
Sigma J Eng Nat Sci, Vol. 43, No. 6, pp. 1−12, December, 2025

Sigma Journal of Engineering and Natural Sciences
Web page info: https://sigma.yildiz.edu.tr

DOI: 10.14744/sigma.2024.00132

ABSTRACT

The exponential growth of electrical energy demand can be attributed to the increase in popu-
lation and urbanization. A strategic approach required to tackle this pressing issue involves the 
integration of Internet of Things (IoT) technologies and intelligent devices within households, 
a key initiative being undertaken by smart cities. India has implemented Time of Day (ToD) 
tariffs for electricity consumption, particularly targeting industrial sectors. Nevertheless, a no-
table observation is the limited utilization of Time of Day (ToD) tariffs within the residential 
electricity sector, signaling an area with potential for improvement. To enhance the efficiency 
of the electricity market through responsive measures, it is crucial to expand the implementa-
tion of Time of Day (ToD) tariffs to include the residential sector as well, thereby promoting 
a more effective and equitable system. The core focus of the research paper centers on the op-
timization of load scheduling in intelligent residences, with the objective of mitigating energy 
expenses and diminishing peak power demand, while upholding user comfort and operation-
al efficiency at uncompromised levels. The research investigates the comparison of various 
algorithms like Ant Colony Optimization Algorithm (ACO), Whale Optimization Algorithm 
(WOA), Particle Swarm Optimization Algorithm (PSO), and Genetic Algorithm (GA) within 
the framework of cost reduction using ToD tariffs, with GA emerging as the most effective in 
achieving savings and decreasing peak-to-average ratio (PAR). This strategic approach not 
only benefits residential consumers in terms of cost savings but also proves advantageous for 
utility providers in managing resources effectively.
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INTRODUCTION

Smart homes and IoT-enabled appliances are gaining 
immense importance due to their ability to revolutionize 
daily living and energy efficiency. With the IoT within 

smart homes, it is possible to design smart home systems 
with advanced features for appliances control remotely [1]. 
Moreover, the smart homes are resulting with evolu-
tion of wearables and ambient devices for motion as well 
as health sensing and security, to build sustainable and 
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smart living environment [2]. Appliance load monitoring 
in smart homes is also an important factor for attaining 
energy efficiency, and methods such as intrusive load mon-
itoring (ILM) and non-intrusive load monitoring (NILM) 
have very good impact in controlling its power consump-
tion [3]. Integrating IoT functionalities into Home Energy 
Management Systems (HEMS) can also increase energy 
savings in that it can supply customers with feedback infor-
mation and support control over on of the main energy 
consumers like white goods in a home, showing also the 
growing relevance of smart home and IoT appliances in 
contemporary residential environments [4]. 

Energy management is confronted with significant chal-
lenges arising from the uncertainties associated with load 
consumption patterns and the sporadic nature of renewable 
energy generation, which adversely affects the management 
of active resources [5]. In order to mitigate these challenges, 
the implementation of efficient load scheduling is impera-
tive, as it optimizes the utilization of renewable resources 
such as solar energy and energy storage systems, all while 
striving to minimize both costs and carbon emissions [6], 
[7]. Moreover, load scheduling plays an essential role within 
demand response initiatives, in which the deliberate redis-
tribution of loads during intervals of diminished pricing 
can result in cost reductions for end-users, although it may 
also lead to rebound peaks and user discontent  [7]. The 
application of sophisticated algorithms such as Enhanced 
Differential Evolution (EDE) and Genetic Algorithm (GA) 
facilitates the automation of responses to demand signals, 
thereby optimizing load schedules to achieve reductions 
in energy expenditures, carbon emissions, and peak-to-av-
erage ratios, whilst simultaneously enhancing user com-
fort  [7]. Consequently, the efficacy of load scheduling is 
paramount for achieving an equilibrium between supply 
and demand, curtailing costs, and promoting sustainability 
within energy management frameworks.

The phenomenon of elevated energy expenditures 
and suboptimal energy utilization within smart homes is 
attributed to the escalating energy requirements and the 
deficiency of efficacious strategies for managing energy 
consumption during peak hours. Urban environments 
characterized as smart cities are profoundly dependent on 
the provision of efficient energy services, with Time-of-Use 
pricing emerging as an effective policy mechanism for rec-
onciling electricity consumption patterns and alleviating 
strain on the electrical grid [8]. Scholars underscore the 
significance of scheduling energy usage during off-peak 
periods as a means to diminish energy costs, which neces-
sitates meticulous profiling of appliances and the imple-
mentation of real-time monitoring systems for effective 
peak load management  [9]. The proliferation of Internet 
of Things (IoT)-enabled smart homes is associated with an 
increase in energy consumption, thereby necessitating the 
development of optimization strategies aimed at enhancing 
both energy efficiency and user comfort [10] . Additionally, 
the convergence of Artificial Intelligence (AI) with IoT 

technologies promotes energy-efficient communication 
within smart homes, with novel algorithms and frame-
works being devised to optimize Quality-of-Service during 
video streaming, consequently decreasing energy usage 
and enhancing performance metrics  [11]. It is imperative 
to address these complexities through the deployment of 
cutting-edge technologies and optimization methodologies 
to mitigate the effects of rising energy costs and to enhance 
energy efficiency in smart residences.

The implementation of Time-of-Day (ToD) tariffs 
for the purpose of energy conservation presents numer-
ous advantages, as substantiated by a variety of empirical 
research studies. ToD tariffs serve to incentivize consumers 
to realign their electricity consumption from peak demand 
periods to off-peak intervals, thereby mitigating peak 
load and fostering a more efficient utilization of energy 
resources. This behavioral modification not only contrib-
utes to energy conservation but also facilitates peak load 
shaving, which is essential for the preservation of grid sta-
bility and the diminishment of the necessity for costly grid 
expansions  [12]. Moreover, the utilization of ToD tariffs 
has been empirically demonstrated to significantly lower 
power consumption while concurrently preserving benefits 
for both consumers and electricity providers, as evidenced 
by the application of genetic algorithms in the optimization 
of stepwise power tariffs [13]. In summary, the utilization 
of Time-of-Day (ToD) tariffs signifies a holistic approach 
designed to advance energy conservation, uphold grid reli-
ability, and enhance economic efficiency, thereby render-
ing it as an exceptionally favorable framework for modern 
energy systems.

LITERATURE REVIEW

The practice of strategic load scheduling in smart homes 
equipped with IoT technology is imperative for curtailing 
energy costs and advancing energy management strate-
gies. Several algorithms, notably the Whale Optimization 
Algorithm (WOA), Ant Colony Optimization Algorithm 
(ACO), Particle Swarm Optimization Algorithm (PSO), 
and Genetic Algorithm (GA), have been examined exten-
sively for this purpose. Ant Colony Optimization (ACO) 
has been acknowledged as a proficient approach for 
enhancing energy management in smart residential con-
texts. By emulating the foraging behavior exhibited by 
ants, ACO algorithms are capable of efficiently scheduling 
domestic appliances to reduce energy expenses and peak 
demand [14]. ACO not only prioritizes cost reduction but 
also improves user comfort by ensuring that the sched-
uling of appliances is congruent with consumer require-
ments, thereby enhancing overall satisfaction [15]. ACO, 
renowned for its effectiveness in resolving combinatorial 
problems, has been adeptly employed in home energy man-
agement systems (HEMS) to enhance appliance schedul-
ing while considering fluctuating pricing models and user 
comfort [16].
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WOA, inspired by the social dynamics observed in ceta-
cean populations, has demonstrated significant effective-
ness in reducing energy expenditures and enhancing the 
peak-to-average ratio (PAR) through the optimal schedul-
ing of domestic devices within sophisticated grid systems. 
PSO, recognized as a widely utilized heuristic optimiza-
tion methodology, has found extensive application within 
home energy management systems (HEMS) to harmonize 
energy consumption and associated costs, capitalizing on 
its rapid convergence towards optimal solutions. Genetic 
Algorithms (GA), a prominent optimization methodol-
ogy, has been rigorously applied in numerous research 
endeavors aimed at the creation of efficient Home Energy 
Management Systems (HEMS), specifically focusing on 
curtailing electricity expenditures and easing peak demand 
via the judicious scheduling of household devices [17]. 
These algorithms are customarily associated with advanced 
Internet of Things (IoT) technologies and real-time data 
analytics to bolster their operational efficacy. The fusion 
of GA with IoT-oriented controllers has revealed signifi-
cant economic advantages and enhanced user gratification 
through the effective real-time optimization of load profiles 
[18]. 

In a similar vein, Particle Swarm Optimization (PSO) 
and Whale Optimization Algorithm (WOA) have been 
employed in tandem with predictive modeling to antici-
pate energy consumption patterns and enhance scheduling 
in accordance with user preferences and environmental 
variables [19]. The efficacy of these algorithms is corrobo-
rated through both simulations and empirical data, thereby 
demonstrating their capacity to facilitate significant reduc-
tions in energy costs while simultaneously ensuring user 
satisfaction  [20, 21]. In summary, the predominant cor-
pus of literature underscores the vital importance of these 
optimization methodologies in the evolution of smart 
home energy management, thus delineating the need for 
sustained research and development to proficiently tackle 
future challenges and uncertainties [22].

Problem Formulation
The regulation of energy within intelligent residential 

settings has achieved increased prominence due to rising 
energy costs and the necessity for sustainable approaches. 
This study is focused on two primary objectives: the reduc-
tion of costs and the improvement of efficiency in energy 
management. Through the utilization of time-of-day pric-
ing structures and diverse optimization algorithms, this 
research endeavors to formulate strategies that mitigate 
energy expenses and optimize efficiency, all while main-
taining the comfort of the inhabitants.

The primary objectives of this research are:
•	 To establish strategies centered on cutting energy 

expenditure in intelligent home systems.
•	 To analyze the use of time-of-day tariffs to boost energy 

efficiency in non-peak periods ultimately lowering elec-
tricity expenses.

•	 To evaluate the efficacy of various optimization algo-
rithms specifically ACO, WOA, PSO, and GA in achiev-
ing these objectives.
This research assesses the application of diverse opti-

mization algorithms for effective load scheduling, cru-
cial for cost minimization and efficiency enhancement 
in smart homes while developing viable load scheduling 
methodologies.

SYSTEM MODEL

The utilization of metaheuristic algorithms within the 
Smart Home Energy Control (SHEC) system optimizes 
power consumption in smart devices by establishing effi-
cient usage schedules. This integration aims to achieve 
cost reduction, decrease the Peak Average Ratio (PAR), 
and enhance user comfort (UC) through effective energy 
resource management. Through the proactive participation 
in demand response initiatives and the adjustment to fluc-
tuating energy prices, the Smart Home Energy Controller 
(SHEC) system not only mitigates consumer energy 

Figure 1. Workflow of Smart home energy management system.
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expenditures but also enhances the overall efficiency and 
sustainability of Internet of Things (IoT)-integrated smart 
residences. Figure 1 delineates the proposed sequential 
workflow of the system, highlighting the procedural phases 
involved in the optimization of energy management. 

Study Focus and Objectives
This study concentrates on optimizing energy man-

agement in a smart home environment using a set of ten 
commonly used appliances which are given in table 1. Each 
appliance is denoted by 
n ϵ N = {1,2,3………10)
with energy management decisions made hourly across 24 
time slots 
s ϵ S = {0,1,2,3………23)

Energy Consumption and Cost Formulation
The total energy consumption of appliances within each 

time slot is calculated as: 

	 	
(1)

where AECn represents the energy consumption of appli-
ance n.

The total energy consumption over 24 hours (AECT​) is: 

	 	
(2)

Energy cost is determined by: 

	 	 (3)

where E rate​ is the energy cost per hour and Prate is the 
power rating of connected appliances.

Optimization Objective
The objective function aims to minimize the total cost 

and reduce user discomfort due to waiting times ωT = b - a 
before appliance operation. 

It is formulated as:

	 	
(4)

 Here, ω1 and ω2 are weighting are weighting factors 
(either 0 or 1) balancing cost reduction and user comfort, 
with ω1+ω2=1.

Role of Smart Home Energy Controller (SHEC)
In residential environments integrated with the Internet 

of Things (IoT), the Smart Home Energy Controller (SHEC) 
plays a crucial role by responding to real-time demand sig-
nals and optimizing energy consumption with remarkable 
efficacy. It considers a multitude of factors, including price-
driven demand response strategies, characteristics of appli-
ances, operational timeframes, Time-of-Day (TOD) pricing 
structures, and the energy resources available from the grid 
to formulate optimal energy consumption schedules.

Pricing schemes
Many countries have implemented Time of Day (ToD) 

tariffs for electricity consumption, particularly targeting 
commercial and industrial sectors. In proposed ToD tariff 
three zone are considered based on load curve plotted by 
taking actual use of appliances from household consumer. 
These are Peak (6 to10 hrs. &18 to 22 hrs.), Valley (4 to 6 
hrs.,10 to 12 hrs. & 16 to 18 hrs.) & Flat Zone (0 to 4 hrs., 
12 to 16 hrs. & 22 to 23 hrs.). The primary goal of these 
tariffs is to encourage consumers to adjust their electric-
ity usage to times of lower demand on the grid, ultimately 
aiding in load balancing. The increase in demand for elec-
trical energy has grown significantly because of population 
growth and urban development. To address this issue, smart 
cities are utilizing Internet of Things (IoT) technology and 
smart devices within households.

In India, Maharashtra MSEDCL applies energy rates 
for consumer based on power consumption. The different 
energy rates are applied for different consumers based on 
Total energy Consumption (0-100,100-300,300-500,500 

Table 1. Smart home Appliances and its rating

 Sr. No Appliances Power Rating [Prate] (Watts) Total Usage hrs. [Li] Time Slots
1 Air Conditioner 1500 6 10–21
2 Computer 250 8 9–23
3 Electric kettle 1000 1 4–20
4 Coffee maker 1000 1 5–21
5 Water Dispenser 300 9 0-23
6 Oven 1000 2 4–21
7 Fan 500 5 0–23
8 Light 150 7 0–23
9 Washing Machine 1000 2 5-21
10 TV 100 6 0-23
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onwards). Proposed ToD Method in which Energy rates are 
applied based on peak, Valley & flat zones of load curve.

 In this study for Cost minimization of Smart Homes 
Two Methods were adopted 

Case I: Cost minimization by saving the KW power 
consumption & using ToD tariff for power consumption 

Case II: Cost minimization by only adopting ToD tariff 
for power consumption. 

METHODOLOGY

In this study, we use two main approaches to optimize 
energy usage in smart homes: Single Interval Programming 
(SIP) and Multi-Interval Programming (MIP).These strat-
egies are designated according to two distinct temporal 
phases in dispatch planning and pricing, referred to as pre-
dispatch and real-time [23]. SIP comes into play when we 
have set electricity prices ready to go for the whole day! The 
single interval program runs once each day to figure out 
the best schedule that fits  user’s preferences. Multi inter-
val programming (MIP) works throughout each interval to 
find the ideal scheduling based on hourly real-time pricing 
conditions.

In particular circumstances, Single Interval Programming 
(SIP) is frequently preferred over Multi-Interval 
Programming (MIP) due to its various notable advantages. 
To begin with, SIP showcases computational clarity and 
heightened efficiency, targeting the optimization of energy 
usage during specific time intervals, which enables rapid 
calculations and on-the-fly adaptability. This characteristic 
renders SIP particularly suitable for prompt energy manage-
ment decisions and scenarios necessitating swift modifica-
tions. Secondly, SIP necessitates a reduced volume of data 
in comparison to MIP, thereby rendering it advantageous in 
situations where extensive data across multiple intervals is 
either inaccessible or prohibitively expensive to obtain.

Numerous scholarly investigations have examined the 
challenge of optimal scheduling of domestic appliances 
via the utilization of diverse algorithms, including Genetic 
Algorithms (GA), Particle Swarm Optimization (PSO), 
Harmony Search Algorithm (HSA), Water Distribution 
Optimization (WDO), and Hybrid Genetic Harmony 
Search Algorithm (GHSA), among others [24-26].

In this paper a comparative performance of ACO, 
WOA, PSO and GA is given.

Ant Colony Optimization (ACO)
This research introduces an Ant Colony Optimization 

(ACO) strategy aimed at refining energy consumption 
schedules for residences within the framework of Time-of-
Day (TOD) pricing. The Ant Colony Optimization (ACO) 
algorithm initiates its process with a collection of artificial 
ants, each of which constructs a potential energy consump-
tion timetable by incrementally selecting hours for each 
appliance, informed by pheromone trails and heuristic 
information. The pheromone matrix experiences real-time 

updates based on the efficacy of the solutions generated, 
thus reflecting the attractiveness of each hour for the acti-
vation of appliances. This approach achieves a harmonious 
equilibrium between exploration (via stochastic selections 
influenced by pheromone concentration) and exploitation 
(by focusing on advantageous solutions identified through-
out the algorithm’s execution).

The technique incorporates various constraints within 
the optimization framework. These constraints include 
maintaining appliances within designated time frames 
and adhering to maximum usage limits. Furthermore, the 
objective function incorporates variable electricity pric-
ing across different temporal intervals (peak, off-peak, 
and flat rates), aiming to discern schedules that minimize 
total expenditures while possibly considering idle periods 
for appliance usage. The optimization process is executed 
through numerous generations of ant solutions, employing 
mechanisms for pheromone evaporation and updates that 
promote convergence toward an optimal or near-optimal 
solution throughout successive iterations.

Whale Optimization Algorithm (WOA)
The Whale Optimization Algorithm (WOA) consti-

tutes an advanced metaheuristic optimization approach 
that is predicated upon the social behaviors demonstrated 
by humpback whales, particularly highlighting their bub-
ble-net feeding strategy. This algorithm is characterized by 
its proficiency in global search capabilities and its necessity 
for a limited quantity of control parameters, thus making it 
efficacious across a diverse array of optimization problems 
[27]. This investigation describes an optimization approach 
directed at the scheduling of electrical loads within a 
domestic setting, leveraging the WOA as a core methodol-
ogy. The algorithm systematically improves the schedules 
via iterative processes, adeptly harmonizing the dual aims 
of exploration and exploitation to identify the optimal solu-
tion. Throughout this process, constraints are rigorously 
applied to guarantee that the schedules maintain their fea-
sibility. The findings presented in this study provide robust 
support for the effectiveness and practicality of the afore-
mentioned approach, particularly in relation to its capac-
ity to facilitate substantial reductions in operational costs 
while simultaneously improving overall energy efficiency 
metrics, thereby further solidifying and amplifying the pri-
mary aim of demand-side management strategies as they 
pertain to the optimization of intelligent residential systems 
designed to enhance user experience and sustainability.

Particle Swarm Optimization (PSO)
The PSO algorithm is a technique for stochastic opti-

mization based on population dynamics, draws inspiration 
from the collective behaviors observed in bird flocking and 
fish schooling [28]. PSO consists of particles representing 
potential solutions distributed randomly. Each particle’s 
position and velocity are updated based on personal best and 
global best. The algorithm starts with initializing particles’ 
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positions and velocities, followed by evaluating fitness func-
tion [29]. Particles adjust velocities and positions using a rule 
incorporating personal best and global best [30].

The proposed PSO framework initializes a swarm of 
particles, each representing a potential schedule. The evalu-
ation of each particle’s fitness is conducted according to the 
objective function, which takes into account the TOD rates 
and load constraints. The particles systematically revise 
their positional coordinates through a process informed 
by their individual prior experiences alongside the globally 
optimal solution identified by the swarm, influenced by 
cognitive and social factors. In order to ensure feasibility, 
additional constraints such as peak power limits and spec-
ified operational timeframes are enforced upon the sched-
uling framework of each particle. The algorithm efficiently 
converges towards an optimal or nearly optimal solution, 
thereby showcasing its proficiency in balancing cost mini-
mization with adherence to constraints.

Genetic Algorithm (GA)
The Genetic Algorithm (GA) functions as an optimiza-

tion methodology grounded in principles of natural selection 
and genetic theory, wherein essential elements facilitate the 
evolution of solutions to intricate challenges [31]. Entities 
within a population are representative potential solutions 

that are encoded in the form of chromosomes [32]. Parental 
entities are selected according to fitness levels and undergo 
crossover to generate novel offspring. The mutation mech-
anism enhances genetic diversity and expands the search 
parameter space, thereby reducing the likelihood of conver-
gence to local optima. This repetitive sequence of selection, 
crossover, and mutation defines a singular generation, with 
the objective of advancing the quality of solutions through 
subsequent generations [31,33].

To enhance the effectiveness of optimizing residential 
electrical consumption while factoring in peak load man-
agement and time-of-use pricing, we have devised an inno-
vative genetic algorithm (GA). Our methodology tackles the 
challenge by adaptively scheduling household appliances 
in alignment with variable electricity tariffs and temporal 
constraints. The algorithm is initialized utilizing pre-estab-
lished appliance schedules and imposes limitations such 
as operational hours and maximum load thresholds. The 
objective function is designed to balance the reduction of 
electricity expenses with the comfort of consumers, wherein 
weighting coefficients are finely tuned to correspond to 
either overall consumption metrics or time-variable pricing 
rates. Implementing iterative processes of selection, cross-
over, and mutation, the genetic algorithm steadily opti-
mizes schedules, consequently ensuring alignment with 

Table 2. Comparison of Algorithms based on strength and weakness

Algorithm Strength Weakness
ACO -Exhibits effectiveness in addressing combinatorial 

optimization challenges.
-Demonstrates expertise in traversing extensive 
search landscapes.
-Displays an aptitude for modification within 
shifting contextual paradigms.

-The incidence of premature convergence might ensue when 
pheromone trails reveal excessive potency.
-The convergence speed is regularly recognized to be 
diminished when engaging with elaborate problems.
-The process of parameter optimization can introduce 
considerable intricacies.

WOA -Encourages rapid convergence without 
compromising the critical exploratory facets.
-Mimics authentic behavioral patterns evident in the 
foraging methodologies of humpback whales.

- There exists a relative scarcity of research and a lack of 
established methodologies in comparison to alternative 
approaches.
- The performance outcomes may fluctuate contingent upon 
the specific parameter configurations employed.
- There may be difficulties encountered in highly multimodal 
landscapes.

PSO -Rapid convergence, particularly in the context of 
unimodal optimization challenges 
- Straightforward execution and comprehensible 
interpretation 
- Effective in addressing dynamic optimization 
scenarios

-Challenges may arise when endeavoring to perform global 
exploration within complex landscapes. 
- The methodology is significantly sensitive to the 
configuration of parameters, which may profoundly influence 
performance indicators. 
- A proclivity for premature convergence may become 
apparent in certain circumstances.

GA - Maintains diversity through genetic operations
- Robust to different types of problems

- Convergence may be comparatively slower than that 
observed in Particle Swarm Optimization (PSO).
- It necessitates meticulous calibration of population size, 
mutation rates, and crossover rates.
-The degree of complexity related to implementation can vary 
greatly based on the specific genetic representation chosen.
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peak power regulations and boosting overall efficiency in 
energy consumption. The empirical observations affirm 
the success of our methodology in diminishing electricity 
costs and enhancing consumption dynamics across a range 
of household environments.

A comparative examination of Ant Colony Optimization 
(ACO), Whale Optimization Algorithm (WOA), Particle 
Swarm Optimization (PSO), and Genetic Algorithm (GA) 
delineating their respective advantages and limitations is 
presented in Table 2 within the framework of optimiza-
tion challenges. By comprehensively understanding their 
distinct attributes, one can more effectively evaluate their 
appropriateness for particular applications, especially in 
contexts where efficient energy management and load 
scheduling are of paramount importance. 

Genetic Algorithms (GA) excel in intricate optimiza-
tion tasks, especially with multimodal functions featuring 
several optimal solutions. Their maintenance of genetic 
diversity via crossover and mutation mitigates premature 
convergence, facilitating exploration of varied solution 

regions. Furthermore, GAs exhibit high adaptability, 
rendering them suitable for problems characterized by 
evolving environments or dynamic constraints, including 
scheduling and resource allocation.

RESULTS AND ANALYSIS

The focus of this study is the reduction of electricity 
expenses for residential consumers while ensuring user 
comfort. Simultaneously, the aim is to decrease the PAR 
ratio. In this study comparative results are obtained for both 
cases fixed charges as per current scenario & after applying 
the TOD tariff in Table 3 and Table 4. In this case, we have 
two cost rates first Based on MSEDCL power consumption 
(KW) slabs (i.e KW Slab) and second ToD tariff rates (i.e 
ToD rates). The initial energy consumption & Energy cost 
curve for a day is shown in Fig. 2. 

In Proposed ToD Method in Energy rates are applied 
based on peak, Valley & flat zones of load curve. Initial 
Power consumption without appliances scheduling for KW 

Figure 3. Consumer ToD tariff rates with respect to Slab rate.

Figure 2. Energy Consumption and Cost Curve of smart home.
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slab rate is 23.85 Kw (Unscheduled KW) and cost is 229 
Rs (Unscheduled cost). Initial Power consumption without 
appliances scheduling for ToD rate is 23.85 Kw (Unscheduled 
KW) and cost is 224.07 Rs (Unscheduled cost). So cost saving 
by ToD tariff is 05 Rs (2%) which is also observed in Fig. 3. 
Initial PAR without scheduling is 2.82. 

Computational Results for Case-I
The outcomes for case-I, where a flat rate tariff and 

Time of Day (ToD) tariff pricing are implemented are 

shown in Table 3. The table provides a comparative analysis 
of the electricity cost associated with the efficient schedul-
ing of household appliances. This examination is conducted 
through SIP techniques employing in ACO, WOA, PSO, 
and GA algorithms. The load curve of Smart home before 
& after scheduling the appliances for each algorithm in case 
I is shown in Fig. 5, Fig. 6, Fig. 7 & Fig. 8. It is observed 
that some loads are not active for same day therefore there 
is saving in cost but due to this consumer comfort is dis-
turbed because of unviability of specific load at important 

Figure 4. Comparison of Energy cost by Slab rate & ToD tariff.

Table 3. Comparative results for cost minimization by kw saving & ToD tariff saving

Algorithm Pricing   Result KW 
saving

Cost 
Saving

% KW 
saving

% Cost 
Saving

PAR 
Redu.

% PAR 
Redu.

ACO KW Slab Scheduled KW 20.72 3.13   13.12   0.19 6.73
Scheduled Cost 193.76   35.24   15.39    

ToD Scheduled KW 20.78 3.07   12.87   0.17 6.02
Scheduled Cost 183.97   40.1   17.9    

Total Saving   3.07 45.03 12.87 19.66 0.17 6.02
WOA KW Slab Scheduled KW 12.99 10.86   45.53   -1.6 -57.8

Scheduled Cost 106.84   122.2   53.34    
ToD Scheduled KW 13.22 10.63   44.57   -1.6 -54.96

Scheduled Cost 108.9   115.2   51.4    
Total Saving   10.63 120.1 44.57 52.45 -1.6 -54.96

PSO KW Slab Scheduled KW 15.07 8.78   36.81   -0.6 -19.5
Scheduled Cost 130.22   98.78   43.14    

ToD Scheduled KW 14.91 8.94   37.48   -0.5 -18.09
Scheduled Cost 121.32   102.8   45.86    

Total Saving   8.94 107.7 37.48 47.02 -0.5 -18.09
GA KW Slab Scheduled KW 21.25 2.6   10.9   0.28 9.92

Scheduled Cost 199.8   29.2   12.75    
ToD Scheduled KW 21.36 2.49   10.44   0.28 9.92

Scheduled Cost 156.54   68.27   30.37    
Total Saving   2.49 72.46 10.44 31.64 0.28 9.92
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Figure 8. Load curve Before and After Scheduling load by GA a) Slab rate b) ToD rate.

Figure 7. Load curve Before and After Scheduling load by PSO a) Slab rate b) ToD rate.

Figure 6. Load curve Before and After Scheduling load by WOA a) Slab rate b) ToD rate.

Figure 5. Load curve Before and After Scheduling load by ACO a) Slab rate b) ToD rate.
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time. The percentage reduction in cost by optimal schedul-
ing in case I with the help of all four algorithms comparison 
is shown in Fig. 9. (a) It is observed that ACO, WOA, PSO 
& GA algorithms minimized the electricity cost by 19.66%, 
52.45, 47.02% and 31.52% respectively. In the same fig. 
PAR reduction is also shown for same as 6.03%, -54.96%, 
-18.09% and 9.93% respectively. Which shows that the opti-
mal scheduling decreases cost but PAR reduction increases 

in some cases which is not good for the system. The best 
results are obtained by GA in consideration with cost sav-
ing and PAR reduction i.e 31.64% & 9.93%.

Simulation Results for Case-II
The load curve of Smart home before & after scheduling 

the appliances for each algorithm in case I is shown in Fig. 5, 
Fig. 6, Fig. 7 & Fig. 8. After load scheduling under slab rate 

Table 4. Comparative results for cost minimization only by ToD tariff saving

Algorithm Pricing   Result KW 
saving

Cost 
Saving

% KW 
saving

% Cost 
Saving

PAR 
Redu

% PAR 
Redu.

ACO KW Slab Scheduled KW 23.85 0 0 0.05 1.77
Scheduled Cost 229   0   0.00    

ToD Scheduled KW 23.85 0   0   0.04 1.42
Scheduled Cost 208.06   16.01   7.15    
Total Saving   0 20.94 0 9.14 0.04 1.42

WOA KW Slab Scheduled KW 23.85 0 0 -0.39 -13.83
Scheduled Cost 229   0   0.00    

ToD Scheduled KW 23.85 0   0   -0.46 -16.31
Scheduled Cost 193.48   30.59   13.65    
Total Saving   0 35.52 0 15.51 -0.46 -16.31

PSO KW Slab Scheduled KW 23.85 0 0 -0.36 -12.77
Scheduled Cost 229   0   0.00    

ToD Scheduled KW 23.85 0   0   -0.33 -11.70
Scheduled Cost 194.93   29.14   13.00    
Total Saving   0 34.07 0 14.88 -0.33 -11.70

GA KW Slab Scheduled KW 23.85 0 0 0.14 4.96
Scheduled Cost 229   0   0.00    

ToD Scheduled KW 23.85 0   0   0.13 4.61
Scheduled Cost 177.38   47.43   21.10    
Total Saving   0 51.62 0 22.54 0.13 4.61

	  
(a) Case I	 (b) Case II

Figure 8. Comparison of % cost saving & % PAR Reduction (a) case I (b) case II.
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and ToD rate peak of load curve is minimized hence peak 
clipping is done. More amount of load is shifted in valley 
and flat tariff zone of ToD as compare to cost minimization 
by case I. In the case II cost minimization & PAR reduction 
by optimal scheduling of appliances in smart home with the 
help of ACO, WOA, PSO & GA algorithms is given in Table 
4. The percentage reduction in cost by employing the algo-
rithms are ACO (9.14%), WOA (15.51%), PSO (14.88%) 
& GA (22.54%). PAR reduction for the same are ACO 
(1.42%), WOA (-16.31%), PSO (-11.70%) & GA (4.61%) 
Which shows that cost saving is achieved in each case but 
reduction in PAR is not in every case. Total cost saving by 
scheduling the appliances by GA is 22.54% by shifting load 
in low ToD Tariff rate & PAR reduction is 4.61% which is 
greater than ACO, WOA & PSO.

If GA is employed for load scheduling under ToD tar-
iff rate, without changing consumer power consumption 
(23.85 kW keeping Constant), cost saving in actual energy 
bill (22.54%). Also, the PAR reduced by 4.61% which is 
greater than KW slab rate this not happen in cost minimi-
zation by KW & ToD tariff.

CONCLUSION

In this study, the focus was on reducing electricity 
expenses for residential consumers while maintaining user 
comfort and decreasing the peak power demand to average 
demand ratio. Comparative results were obtained for fixed 
charges under the current scenario and after applying Time 
of Day (ToD) tariff. Different algorithms were used to opti-
mize appliance scheduling and minimize costs. The results 
shows that ToD tariff led to cost savings of 2% compared to 
the current scenario.

The simulation results for case-I presented in this study 
demonstrate the effectiveness of employing like Ant Colony 
Optimization Algorithm (ACO), Whale Optimization 
Algorithm (WOA), Particle Swarm Optimization Algorithm 
(PSO), and Genetic Algorithm (GA) for optimal scheduling 
of appliances in a smart home under flat rate and ToD tariff 
pricing. The analysis of electricity pricing and adjustments 
to the load curve, conducted both prior to and subsequent 
to the implementation of scheduling, reveals significant 
decreases in expenditures; however, it is important to note 
that certain disruptions to consumer comfort may arise as a 
result of load unavailability during pivotal periods. Among 
the various algorithms scrutinized, the Genetic Algorithm 
(GA) emerges as the most effective in achieving a balanced 
interplay between cost reductions (31.64%) and reductions 
in the Peak-to-Average Ratio (PAR) (9.93%).

In the context of case-II, the findings reveal that load 
scheduling in accordance with Time-of-Day (ToD) tariff 
pricing facilitates peak clipping and promotes enhanced 
load distribution efficiency. The Genetic Algorithm 
(GA) once again surfaces as the preeminent algorithm, 
demonstrating noteworthy cost reductions (22.54%) and 
PAR decreases (4.61%) in comparison to the Ant Colony 

Optimization Algorithm (ACO), Whale Optimization 
Algorithm (WOA), and Particle Swarm Optimization 
Algorithm (PSO). In summary, the Genetic Algorithm 
(GA) substantiates its status as a viable option for the opti-
mization of appliance scheduling within intelligent home 
environments, delivering significant advantages in terms of 
cost efficiency and reductions in PAR.

NOMENCLATURE 

Cpf	 Specific heat, kJ / kg °C
AECS	 Appliance Energy Consumption for slot, watt.
AECn	 Nth Appliance Energy Consumption, watt.
AECT	 Total Appliance Energy Consumption, watt.
C	 Energy Cost, Rupees
Erate	 Energy Rate, Rupees
Prate	 Power rating, Watt
ωT	 Waiting Time, Sec.
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