-
trograms. However, instead of using these spectrograms
directly, Power Spectral Density (PSD) data is converted
into a visual format. Then pre-trained DNNs are used to
extract features from these images. The resulting features
are analyzed with k-Nearest Neighbor (k-NN) and Random
Forest (RF) classifiers, to obtain accurate fault detection.
The effectiveness of this technique has been validated using
a dataset obtained from the University of Sdo Paulo, Brazil,
which includes normal and BRB fault conditions at four
different severity levels and eight different load cases (from
no load to full load). Among the 11 pre-trained DNN mod-
els, features extracted from the mean pooling layer of the
DenseNet201 model, in particular, achieved an impressive
accuracy rate of 99.75% when used with the RF classifier.

The remaining sections of this document is organized
as follows: Section 2 details the proposed methodology and
discusses the pre-trained DNNs along with the used clas-
sification techniques. Section 3 presents the performance
evaluation. Section 4 concludes the study.

MATERIALS AND METHODS

The proposed method for detection of BRB faults is
given in Figure 1. As indicated in the figure, vibration and
current signals received from the sensors first undergo a
preprocessing phase. During this preprocessing stage, the
spectrogram of the signals is generated, followed by the
conversion of the resulting PSD values into images. This
preprocessing is executed independently for both the cur-
rent and vibration signals. Following this, deep features

are extracted from the resulting images using pre trained
DNNSs. The obtained features are combined and fed into RF
and k-NN classifiers to assess their effectiveness.

PREPOCESSING

A spectrogram is a time-frequency representation that
visualizes the evolution of a signal’s frequency components
over time [27]. It is obtained by applying the Short-Time
Fourier Transform (STFT) to the signal x(n) which reveals
how its frequency content changes with time. The STFT can
be calculated as shown in Equation (1):

STFT{x(n)}(m, ) = Nz x(n) - w(n —m) e /" (1)

In this equation:

x(n) is the signal being analyzed.

w(n-m) represents the window function, centered at
time m.

e’ is the complex exponential function, where w
denotes the angular frequency.

As previously mentioned, this study does not directly
utilize the spectrograms of the signals. Instead, it focuses on
the Power Spectral Density (PSD) values deriven from the
spectrogram process. The PSD is obtained with Equation
(2):

__ISTFT|?

PSD =" )

Where N denotes the sample length while f s indicates
the sampling frequency.

The PSD values obtained are converted into a logarith-
mic scale, 10*log10(PSD), significantly improving the visu-
alization of the signal’s time-frequency content.

Deep learning models typically require input data in a
three-channel (RGB) image format. To meet this require-
ment, we converted our initial single-channel dataset to a
three-channel format by concatenating it. This way, each
channel contains the same information; while this may
seem unnecessary, it is essential to comply with the model’s
structural input format requirements. This format simpli-
fies the process of the usage of advanced pre-trained models
without the need of specific retraining for single-channel
input, allowing for the efficient use of existing deep learn-
ing architectures.

Feature Extraction

DNNs are deep learning models commonly used in
tasks such as image recognition. Layers like convolutional,
pooling, fully connected, and activation functions make up
a typical DNN. The network needs more computational
power as layers are added because there are more param-
eters to learn. While training models on larger datasets
give better performance, this process can be time-con-
suming. Therefore, transfer learning has become wide-
spread. Transfer learning allows pre-trained models to
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Figure 1. Block diagram of the proposed method.

be reused for different tasks. Furthermore, using knowl-
edge from similar tasks can require less data than train-
ing from scratch. Many different DNN architectures have
been developed over the years such as VGG, DenseNet,
SqueezeNet, ResNet, MobileNet, AlexNet and Inception. In
this study, 11 pre-trained models which are VGG-16, VGG-
19, DenseNet-201, SqueezeNet, ResNet-50, MobileNetV2,
AlexNet, Inception V3, NasNetMobile, DarkNet53, and
Inception-ResNet-v2 are used for feature extraction.

The VGG-16 and VGG-19 models, created by the
Visual Geometry Group (VGG) at the University of Oxford
and first presented by Simonyan & Zisserman in 2014,
are renowned for their structural simplicity and reliance
on just three 3x3 convolutional layers [28]. The VGG-16
model has 16 layers (13 convolutions, 3 fully connected)
while the VGG-19 model has 19 layers (16 convolutions,

ey

3 fully connected). Although they have simple design both
models performed well in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) and are now among the
main reference models for image classification. The VGG
models are widely used feature extractors in many appli-
cations, particularly in deep learning research, due to their
simplicity and practicality.

With 201 levels, DenseNet-201 is an enhanced ver-
sion of the DenseNet architecture [29]. When compared
to other deep architectures, this model has demonstrated
exceptional performance on common benchmarks such
as the ImageNet dataset, effectively addressing the vanish-
ing-gradient problem and yielding higher accuracy with
more economical parameter usage.

Researchers at DeepScale, Stanford University, and the
University of California, Berkeley developed SqueezeNet in
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2016, which presents the novel idea of “fire modules” [30].
These modules, which are designed to compress (squeeze)
input channels before expanding them, effectively replace
conventional convolutional layers, significantly reducing
the model's parameter count. As a result, a remarkably
small network is produced, which is perfect for installation
on devices with limited processing power or in embedded
systems.

ResNet-50, a variant of the Residual Network (ResNet)
designed by Kaiming He and his team at Microsoft
Research, features a total of 50 layers (encompassing 177
sub-layers) [31]. ResNet broke the previous record in the
2015 ILSVRC competition with an error rate of just 3.37%.
ResNet-50’s depth and effectiveness have made it a popular
model for a variety of computer vision applications, high-
lighting its importance in the field.

Introduced in 2018 by Google’s research team [32],
MobileNetV2 is a distinguished CNN architecture within
the MobileNet series, designed to deliver models of high
efficiency suitable for devices constrained by their com-
putational power. Inverted residuals and linear bottleneck
modules are integrated in this version, which advances
from its predecessor, MobileNetV1. Distinct from con-
ventional residual blocks that upscale dimensionality
before convolution, MobileNetV2’s innovative bottleneck
approach initially compresses dimensionality, conducts
convolution, and subsequently restores the dimensional-
ity. This approach minimizes model dimensions and max-
imizes computing performance, making it very beneficial
for mobile systems. Moreover, MobileNetV2 makes use
of depthwise separable convolutions, which significantly
reduce computational burden and parameter count by
splitting a normal convolution into a depthwise convolu-
tion and a 1x1 pointwise convolution.

AlexNet is a deep learning architecture introduced by
Krizhevsky, Sutskever, and Hinton [33] that significantly
advanced developments in computer vision. AlexNet
consists of eight main layers; five convolutional layers
and three fully connected layers. When pooling, ReLU
(Rectangular Linear Unit), normalization, and softmax
layers are included, the total number of layers of the archi-
tecture reaches 25. Having 62 million trainable parameters,
AlexNet is designed to process 227x227 images, highlight-
ing its complexity and capacity in processing visual data.
With 62 million trainable parameters, AlexNet is designed
to process images of size 227x227, underscoring its com-
plexity and capacity for handling intricate visual data.

Google’s 48-layer deep, pre-trained convolutional neu-
ral network model, Inception V3 network, is an additional
development in CNN utility [34]. It performed admirably
in the ILSVRC-2015 competition, achieving a top-5 accu-
racy rate of 92.8%. The use of tiny convolution kernels
rather than huge ones is one of Inception V3’s primary
architectural innovations. This is achieved by breaking
down conventional bigger convolutions into a mix of one-
and two-dimensional convolutions, i.e., into sequences

of 1xN and then Nx1 convolutions. By using a strategic
decomposition the model’s parameter count is dramatically
reduced, improving its efficiency without compromising
performance.

The NasNetMobile, a creation of the Google Brain
team unveiled in 2017, embodies a design rooted in neu-
ral architecture search (NAS) principles [35]. The regular
cell and the reduction cell are two different kinds of build-
ing components used in this construction. Multiple layers
in normal cells improve feature map resolution, allowing
for more in-depth picture analysis. Reduction cells, on the
other hand, reduce the amount of data to be processed by
reducing the spatial resolution of feature maps, thus ensur-
ing more efficient processing. The final design is built by
carefully placing these components in the right order to
maximize the neural network’s depth and efficiency.

DarkNet53, an artificial intelligence model developed
by Joseph Redmon, serves as the cornerstone of the YOLO
(You Only Look Once) algorithm [36]. This model is
widely used in deep learning and image processing fields,
and shows high performance especially in real-time object
detection applications. With the elements from the Deep
Residual Network and DarkNet19 architectures, DarkNet53
is based on the sequential use of 1x1 and 3x3 convolutional
layers with residual connections. This structure improves
the model’s ability to efficiently process and analyze visual
data, enabling it to identify objects in images with high
accuracy and speed.

The Inception-ResNet-v2 model which stands out for
its 164-layer architecture expertly blends the advantages
of the ResNet (Residual Networks) and Inception models
[37]. The goal of this combination is to improve computer
vision capabilities by combining ResNet’s superiority in
training very deep networks through residual connections
with the Inception architecture’s skill on processing multi-
scale picture information. This model which is designed to
process 229x229 pixel image inputs, consists of a complex
hierarchy of convolutional, pooling and dense layers. The
model’s effectiveness in feature extraction and recognition
is improved by this deliberate layering, which makes it a
powerful tool for a variety of computer vision applications.

CLASSIFICATION METHODS

Random Forest (RF)

RF is a powerful technique that employs multiple deci-
sion trees to perform both classification and regression
tasks [38]. It builds these trees by randomly sampling n
datasets from the original training data using the bootstrap
method. At each node of every tree, a subset of m variables
is randomly selected, and the best split is determined based
on the Gini index [39]. After choosing the optimal split,
the tree is further divided into two branches. This process
continues until each leaf node represents a single class [40].
The performance of each tree is evaluated by its Out-of-Bag
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(OOB) errors, which are a measure of prediction accu-
racy on data not included in the bootstrap sample. Trees
with lower OOB errors are considered more accurate and
are given higher weight whereas those with higher errors
receive lesser weight. When making predictions, each tree
casts a vote weighted by its accuracy. The final classification
decision is based on the majority of these weighted votes
across all n trees, with the class garnering the most votes
being declared the final outcome.

k- Nearest Neighbours (k-NN)

The k-Nearest Neighbors (k-NN) algorithm is a
straightforward machine learning method widely used for
classification and regression tasks such as image classifi-
catio, power load forecasting, fault detection and medical
diagnosis. In this approach, predictions for a given data
point are determined based on the labels or values of its
closest k neighbors. The algorithm typically identifies these
neighbours using a distance metrics such as Euclidean,
Manhattan and Minkowski Distance. In classification cases,
the most frequent class label among these neighbours is
returned as the output; in regression, it calculates the aver-
age of these neighbours output values. The effectiveness of
this method heavily depends on the correct determination
of the ‘K’ value.

In this study, the Euclidean distance metric is employed
to compute the distances between neighbors. The calcula-
tion of Euclidean distance between two points, r and s, in
an n-dimensional space is defined as shown in Equation (3)
[41].

dp(r,s) = X1 — 5:)? (3)

RESULTS AND DISCUSSION

In this study, a dataset containing data from an induc-
tion motor with broken rotor bar faults, made publicly
available by the University of Sdo Paulo in Brazil, was used

asynchronous

maotar rotating

torgue meter

Figure 2. Experimental setup.

[42]. The data set includes a four-pole, three-phase motor
with an output power of 1 hp, a supply voltage of 220/380V,
and a nominal speed of 1785 rpm. Faults are divided into
four levels (from 1 to 4) according to the number of bro-
ken rods, and a separate category is defined for fault-free
engines (health class).

To comprehensively evaluate these categories, eight
different load cases were determined, with torque values
ranging from 0.5 Nm to 4.0 Nm, in 0.5 Nm increments. For
each condition, 10 experiments were conducted to com-
prehensively collect both electrical and mechanical signals.
The experimental setup for the dataset is shown in Figure
2.Some sample examples of the images transformed from
PSD values for healthy and broken rotor bar under different
load conditions are given in Figure 3.

Due to the varying sizes of each signal recorded from
sensors, in this study, 1001000 data points are used for
current signals (I,), and 140000 data points for vibration
signals (Vj, ,.,;)- As stated before there are 8 different load-
ing conditions and 5 fault classes, and each experiment
repeated 10 times, resulting in a total of 400 image data.
This dataset is randomly split into 80-20% for training and
testing. To ensure more stable and accurate results, this pro-
cess is repeated 10 times.

The classification accuracy results for 11 different DNN
models, showing the performance analysis at various lay-
ers using k-NN and RF methods, along with the standard
deviations are given in Table 1 Among these architectures,
DenseNet201 (avg_pool) and InceptionV3 (avgl) have
given the highest performance with almost perfect accu-
racies of 99.75% and 99.25%, respectively, with the RF
classifier. Meanwhile, InceptionResNetV2, NasNetMobile
(global avgpooling2d), and AlexNet (fc8) achive lower
accuracies of 78.25%, 80.62%, and 81.87%, respectively,
when using the k-NN algorithm. These results show that
most models perform better with RF compared to k-NN,
suggesting that RF’s model utilizes the deep features gener-
ated by these networks more effectively.
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Table 1. Classification accuracy results using V;;, and I, signals

Deap feature k-NN RF
AlexNet (fc7) 88.37+2.5 97.87£1.56
AlexNet (fc8) 81.87+4.80 96.75+2.14
DenseNet201 (avg_pool) 96+1.64 99.75+0.53
MobileNetV2 (global avg pooling2d) 93.62+2.32 99+0.79
DenseNet201 (fc1000) 95.5%1.21 97.62%1.09
InceptionV3 (avg_pool) 89.12+1.96 99.25+1.05
Vggl9 (fc7) 91.5+£2.02 98.75%1.18
Vggl6 (fc7) 94.37+2.52 98.37+1.03
SqueezNet (pool10) 82.6+3.03 93.12+3.45
DarkNet53 (avgl) 98.50+1.64 98.75%1.56
NasNetMobile (global avg pooling2d) 80.62+3.50 96.12+2.08
Inception-ResNetV2 (avg_pool) 78.25+4.94 92.62+2.24
ResNet50 (fc1000) 89.75+3.67 98.62+1.37
1BRB 2BRB 3BRB 4BRB Healthy

- ... . .

- ... . .

o -. . . .

Figure 3. PSD-Image transformed samples for healthy and broken rotor bar under different load conditions.

If a closer look is taken at the standard deviation values
as illustrated in Figure 4, it can be observed that the k-NN
algorithm follows a trend ranging between 1.21 and 4.94,
while the RF classifier exhibits standard deviation values
between 0.79 and 3.45. These values clearly demonstrate
that the RF classifier provides more consistent results in
solving the BRB fault detection problem.

In the literature, there are studies that attempt BRB
fault detection using only current data. Consequently, this

study has also examined the impact of I, current signals
on fault detection results. When reviewing the results in
Table 2, it is observed that classifications carried out using
the k-NN method generally provide better outcomes
compared when using the combined features. While for
the RF method, the use of combined features are found
to be more effective. The highest overall result is once
again obtained using the DenseNet201 model (avg_pool)
combined with RF classification. The standard deviation
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Standard deviations

1 2 3 4 5 6 7 8 9
Deap Features

10 11

Figure 4. Standard deviation results.

results consistently demonstrate that the k-NN method
is significantly more effective when extracting features
solely from I, signals.

The method introduced in this study is evaluated against
previous research, as outlined in Table 3, all using the same
dataset. References [43,44] and [45] implement a trans-
formation of signals to images, with significant variations
in approach. Whereas, reference [23] applies the Hilbert
transformation to signals and feeds the transformed data
into a dual-branch CNN model. In contrast to other stud-
ies in the comparison, reference [23] addresses a three-class
problem involving 1BRB, 2BRB, and 3BRB and achieves
an accuracy of 99.86%, whereas the others tackle a more
complex five-class scenario, including HLT, 1BRB, 2BRB,
3BRB, and 4BRB. Moreover, both References [43] and [44]
create spectrogram images from signals. However, the used

Table 2. Classification accuracy results using I, signals

emm— | -\ N

— R

12

methodologies are different; reference [44] uses only cur-
rent signals and the short time fourier transform (STFT) for
spectrogram generation, while reference [43] incorporates
both vibration and current signals, employing the contin-
uous wavelet transform (CWT) to produce spectrograms,
this approach yields an accuracy score of 100%. Reference
[44] takes a different approach by using time-domain gray-
scale current imaging techniques coupled with CNN, yield-
ing a 99.53% accuracy.

The proposed methods in this study which employ
PSD transformations to image format followed by deep
feature extraction, exhibit an effective approach to the
classification task. The first proposed model achieves an
accuracy of 98.5% using current signals, while the sec-
ond, utilizing both vibration and current signals, reaches
99.75% accuracy.

Deap Feature k-NN RF
AlexNet (fc7) 97.50x1.67 97.25%1.54
AlexNet (fc8) 96.37+1.24 96.12+1.71
DenseNet201 (avg_pool) 95.8+2.83 98.5+1.15
MobileNetV2 (global avg pooling2d) 93+2.84 94.6+3.44
DenseNet201 (fc1000) 93.5+2.55 96+3.05
InceptionV3 (avg_pool) 97.5+1.02 98.5+0.99
Vggl9 (fc7) 94.25+2.22 95.62+1.69
Vggl6 (fc7) 95.25+2.49 95.37£1.56
SqueezNet (pool10) 93.12+3.50 94.5+.71
DarkNet53 (avgl) 98. +1.58 98.37+1.67
NasNetMobile (global avg pooling2d) 96.12+2.34 96.2£1.86
Inception-ResNetV2 (avg_pool) 97£1.79 96.12+1.50
ResNet50 (fc1000) 95+2.95 96.12+2.32
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Table 3. Comparison with the research in the literature

Reference Study Method Used signal Accuracy (%)
[23] Hilbert transform+double-branch fusion residual CNN Current signals 99.86
[43] Spectogram Vip_acpi and I, 100
images with
CWT+deap features
[44] Spectogram images +CNN Vibration signals 97.67
[45] Time domain grayscale Current signals 99.53
current imaging
technique+
CNN
Proposed PSD to image transform+ Deap feature extraction I, 98.5
Proposed PSD to image transform+ Deap feature extraction Vip acpi and I, 99.75
CONCLUSION data that support the finding of this study are available from

This study proposes a robust method for detecting BRB
faults in IMs using advanced deep feature extraction tech-
niques. By converting PSD data into image formats which
can be analyzed by pre-trained DNNs, the proposed approach
effectively utilizes different properties of motor signals. The use
of k-NN and RF classifiers improves the fault detection process
by enabling precise detection of faults that vary under different
load conditions. Validation of this approach was performed
with publicly available dataset provided the University of Sao
Paulo, Brazil, containing normal and BRB fault cases at four
different severity levels and eight different load scenarios. The
DenseNet201 model achieved a high classification accuracy of
99.75% with its average pooling layer along with the RF clas-
sifier using both vibration and current signals. DenseNet201’s
densely connected architecture, parameter efficiency, and
depth make it a powerful model. The average pooling layer
improves performance by providing a comprehensive sum-
mary of features, providing robustness to noise, and encour-
aging balanced learning. These features allow DenseNet201
to outperform other models, making it particularly suitable
for complex and sensitive tasks such as BRB fault detection.
This research sets a benchmark for future studies aimed on
fault detection in IMs. Creating a comprehensive dataset with
different motor types, fault conditions and operating scenarios
will be beneficial for further development. Also, the accuracy
and robustness of fault detection can be greatly increased by
using ensemble methods and real-time data processing.
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