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INTRODUCTION

ABSTRACT

This study examines existence, uniqueness, and Ulam-Hyers stability for solutions of non-
linear coupled fractional integro-differential equations with integral boundary conditions.
Fractional systems incorporating memory and hereditary effects serve as effective models for
complex processes in science and engineering applications. This study proves solution exis-
tence and uniqueness by applying the Banach fixed-point theorem within carefully construct-
ed function spaces, then extends our analysis to investigate Ulam-Hyers stability, a framework
that reveals how solutions behave when initial conditions contain small errors. Our stability
analysis demonstrates that minor perturbations in starting data translate to bounded solu-
tion variations, keeping the system stable within predictable limits, which we verify through
a computational example showing how controlled initial changes produce correspondingly
controlled solution deviations. These results advance stability theory for coupled fractional
integro-differential systems, particularly where memory effects influence system behavior,
mathematical models that appear frequently in applications ranging from viscoelastic mate-
rials to population dynamics, where past states influence current evolution. By establishing
rigorous stability bounds, our work provides a theoretical foundation for implementing these
models in real-world scenarios where measurement uncertainties and modeling approxima-
tions are inevitable.

Cite this article as: Chaurasiya BK, Kumar A. Exploration of Ulam-Hyers stability for a sys-
tem of fractional integro-coupled differential equations with integral boundary conditions.
Sigma J Eng Nat Sci 2025;43(5):1643-1652.

better model phenomena where history matters, open-
ing doors to more accurate descriptions of complex real-

Fractional calculus has proven remarkably useful across
mathematics and its applications. What makes it fascinating
is how we can generalize traditional calculus beyond integer
orders, taking derivatives of order 0.5 or 1.7, for instance.
This flexibility reveals new mathematical structures that
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world systems. And it began when UHospital and Leibniz
wrote a letter to each other in 1695. At present, there are a
lot of theories and numerical findings on this topic in the
scientific literature. The flow of groundwater in a stream
can be described through a fractional differential equation
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that accounts for the non-integer order derivatives. The
fractional derivative models the anomalous behavior of
flow and transport in porous media. It may also be used
in several fields, such as the theory of control, aerodynam-
ics, communication and image filtering, and biology [1-4].
Manuals by Kilbas et al. [5], Miller and Ross [6], and Halfer
were used to clarify the fundamental concepts of fractional
calculus. Multiple writers have researched the existence and
uniqueness of approaches to fractional order differential
systems in finite and infinite-dimensional domains. Ahmad
et al. discovered results involving non-linear fractional
integro-differential equations utilizing integral boundary
conditions [7-10].

The results obtained in this research demonstrate prac-
tical utility across multiple domains where complex differ-
ential systems with integral boundary conditions govern
physical phenomena. Hydrogeological researchers have
found fractional integro-differential equations particu-
larly effective for modeling subsurface water flow dynam-
ics [10], while chemical engineers apply these systems to
understand reaction-diffusion mechanisms [11,12]. When
studying population dynamics or circulatory systems,
we need mathematical frameworks that can reliably pre-
dict how these systems evolve over time, making solution
stability absolutely essential for any practical model [13].
Our Ulam-Hyers stability analysis tackles this challenge by
establishing clear bounds on how solutions change when
initial parameters vary slightly. This becomes especially
important in hydrology and biomedical engineering, where
professionals rely on model predictions to make decisions
that can have serious consequences for public health or
environmental protection. The stability criteria we've devel-
oped offer mathematical confidence that these models will
behave consistently under real-world conditions, which is
exactly what practitioners need when applying these tools
to solve actual problems in environmental science and
engineering.

Integral boundary conditions play a crucial role in
hydrogeological modeling as they capture the dynamic
interactions between aquifer systems and surrounding
environments. These conditions can represent various
physical processes, including groundwater recharge rates
or discharge flows between aquifers and surface water bod-
ies such as rivers and lakes. Additional details regarding
integral boundary conditions can be found in [13-15]. To
illustrate the practical significance of integral boundary
conditions, consider the following real-world example

~o" = f($)9($, @), m(@)=0, 1@’ (b)=w(B)

where ¢ € (a, b), € (0,1] and 7 are positive constants, and
a, b are constants. This represents a thermoregulator model.
The problem admits well-defined solutions for the one-di-
mensional heat equation describing a heated bar equipped
with a control system that modulates heat input based on
temperature measurements from a sensor positioned at f3.

This formulation extends to more general cases as the
heat equation, incorporating nonlinear gradient terms and
time-varying source components. The heated bar now fea-
tures a controller positioned at 8 that regulates heat output
according to temperature data collected from multiple sen-
sors distributed along the bar [16-20]. This problem, there-
fore, may be stated as follows

@"'=g(¢,w,@"),m(@)=0, @' (b)=[, w(s)dh(s)(B).

Ulam’s type stability is a mathematical notion that
describes how solutions to differential equations behave
when tiny perturbations are introduced into the beginning
conditions or equations themselves. It quantifies how stable
or responsive a system is to disturbances. In 1940, Ulam [21]
was the first to introduce the Ulam kind of stability. Hyers
[22] subsequently refined this concept. Ulam and Hyers
investigated stability properties across various integer-or-
der differential equations, leading to what is now termed
Hyers-Ulam stability for Cauchy functional equations.
Their work produced stronger results concerning polyno-
mials, isometric mappings, and convex functions [23-34].
Numerous researchers have since extended and generalized
Hyers’ framework for integer-order differential equations.
The literature contains extensive investigations into addi-
tional stability concepts of Ulam type, documented in [35-
44] and related works [45-51].

Motivated by the previously mentioned work related to
integro-systems equipped with fractional order derivatives,
we aim to extend the findings of [1, 51]. Integro-differential
equations are important because they combine the prop-
erties of both differential and integral equations, allowing
them to model a wide range of complex systems where cur-
rent states depend on both rates of change and accumulated
effects. Despite their significance, few studies have focused
on investigating Ulam-type stability for integrodifferential
equations involving fractional derivatives. Despite exten-
sive work on fractional differential equations, Ulam’s stabil-
ity for coupled systems with integral boundary conditions
remains unexplored. The proposed system is as follows

Dmx(t) = k(t,y(0), x* (1)),
Dy (t) = U(t, x (D), x*(®)),

6x(0) +9x'(0) = fi by (x(s))ds, 0x(1) + 9x'(1) = fi by, (x(s))ds (L.1)
0 0

me (1,2],t R
ne (2], tex

1 1
8y (0) + 9y (0) = f B, (v())ds, By(1) + dy'(1) = f B (y(s))ds,

whereDisthe Caputo fractional derivative, m, nrepresentsthe
order of the derivative, 8 = [0,1]and k,1:[0,1]] X R x R » R
for x”, x*:[0,1] X [0,1] - [0, ), And

ﬂ®=£

Here by, by, by, by:R - R and 6,0 > 0,9,9 = 0 are real
numbers.

t

t
P16, )y(s)ds wdx%ﬂ=fﬁ@®ﬂﬂw
0
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We organize this work as follows: Section 2 presents
essential definitions, notation, and preliminary results
needed for our main analysis. In Section 3, we establish
the existence and uniqueness of solutions for system (1.1).
Section 4 develops our main stability results, focusing on
Ulam-type stability criteria. Finally, Section 5 demonstrates
these theoretical findings through a computational exam-
ple that illustrates the practical implications of our stability
bounds.

PRELIMINARIES

We start with preliminary results using a few helpful
concepts, notations, and lemmas, which will be utilized in
the subsequent parts.

Definition 1.[5] The Caputo derivative of a given func-
tion y € ((0,1), IR) for a fractional order m € R* is pre-
sented as

eDMy(E) = s [ (€= YO (s, 6 = [m] + 1,
I'(¢—m)J,

where [m] denote the integer part of m and T'(-) is the
gamma function.

Definition 2. [5] The Riemann- Liouville fractional
derivative of a function y(t) of order m is presented as

: (d)Ct o ds,¢ =

@) ), G dss =i+,

J™y() = Te—m)

provided the integral exists.
Lemma 1.[5] For any real number m > 0, the differential
equation

cD™My(t) =0
has a solution which is presented by
y(t) =do +dit +dyt? + - Hd o 57

deR:t=012...,¢—1,

where ¢ = [m] + 1.
Lemma 2. [5] The solution for any real number m > 0,
of the differential equation

DMy(t) = u(t)

will be presented as

JMD™y(t)] = Iy (@) + do + dyt + dypt? + - Hd 457
deR:t=012,...,¢—1,

where ¢ = [m] + 1.

Lemma 3. [9] For any function u,y,,y, € C([0,1], R),
the following boundary value problem has a unique solu-
tion of

‘D™y(t) = u(t),t € [0,1]
1 1
{eym) +9y'(0) = f y(s)ds, By(1) + 0y’ (1) = f ya()ds (2.1)
0 0

is presented as

1 1 1 1
y(t)=J; Gt $)u(s)ds +H—2[(e(1 ) +19)f0 Ji(s)ds+ (9 + Bt)j; yz(s)ds], (2.2)

where G,,(t,s) is the Green's function presented by

or(m) 82T (m — 1)
@=0)(1—s)™1 9 — E)(1 — 5)™2 (2.3)
o (m) s

69" +@-IA -9 I -IA-"
Gn(t,5) =
t<

62T(m — 1)

Proof:To prove lemma (3) for some real constants s, s,
€ R, we have

B t (t _ s)m—l

y(@) = J"u(t) — s, — st = ) u(s)ds — s, — s,t

Given  the relation ‘D™J™y(t) =y(t) and

JmIJ" = g™y (t) for m,n > 0,y € L(0,1), we obtain

t _ m-2
y,(t) = J; (E(msz 1) u(s)ds iy

Applying the boundary conditions for (2.1), we get the
following

1]t ! 9 (!

s; = ﬁl:ﬂj[.) Ya(s)ds — (9 + Q)J; Y1(S)ds] - Wfo 1 =)™ tu(s)ds
1
_21972 f (1 — )™ 2u(s)ds
02r(m—-1) J,

[t ! 1t
=3 [ [ s yz(s)ds] tros | a-omtues

0 0 0

9 1 B
+ mj; (1= s)™2u(s)ds

The unique solution of (2.1) is therefore follows as

[0 = )M+ (8 — 0 (L — )™ 99 — OE)(1 — s)™ 2

y(®) —-L [ aram + TERCE) ]u(s)ds
@ - 001 - )™ 9 —6)(1 - 5)™?

+£ or(m) 02T(n - 1) ju(s)ds

+% [(9(1 —-t)+ ﬂ)J; y1(s)ds + (9 + Bt)fo yz(s)ds]

= fol G (t,s)u(s)ds + 91—2 [(9(1 —t)+9) fol y1(s)ds + (9 + 6¢t) _Ll yz(s)ds]

where G,,(t,5) is given by (2.3). This is the required proof.
Lemma 4. The space H=y(t) |y €C(X) is a Banach
space under the defined norm 1Y llzx=max.ey |y(t)l.
Similarly, the norm on product space is defined as
1, 7D Ngexae =1y 3+ Y . Obviously (K X F, 1 (.,.) Ngexze)
is a Banach space. Moreover the cone U © H x H is defined as
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U= (y,7) € X XH |y(t)=0,7(t) > 0.

Here system (1.1) is transformed into a fixed point prob-
lem. Let §: H x H — H X H be the operator defined as
fol G (t,)k(s,y(5), X7 (5))ds + % [(5(1 —t)+9) fol bl(x(s))ds]

1
++ St)f b, (x(s))ds
0

GO = L

1 1 N
f Gty )1(5,x(5), X7 (s))ds + F[(G(l -+ 19')f El(y(s))ds] (2.4)
0 0

1
+@ + B_t)f Ez(y(s))ds
0

It follows that the fixed point of the operator coincides
with the solution of the proposed coupled system (1.1).

To prove the existence and uniqueness of solutions to
system (1.1), we require the subsequent conditions

(B1) Fort € 8,3 uy, Uy, 43 € C(X, R*) such that

|k(t,y@®), 22 ®)| < 1 () + O ly(O] + us@®1x” ()1,
vy(t) € C(X,R)

with
Ui = SupeexH1(t), M3 = SUPrexiz(t), M3 = SUPexis (D).
Similarly, For t € 8, 3v,,v,,v3 € C(8, R*) such that

1(t, x(@®), x*@®)| < vi(¥) + v2(OIx ()] + v3(O)Ix* (D),
vx(t) € C(X, R)

with
Vi = SuPrex Vi (), V3 = SUPexV2(t), V3 = SupiexVs(t).
(B2) Fort € X,3 L, Ly, such that

|by(x(®)| < Ly, Ix(©)] and |b,(x (1)) | < Ly, Ix(0)],
vx(t) € C(X,R).

Similarly, Fort € 8,3 Lg,, Lj, such that

|b,(y(®)| < Ly, ly(®)] and |b,(y())| < L, ly(@®)],
Vy(t) € C(X,R).

(B3) Fort € X, 3 Lg,, L, such that
1, 1,
Jo @& 9)lds < Lg, and [ 17,(t,s)lds < L,

(B4)

1 1 1
3, = [ 16n @) <0, M= [ 16651 + L, [ 1Gne iy ()as
0 0 0

6 +9)(Lp, +Ly,) 1
<3
1 1 1
2, = [ 16, 6IME < 0,3 [ 16, Wds + Lo, [ 16, EIvs()ds
0 0 0
4 (§ + 5)(L51 + LE;) < l
52

(B5) For all y € C(X,R) and for each t € X there exist
positive real constants Ry, Ry, such that

|k(t,y (@), x> () — k(t, 7, ¥ )| < Reely — 71 + Reelx” — 21

Similarly, Vx, ¥ € C(X, R) and for each t € X there exist
positive constants R, R, such that

[1(t,x(0), x* () = k(& (), 7 ()| < Ry lx — & + Rylx* — 7]

(B6) For all ¥ € C(X,R) and for each t € X there exist
positive real constants Ry, , R, such that

[by(x) — by (X)| < Ry, |x — x| and [b, (x) — b, (X)| < Ry, |x — x|

Similarly, For all y, 7 € C(X, R) and for each t € X there
exist positive real constants Rz, , Rj,, such that

|B1(Y) - 51(37)| < mﬁlly —y|and IBz(Y) - Bz(y)l < SREZIy =9l
(B7) Let
6+9)(R R
(). 01 = Kuan) T + Rog, where Ry = L 10)

and

1
H(nos) =max jo Gy (t,s)ds

f‘ [9’(: -V 4 @ -1 —s)"!

9@ — 0t)(1 — s)H] ds‘

0T (n) 6%I(n—1)
HE@ -6 =)D (6 —6D)(1 —s)"?
+ ft | or(n) 020 (m) ds
1 200 +9) 2092 +69)
T(n+1) T(n+1) 62T(n)
3 (é+1§)(m51+m52)
(i1).02= Kooy Ric + Rag, where Rgg =—"7—2
and
1
Kmen= [max, JO Gm (L, s)ds
1 20 4+9) 2(9%+69)
T I(m+1) T(m+1) 62I'(m)

EXISTENCE AND UNIQUENESS ANALYSIS

Theorem 3.1. If all of the prerequisites (B1) - (B7) are
satistied and 0 = max(0,, 0,) < 1, so the suggested fractional
order paired framework (1.1) has a unique solution.

Proof: For a positive number
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2M,  2M, )

pzmax(1—21\r1'1—21\f2

we define a set
V={(y) €H XH:Il (x,y) llgexs< p}-
First, to establish that S maps V into itself, we have

15 (OIS [ 166 5)K(s, (50276
10 1 1
+z|0a-oso [ il 1o+ 001 [ o]
0 0
1 1 1
< [ lnC9Ma(s)ds + [ 1nlyNds + [ 16ne s ©LOGl1ds
0 0 0
. \ ,
+E[(9+ﬁ)f |b,(x(s))|ds+(9+a)f |b2(x(s))|ds]
0 0

< |cm(t,s)|u1(s)ds+p[f lin (& Mha(5)ds + L, [ 1Gne9lhs(5)ds
0 0 0

Upon applying the maximization operation to both
sides of the aforementioned inequality over the set T, we
derive the following expression:

Sm (n, M)l <

N[

Similarly,

1S, (m, ), <

NI

Hence, we can conclude that,

I Sm,n) lgexsc < p- (3.2)

The aforementioned inequality serves as confirmation
that the mapping § effectively maps the set V into itself.
Subsequently, to demonstrate that S qualifies as the con-
traction operator under the condition where t € X, we pro-
ceed with the following analysis.

[8m (n, m)(£) = Sm (7, D) (D)< f Gt (5, y(5), 27 () = (s, 5(5), 7 () | ds

1 1
+ge[i0a -0+ o [ I, (x) - b(atolas
0

< KmooyRiely () — 7O

9 +9)(Ry, +R
+ G0, ;) )(9§]+ m) 1) - 2o,

When we operate the maximum on both sides of the
above-mentioned inequality over ¥, we obtain

6 +9)(Ry, + Ry,)
2

5 Ihx =%l (3.4)

1S, %) = S, D)y < Kimoony R 1y — 7 llye+

Similarly, the following can be obtained

6+ 1§)(‘R51 + ‘Rgz)

152(6,7) = Su(E )y < KR I % = E lly+ 7

Iy =7l (3.5)

From the above two equations, we obtain

1SCoy) = SED) s < o I 06 ¥) = (%7 lzexse - (3.6)

Henceforth, it is evident that the operator S exhibits
strict contraction properties. Employing Banach’s fixed-
point method, specifically designed for establishing a
unique fixed point, becomes instrumental in determining
the sole solution to the proposed coupled system (1.1).
Consequently, the fulfillment of our primary objective is
achieved.

ULAM’S STABILITY ANALYSIS

In this section, we endeavor to investigate the Ulam-
type stability characteristics inherent in the envisaged cou-
pled system denoted as (1.1).

For some real number ¢ = max(g,,, &,) > 0. We assume
the inequality given as follows

{| DM (t) — k(t,y(t), ¥’ @®))| < &, t € X
(4.1)

| <D™y —1(t,x(t), x*@®))| < &, tER.

The following definitions are inspired by Rus [19].

Definition 3: The Ulam-Hyers stability of the coupled
system denoted by (1.1) is established under the condition
that there exists a positive constant X (mngva7) such that, for
any solution (x, y) € H x H of the inequality (4.1), there
exists a unique solution ({, n) € H x H. This unique solu-
tion satisfies the inequality:

1, )@ = CmMO] < K(mngsss)es tER

Definition 4: The generalized Ulam’s-Hyers stability of
the coupled system denoted by (1.1) is posited under the
condition that there exists a function @w(¢) € C (R, R*)with
w(0) = 0. This function is required to satisfy the condition
that, for any solution (x, y) € H x H of the inequality (4.1),
there exists a unique solution ({, ) € H x H for the sys-
tem. Additionally, the unique solution must adhere to the
inequality:

1@ = Em® sw(e), teR

Remark 1.Consider the pair (x, y) € H x H to be a
solution of inequality (4.1) if there exist functions ¢ and
belonging to the space C (X, R), contingent upon the vari-
ables x and y respectively, such that

(Rl) |¢(t)| < Em and |1/)(t)| < & tE X;
(R2). and

{ cD™x(t) = k(t,y(6), x* (1)) + p(t), t EX
(4.2)

Dy () = U(t, x(t), x*(t)) + P(t), t € R
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Lemma 5. Let (x, y) € H x H be deemed as a solution
to inequality (4.1). Subsequently, the ensuing inequality is
guaranteed to be satisfied:

x(t) — f G (t,9)k(5,7(5), x7 (5))ds —% [(6(1 —t)+9) f by (x(s))ds
+ @ +6t) fi bz(x(s))ds] I< Kppgoem, t € R
0
‘ y(t) — f G (&, (s, x(s), x*(s))ds —% [(g(l —t)+9) f by (x(s))ds

1
+@ + B_t)] Ez(x(s))ds] I Kp556n t € R.
0

Proof. By Remark 1 (R2), we have
eDmx(t) = k(t,y(6), ¥’ () + $(t), tER
eDMy(t) = U(t, x(6), x*()) + Y(t), tER

6x(0) +9x'(0) = fl by (x(s))ds, 8x(1) + 9x'(1) = fl b,(x(s))ds

1 1
By(0) + 9y’ (0) = f B, (y())ds, Fy(1) + Fy'(1) = f BO@as. (5
0 0 .

By applying Lemma 3, the solution of (4.3) is given as
follows:
1 1 1
x(t) = J; G (t,)k(s5,y(5), ¥ ())ds + J; G (t,8)P(s)ds + ﬁ[(ﬂ(l —t)+9)
fl by (x(s))ds + (9 + 6t) fl bz(x(s))] ds,t €R
1 ’ 10 1 _ _
y(t) = jo Gy (t, s)l(s,x(s),)("(s))ds + jo Gy (t, s)YP(s)ds + 72 [(e1—-0t)+9)

J: by (x(s))ds + (I + 6¢t) fol Ez(x(s))] ds,t € R. (44)

Considering the first equation of system (4.4), we have

1 1 1
FeM| Gm(t.s)k(s.y(s),xy(s))ds—ﬁ[(9(1—t)+19) [ bisnas
0 0

1 1
+( + Ht)f bz(x(s))] ds |< U Go(t, s)p(s)ds
0 0

1
< [ 16t 0plds
0

By Remark 1 (R1) and using the condition of (B6), we
get

x(t) — fl G (2, s)k(s,y(s),)(”(s))ds - 9—12 [(9(1 —t)+9) fl bl(x(s))ds

1
+@ + 9t)f bz(x(s))] ds 1< Kimos)Em- (4 5)
0 .

By applying the same process for the second equation of
system (4.4), we get

1 1] - ot
‘ y(t) — J; Gp(t, )I(s,x(s), x*(s))ds — 7 [(9(1 —t)+9) J; by (x(s))ds

+(@ + 6t) fl b,(x(s))
0

ds 1< K(ngp)&n-

(4.6)

Theorem 2. Assuming that conditions (B5) to (B7) are
satistied, the fractional order coupled system denoted by
equation (1.1) can be deemed Ulams-Hyers stable. This

assertion extends to the broader context of being general-
ized Ulam ‘s-Hyers stable.

(1 —Ro)(1 —Rpp) — RingoRngs # 0

Proof: Let (x, y) € H x H be the solution of the system
(12) and (¢, n) € H x H be the unique solution to the fol-
lowing considered system:

come(t) = k(t,n(®), x"(®), t ER
D(®) = 1(£4(0,x°(0) tEX

1 1
67(0) +9'(0) = f by ((5))ds, 63(1) + 94" (1) = f b, (4())ds
0 0

1 1
81(0) + 91'(0) = f By (n())ds, Bn(1) + ' (1) = f By(1(s))ds.
0 0

Using Lemma 3, the solution of the above system is

1 1 1

() =f Gm(t,s)k(s,n(s),)("(s))ds+—2[(9(1 —t) +19)f by(¢(s))ds
0 0 0
1 1

n(®) = f Ga(t, )1 (5,4(5), 25 () ) ds + gi [(5(1 - +9) f by(n())ds

+(3 + ét)fl 52(71(5))] ds, tE€ER.
0

We have

x(t)—f:

1
+( + Gt)f bz({(s))ds] |
0

x(t)—fo1

1
+(9 + Gt)f bz(x(s))ds] |
0

1
+ U‘o

1 1 1
+ ‘ = [(9(1 —t) + ﬁ)f bl(x(s))ds + @+ 9t)f bz(x(s))ds]
0 0 o

1

1
G (t, s)k(s, n(s),)(”(s))ds - [(9(1 —t)+ ﬂ)f bl(((s))ds
0

[x(8) = ¢(O)= 92

G (t, s)k(s,y(s),)(”(s))ds - l [(9(1 -+ 19)-[ bl(x(s))ds
0

< 72

1
G653 )5 = [ [Gn e, k(5,1 27(5))as|
0

1 1 1

- [(9(1 -+ ﬁ)J by(¢(s))ds + (9 + Ht)J bz({(s))ds]
0 (1] 0

< Komooem + Rmoo[y(£) — ()] + Reglx(t) — (O],

where 5Rm919 = .'ngﬁiRk.
Hence, we get

(1= Kpo) Il x = { ll3e<S Kinoo)em + Rmeo 1 Y =1 3 (4.9)

Similarly, we have

(1 =Rga) 1y =1 < Kngoen + Rugs I x — (g, (4.10)

where R,55 = K,a5R:
From (4.9) and (4.10), it can be written as

(1 =Roe) Nl x = llge— Rnoo 1y = 1 < Kooy em
(1 =R5) 1y =1 llse= Ry 1| x = o< Knagyen- (4.11)

The matrix representation of the above equation is as
follows
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(o A [P

IA

(K(m96)€m>
K(ngd)&n

Simplifying the above inequality yields

(1-Rgs)  Rpew
(” x—( ”j-[) < A A :K(m919)£m
ly=nllze/ =\ Rugs (1 —=Res) |\ Knasyen )
A A

where A = (1 —Rye)(1 —
simplification gives

Ro5) — RimesRngs # 0. Further

(1- SRQE))"K(m(%))‘gm %mgﬁfk‘(néﬁ)fn

- <
T = I3 < A 2

(4.12)

R.355K, £ (1 = Rp9) K mps &
I y—n "]{S nv9 émﬂﬁ) m + 019A (noY)<cn

' (4.13)

From equations (4.12) and (4.13), we have

Rinoo K (ng5)en
+
A
ER71§19ER(m919)‘gm (1 - mHﬁ):K(m@f)‘gn
+ A + A

(1-Rz35)K, €
I = llse +lly =77 llze< “’"A (mb8)"m

Therefore, we have

I G, y) = () laesae S K(mnooan)€s (4.14)
where ¢ = max(e,,, ¢,) and
(1 - 93919‘7(( 69) 91m&91’9‘7<:(n§1§)
K(mnoves) = A —+ A
RnsRomos) | (1~ Re9)K (o)
* A A

Therefore, based on the preceding inequality, it can be
deduced that the coupled system denoted as (1.1) exhibits
Ulam ‘s-Hyers stability. Additionally, the aforementioned
inequality can be expressed in the form:

I Ce,y) — () lgexze< w(e), where w(0) = 0.

Through this inequality, it becomes evident that the
proposed coupled system (1.1) adheres to the principles of
generalized Ulam ‘s-Hyers stability.

APPLICATION

Example. Here, we validate our findings related to exis-
tence, uniqueness, and stability by presenting a concrete
example. Let the following fractional order connected cou-
pled system as follows:

i1 y©] | fet®

Dzx(t) = C2 i+ @l +f yr ———y(s)ds,m € (0,1],t € R
t

EDzy(t) = 1 [t cosx (t) + x(v)sint] +J. > Z_ 72x(s)ds ne(01],texr
0

[x(s)]

(T x@)
11+|x(s)|ds'x(l)+x 1 —f

S
b 13+ [x(s)]

1
x(0) +x'(0) = f
o

11
y(0) +y'(0) =J; Z[cosy(s)+siny(s)]ds

11
y(O)+y'() = f T [cosy (s) +siny (s)]ds.
0

By comparing coupled system (5.1) with system (1.1),
the following values are derived:

1

m=n =§9 19—9 19 1€Rb1—§Rb1
1

and R, = R;, = 3

1
11

w.

Also,

ly(@®I
E+7)21+y@l

t ,—(s—t)
Ky ) = + | Sy

and

¢ 7
l(t,x(t),){"(t)) = [t cosx (t) + x(t)sint] + f Ty 72 ———x(s)ds,

100

whereas [k(t,y,x”) — k(tyxy)|<( 5) 1y =31+ = 2
and |I(t, x, x*) — U(t, %, 7*)| Sﬁllx x I +1x* = x*I.

Therefore, (B4) is satisfied with R, Ry =4—19 and

R,R = % Further, we have
2(9’+1§) 2(62 + 66) 6 +9)(Ry, +Rp,)
<F(n ot F(n +1D) 6T > ! 02

(F(n D r(n D r(4n)) 510 + (11 + 1_13)
(r(n Y F(n)) 510 + (%) |7 15+ e Flz % + (%)
’ G ‘ ) @)
1 /4 14 4
( _)_0 (m) = (soﬁ) (143) <1

Similarly,

200 +9)

_ 1 (9_+1§)(§RI;1 +iR,;2)
72= (F(m ey r(m D

9_2

2(6% + 69)
02I(m) )

44\ 1 1 1
(F(m D r(m D r(m))E +2 (ﬁ * E)
1 48\ 5 4 \1 /48
(I‘(m +1 F(m)) e (m) - r+1) * () rehl (m)
48 14 48
(\/‘ \/‘) 49 (143) (49\/1?) + (m) <1
Consequently, it can be asserted that the coupled system
denoted as (5.1) possesses a singular solution. Furthermore,

the condition stipulated in Theorem 2, expressed as
(1—Ree)(A —Rgy) — RmeoRngs # 0, is also satisfied.
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Consequently, the coupled system (5.1) demonstrates both
Ulam-Hyers stability and generalized Ulam-Hyers stability.

CONCLUSION

We investigate Ulam-Hyers and generalized Ulam-
Hyers stability for fractional integro-differential coupled
systems with integral boundary conditions, an area where
existing research has focused mainly on simpler, isolated
equations rather than the coupled systems that appear more
frequently in practice. Our approach differs by analyzing
how these coupled systems behave when subjected to small
perturbations, using fixed-point theorems and carefully
constructed function spaces to establish both solution exis-
tence and uniqueness.

What makes this work particularly valuable is its rel-
evance to real applications in engineering, finance, and
physics, where model stability directly impacts whether
computational results can be trusted for decision-making.
Our quantitative analysis shows that when initial condi-
tions vary slightly, the resulting solution changes remain
bounded and predictable, exactly the kind of stability guar-
antee practitioners need. Beyond these immediate results,
the mathematical framework we've developed opens doors
to studying more complex systems, including those with
neutral delays, impulsive effects, or various inclusion prop-
erties that arise when modeling systems with both finite
and infinite time delays. Rather than simply filling theoret-
ical gaps, this work provides concrete tools that researchers
can apply when analyzing stability in increasingly sophisti-
cated differential systems.
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