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ABSTRACT

This study examines existence, uniqueness, and Ulam-Hyers stability for solutions of non-
linear coupled fractional integro-differential equations with integral boundary conditions. 
Fractional systems incorporating memory and hereditary effects serve as effective models for 
complex processes in science and engineering applications. This study proves solution exis-
tence and uniqueness by applying the Banach fixed-point theorem within carefully construct-
ed function spaces, then extends our analysis to investigate Ulam-Hyers stability, a framework 
that reveals how solutions behave when initial conditions contain small errors. Our stability 
analysis demonstrates that minor perturbations in starting data translate to bounded solu-
tion variations, keeping the system stable within predictable limits, which we verify through 
a computational example showing how controlled initial changes produce correspondingly 
controlled solution deviations. These results advance stability theory for coupled fractional 
integro-differential systems, particularly where memory effects influence system behavior, 
mathematical models that appear frequently in applications ranging from viscoelastic mate-
rials to population dynamics, where past states influence current evolution. By establishing 
rigorous stability bounds, our work provides a theoretical foundation for implementing these 
models in real-world scenarios where measurement uncertainties and modeling approxima-
tions are inevitable.
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INTRODUCTION

Fractional calculus has proven remarkably useful across 
mathematics and its applications. What makes it fascinating 
is how we can generalize traditional calculus beyond integer 
orders, taking derivatives of order 0.5 or 1.7, for instance. 
This flexibility reveals new mathematical structures that 

better model phenomena where history matters, open-
ing doors to more accurate descriptions of complex real-
world systems. And it began when L’Hospital and Leibniz 
wrote a letter to each other in 1695. At present, there are a 
lot of theories and numerical findings on this topic in the 
scientific literature. The flow of groundwater in a stream 
can be described through a fractional differential equation 
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that accounts for the non-integer order derivatives. The 
fractional derivative models the anomalous behavior of 
flow and transport in porous media. It may also be used 
in several fields, such as the theory of control, aerodynam-
ics, communication and image filtering, and biology [1-4]. 
Manuals by Kilbas et al. [5], Miller and Ross [6], and Halfer 
were used to clarify the fundamental concepts of fractional 
calculus. Multiple writers have researched the existence and 
uniqueness of approaches to fractional order differential 
systems in finite and infinite-dimensional domains. Ahmad 
et al. discovered results involving non-linear fractional 
integro-differential equations utilizing integral boundary 
conditions [7-10].

The results obtained in this research demonstrate prac-
tical utility across multiple domains where complex differ-
ential systems with integral boundary conditions govern 
physical phenomena. Hydrogeological researchers have 
found fractional integro-differential equations particu-
larly effective for modeling subsurface water flow dynam-
ics [10], while chemical engineers apply these systems to 
understand reaction-diffusion mechanisms [11,12]. When 
studying population dynamics or circulatory systems, 
we need mathematical frameworks that can reliably pre-
dict how these systems evolve over time, making solution 
stability absolutely essential for any practical model [13]. 
Our Ulam-Hyers stability analysis tackles this challenge by 
establishing clear bounds on how solutions change when 
initial parameters vary slightly. This becomes especially 
important in hydrology and biomedical engineering, where 
professionals rely on model predictions to make decisions 
that can have serious consequences for public health or 
environmental protection. The stability criteria we’ve devel-
oped offer mathematical confidence that these models will 
behave consistently under real-world conditions, which is 
exactly what practitioners need when applying these tools 
to solve actual problems in environmental science and 
engineering.

Integral boundary conditions play a crucial role in 
hydrogeological modeling as they capture the dynamic 
interactions between aquifer systems and surrounding 
environments. These conditions can represent various 
physical processes, including groundwater recharge rates 
or discharge flows between aquifers and surface water bod-
ies such as rivers and lakes. Additional details regarding 
integral boundary conditions can be found in [13-15]. To 
illustrate the practical significance of integral boundary 
conditions, consider the following real-world example

where ϕ ∈ (a, b), β ∈ (0,1] and η are positive constants, and 
a, b are constants. This represents a thermoregulator model. 
The problem admits well-defined solutions for the one-di-
mensional heat equation describing a heated bar equipped 
with a control system that modulates heat input based on 
temperature measurements from a sensor positioned at β.

This formulation extends to more general cases as the 
heat equation, incorporating nonlinear gradient terms and 
time-varying source components. The heated bar now fea-
tures a controller positioned at β that regulates heat output 
according to temperature data collected from multiple sen-
sors distributed along the bar [16-20]. This problem, there-
fore, may be stated as follows

Ulam’s type stability is a mathematical notion that 
describes how solutions to differential equations behave 
when tiny perturbations are introduced into the beginning 
conditions or equations themselves. It quantifies how stable 
or responsive a system is to disturbances. In 1940, Ulam [21] 
was the first to introduce the Ulam kind of stability. Hyers 
[22] subsequently refined this concept. Ulam and Hyers 
investigated stability properties across various integer-or-
der differential equations, leading to what is now termed 
Hyers-Ulam stability for Cauchy functional equations. 
Their work produced stronger results concerning polyno-
mials, isometric mappings, and convex functions [23-34]. 
Numerous researchers have since extended and generalized 
Hyers’ framework for integer-order differential equations. 
The literature contains extensive investigations into addi-
tional stability concepts of Ulam type, documented in [35-
44] and related works [45-51].

Motivated by the previously mentioned work related to 
integro-systems equipped with fractional order derivatives, 
we aim to extend the findings of [1, 51]. Integro-differential 
equations are important because they combine the prop-
erties of both differential and integral equations, allowing 
them to model a wide range of complex systems where cur-
rent states depend on both rates of change and accumulated 
effects. Despite their significance, few studies have focused 
on investigating Ulam-type stability for integrodifferential 
equations involving fractional derivatives. Despite exten-
sive work on fractional differential equations, Ulam’s stabil-
ity for coupled systems with integral boundary conditions 
remains unexplored. The proposed system is as follows

	 	

(1.1)

where cD is the Caputo fractional derivative, m, n represents the 
order of the derivative,  and  
for . And

Here  and  are real 
numbers.
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We organize this work as follows: Section 2 presents 
essential definitions, notation, and preliminary results 
needed for our main analysis. In Section 3, we establish 
the existence and uniqueness of solutions for system (1.1). 
Section 4 develops our main stability results, focusing on 
Ulam-type stability criteria. Finally, Section 5 demonstrates 
these theoretical findings through a computational exam-
ple that illustrates the practical implications of our stability 
bounds.

PRELIMINARIES

We start with preliminary results using a few helpful 
concepts, notations, and lemmas, which will be utilized in 
the subsequent parts.

Definition 1.[5] The Caputo derivative of a given func-
tion  for a fractional order  is pre-
sented as

where [m] denote the integer part of m and Γ(.) is the 
gamma function.

Definition 2. [5] The Riemann- Liouville fractional 
derivative of a function y(t) of order m is presented as

provided the integral exists.
Lemma 1.[5] For any real number m > 0, the differential 

equation

has a solution which is presented by

where ς = [m] + 1.
Lemma 2. [5] The solution for any real number m > 0, 

of the differential equation

will be presented as

where ς = [m] + 1.

Lemma 3. [9] For any function , 
the following boundary value problem has a unique solu-
tion of

	 	
(2.1)

is presented as

	 	 (2.2)

where Gm(t,s) is the Green's function presented by

	 	
(2.3)

Proof:To prove lemma (3) for some real constants s1, s2 
∈ ℝ, we have

Given the relation  and 
 for , we obtain

Applying the boundary conditions for (2.1), we get the 
following

The unique solution of (2.1) is therefore follows as

where Gm(t,s) is given by (2.3). This is the required proof.
Lemma 4. The space  is a Banach 

space under the defined norm  
Similarly, the norm on product space is defined as 
 . Obviously      
is a Banach space. Moreover the cone  is defined as
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Here system (1.1) is transformed into a fixed point prob-
lem. Let  be the operator defined as

	 	

(2.4)

It follows that the fixed point of the operator coincides 
with the solution of the proposed coupled system (1.1). 

To prove the existence and uniqueness of solutions to 
system (1.1), we require the subsequent conditions

(B1) For  such that

with

Similarly, For  such that

with

(B2) For  such that

Similarly, For  such that

(B3) For  such that

(B4)

(B5) For all  and for each  there exist 
positive real constants , such that

Similarly,  and for each  there exist 
positive constants , such that

(B6) For all  and for each  there exist 
positive real constants , such that

Similarly, For all  and for each  there 
exist positive real constants , such that

(B7) Let
(i). 

and

(ii). 

and

EXISTENCE AND UNIQUENESS ANALYSIS

Theorem 3.1. If all of the prerequisites (B1) - (B7) are 
satisfied and σ = max(σ1, σ2) < 1, so the suggested fractional 
order paired framework (1.1) has a unique solution.

Proof: For a positive number
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we define a set

First, to establish that 𝒮 maps 𝒱 into itself, we have

Upon applying the maximization operation to both 
sides of the aforementioned inequality over the set 𝒯, we 
derive the following expression:

Similarly,

Hence, we can conclude that,

	 	 (3.2)

The aforementioned inequality serves as confirmation 
that the mapping 𝒮 effectively maps the set 𝒱 into itself. 
Subsequently, to demonstrate that 𝒮 qualifies as the con-
traction operator under the condition where , we pro-
ceed with the following analysis.

When we operate the maximum on both sides of the 
above-mentioned inequality over , we obtain

	 	 (3.4)

Similarly, the following can be obtained

	 	 (3.5)

From the above two equations, we obtain

	 	 (3.6)

Henceforth, it is evident that the operator 𝒮 exhibits 
strict contraction properties. Employing Banach’s fixed-
point method, specifically designed for establishing a 
unique fixed point, becomes instrumental in determining 
the sole solution to the proposed coupled system (1.1). 
Consequently, the fulfillment of our primary objective is 
achieved.

ULAM’S STABILITY ANALYSIS

In this section, we endeavor to investigate the Ulam-
type stability characteristics inherent in the envisaged cou-
pled system denoted as (1.1).

For some real number  We assume 
the inequality given as follows

	 	
(4.1)

The following definitions are inspired by Rus [19].
Definition 3: The Ulam-Hyers stability of the coupled 

system denoted by (1.1) is established under the condition 
that there exists a positive constant  such that, for 
any solution (x, y) ∈ ℋ × ℋ of the inequality (4.1), there 
exists a unique solution (ζ, η) ∈ ℋ × ℋ. This unique solu-
tion satisfies the inequality:

Definition 4: The generalized Ulam’s-Hyers stability of 
the coupled system denoted by (1.1) is posited under the 
condition that there exists a function ϖ(ε) ∈ C (ℝ+, ℝ+)with 
ϖ(0) = 0. This function is required to satisfy the condition 
that, for any solution (x, y) ∈ ℋ × ℋ of the inequality (4.1), 
there exists a unique solution (ζ, η) ∈ ℋ × ℋ for the sys-
tem. Additionally, the unique solution must adhere to the 
inequality:

Remark 1.Consider the pair (x, y) ∈ ℋ × ℋ to be a 
solution of inequality (4.1) if there exist functions ϕ and ψ 
belonging to the space C (ℵ, ℝ), contingent upon the vari-
ables x and y respectively, such that

(R1). ;

(R2). and

	 	
(4.2)
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Lemma 5. Let (x, y) ∈ ℋ × ℋ be deemed as a solution 
to inequality (4.1). Subsequently, the ensuing inequality is 
guaranteed to be satisfied:

Proof. By Remark 1 (R2), we have

	 	 (4.3)

By applying Lemma 3, the solution of (4.3) is given as 
follows:

	 	 (4.4)

Considering the first equation of system (4.4), we have

By Remark 1 (R1) and using the condition of (B6), we 
get

	 	 (4.5)

By applying the same process for the second equation of 
system (4.4), we get

	 	 (4.6)

Theorem 2. Assuming that conditions (B5) to (B7) are 
satisfied, the fractional order coupled system denoted by 
equation (1.1) can be deemed Ulam’s-Hyers stable. This 

assertion extends to the broader context of being general-
ized Ulam ‘s-Hyers stable.

Proof: Let (x, y) ∈ ℋ × ℋ be the solution of the system 
(12) and (ζ, η) ∈ ℋ × ℋ be the unique solution to the fol-
lowing considered system:

Using Lemma 3, the solution of the above system is

We have

where .
Hence, we get

	 	 (4.9)

Similarly, we have

	 	 (4.10)

where .
From (4.9) and (4.10), it can be written as

	 	(4.11)

The matrix representation of the above equation is as 
follows
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Simplifying the above inequality yields

where  Further 
simplification gives

	 	 (4.12)

	 	 (4.13)

From equations (4.12) and (4.13), we have

Therefore, we have

	 	 (4.14)

where ε = max(εm, εn) and

Therefore, based on the preceding inequality, it can be 
deduced that the coupled system denoted as (1.1) exhibits 
Ulam ‘s-Hyers stability. Additionally, the aforementioned 
inequality can be expressed in the form:

Through this inequality, it becomes evident that the 
proposed coupled system (1.1) adheres to the principles of 
generalized Ulam ‘s-Hyers stability. 

APPLICATION

Example. Here, we validate our findings related to exis-
tence, uniqueness, and stability by presenting a concrete 
example. Let the following fractional order connected cou-
pled system as follows:

By comparing coupled system (5.1) with system (1.1), 
the following values are derived:

Also,

and

whereas   
and  

Therefore, (B4) is satisfied with  and 
. Further, we have

Similarly,

Consequently, it can be asserted that the coupled system 
denoted as (5.1) possesses a singular solution. Furthermore, 
the condition stipulated in Theorem 2, expressed as 

, is also satisfied. 
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Consequently, the coupled system (5.1) demonstrates both 
Ulam-Hyers stability and generalized Ulam-Hyers stability.

CONCLUSION

We investigate Ulam-Hyers and generalized Ulam-
Hyers stability for fractional integro-differential coupled 
systems with integral boundary conditions, an area where 
existing research has focused mainly on simpler, isolated 
equations rather than the coupled systems that appear more 
frequently in practice. Our approach differs by analyzing 
how these coupled systems behave when subjected to small 
perturbations, using fixed-point theorems and carefully 
constructed function spaces to establish both solution exis-
tence and uniqueness.

What makes this work particularly valuable is its rel-
evance to real applications in engineering, finance, and 
physics, where model stability directly impacts whether 
computational results can be trusted for decision-making. 
Our quantitative analysis shows that when initial condi-
tions vary slightly, the resulting solution changes remain 
bounded and predictable, exactly the kind of stability guar-
antee practitioners need. Beyond these immediate results, 
the mathematical framework we’ve developed opens doors 
to studying more complex systems, including those with 
neutral delays, impulsive effects, or various inclusion prop-
erties that arise when modeling systems with both finite 
and infinite time delays. Rather than simply filling theoret-
ical gaps, this work provides concrete tools that researchers 
can apply when analyzing stability in increasingly sophisti-
cated differential systems.
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