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ABSTRACT

The aim of this study was to determine the monomer reactivity ratios, thermal properties and 
thermal degradation behavior of new P(N-[2-(4-brombenzoyl)-benzofuran-3-yl]-2-methac-
rylamide-co-styrene) polymers synthesized at different compositions. For this purpose, novel 
copolymers of N-[2-(4-brombenzoyl)-benzofuran-3-yl]-2-methacrylamide (NBBM) mono-
mer with styrene (St) monomer were prepared using free radical polymerization method. The 
1H-NMR spectra was used to calculate the compositions of the copolymers. The reactivity ra-
tios of monomers were calculated in line with the universal copolymerization equation using 
Kelen-Tüdös and Finemann-Ross linearization methods, and found to be r1:0,62 r2:1,09 and 
r1:0,61, r2:1,07 respectively (where r1 is reactivity ratio of NBBM). DSC, TGA and DTG were 
used to study the thermal behaviors of the copolymers. The Tg value of P(NBMM) was found 
to be 211 oC and the Tg values of the studied copolymers were determined to increase from 
144 oC to 184 oC with increasing concentration of NBMM units. Thermal data showed that the 
maximum degradation temperatures increased from 349 oC to 391 oC as the St units increased 
in the copolymer system. The activation energy (Ea) values of P(NBBM) and the studied co-
polymer were determined from the TGA curves obtained at different heating rates and the 
Flynn-Wall-Qzawa, Kissinger, Tang isoconversional methods were used. Solid state reaction 
mechanisms were also calculated by being used the Van Krevelen method, a non-isoconver-
sion model. The Ea values obtained with isoconversion models for P(NBBM) and copolymer 
were found very close to the values obtained from non-isoconversion models. Moreover, the 
R3 mechanism was proposed for the homopolymer and copolymer.
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INTRODUCTION

Polymers containing functional groups with differ-
ent properties have been used in various applications as 
functional materials. In this regard, polymethacrylates 
with benzofuran ring in the side group have gained more 
and more interest lately. One of the most frequently used 
methods to produce materials with desired properties 
using monomers containing these functional groups is 
copolymerization. Functional methacrylate copolymers 
have many biomedical applications in industry. Drug 
delivery systems, dental and knee prosthesis, biosensors 
are some of these areas of applications. Studies have aimed 
to improving properties such as biocompatibility, bioac-
tivity and long-lasting durability in their areas of use [1-4]. 
Benzofuran and its derivatives have been investigated for 
their biological activities [5-8], optical properties [9, 10], 
thermal properties [11] and these studies are still ongoing. 
For example, one study reported that 2-acetyl benzofurans 
can be used for anti-cancer treatment [12]. In another 
study, anticancer, antibacterial and antioxidant properties 
of some benzofuran modified compounds were investi-
gated. As a result of the study, it was reported that these 
compounds showing antiproliferative effect are promising 
[13]. Some researchers who have studied the effect of ben-
zofurane structures containing bromine for a long time 
against cancer have found that these structures exhibit 
quite important effects against leukemia [14]. For these 
reasons, the synthesis of methacrylamides containing 
benzofuran groups and further investigation of such poly-
mers will lead to promising results. But when synthesizing 
a copolymer, it is important to have information about the 
reactivity ratios of the monomer of the copolymer to be 
synthesized [15-17]. These reactivity ratio values provide 
an insight into the design and composition of the prod-
uct.. As a result, copolymer composition is critical for 
some applications [18, 19]. In this context, the knowledge 
of monomer reactivity ratios in methacrylate copolymers 
containing benzofuran structure synthesized in our study 
and having many properties enables the use of these copo-
lymers in various application areas. For example, this use 
could be the production of disposable materials such as 
gloves, vials and pipettes made from styrene-based poly-
mers containing benzofuran in their structure. In order 
to determine monomer reactivity ratios, which is such 
important information, linear and nonlinear mathemati-
cal methods as well as some experimental kinetic data are 
frequently preferred [20-23]. 

One of the important properties of polymers is their 
thermal behavior. The fundamental thermal data are signif-
icant in terms of the use of polymer materials. The change in 
mass of a polymer as a function of time and temperature is 
determined by thermogravimetric analysis [24]. From this 
analysis it is possible to obtain information about the ther-
mal stability of a polymer, the degree of thermal degradation 
reaction and the activation energy of thermal degradation 

[11]. These properties change drastically according to the 
groups found in the structure of the material [25]. The 
change in the thermal stability of methacrylate polymers 
due to the addition of side groups, especially heterocyclic 
groups, has attracted the interest of researchers [26]. The 
thermal behavior of some methacrylate copolymers con-
taining benzofuran has also been studied and reported to 
exhibit high thermal stability. For example, Demirelli et al. 
examined methacrylate polymers with different benzofuran 
concentration and reported that thermal stability increased 
with increasing benzofuran units in the structure. In addi-
tion, they reported that the composites of these structures 
made with graphite oxide have semiconducting properties 
at all temperatures studied [27].

Styrene is one of the most important monomers for 
copolymers and composites, which are used today in 
an increasingly wide range of applications. Therefore, 
polystyrene is found in many commonly used products. 
Polystyrene is used in the medical field, especially in the 
production of implants and devices [28, 29]. It is also 
widely used in disposable materials such as gloves and 
vials. Polystyrene is also preferred in the production of 
laboratory equipment such as petri dishes, pipettes and 
sterilization trays [30, 31]. In addition to its low cost and 
thermal stability, its durability, lightness, and ease of pro-
cessing make polystyrene a suitable candidate for these 
uses. Due to the recent increasing demand for single-use 
medical materials, the need for such medical polymers 
continues to increase significantly. In many studies in the 
literature, poly(styrene-block-isobutylene-block-styrene) 
block copolymers have been frequently used for biomedi-
cal applications due to their processability, biocompatibil-
ity and stability. [32,33]. In addition, the thermal stability, 
biological, optical and electrical properties of new poly-
mers containing styrene units in their structure have been 
frequently studied in the literature [34-38].

The benzofuran ring is a fundamental structure found 
in many medically important compounds. But a vast major-
ity of studies on benzofurans are aimed at synthesising new 
benzofuran derivatives with small molecular weight by 
various organic synthesis reactions and investigating their 
biological properties. When the literatures are examined, 
studies on the synthesis and properties of benzofuran con-
taining polymers are quite limited [27, 39-41]. Due to the 
properties mentioned above, P(NBMM-co-St) copolymers 
can be used in various manufacturing and medical fields, 
especially in biomedical applications. Therefore, in our 
study, the monomer reactivity ratios of P(NBMM-co-St) 
copolymers with functional and characteristic properties to 
be used for the desired purpose were determined. At the 
same time, the thermal behaviors of these polymers, which 
reveal their properties such as processability and resistance 
to high temperatures, were investigated and their thermal 
degradation kinetics were studied.
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EXPERIMENTAL PROCEDURES

Materials and Characterization
The monomer namely, N-[2-(4-brombenzoyl)-

benzofuran-3-yl]-2-methacrylamide (NBBM) was synthe-
sized through a method from the literature [42]. Methanol, 
ethanol, triethylamine, acetone and methacryloyl chloride 
(Sigma-Aldrich) were commercial products with analyti-
cal grade and were used as received. The comonomer sty-
rene (Sigma-Aldrich) was cleaned up from inhibitor first 
by being washed with aq. NaOH (5%). Later, it was dried 
over MgSO4. Azobisisobutyronitrile (AIBN) (Merck) was 
purified by recrystallisation using the chloroform-metha-
nol mixture.

A Perkin Elmer Spectrum FT-IR spectrometer was used 
for the FT-IR measurements. A 600 MHz Avance III HD 
600 NMR spectrometer with CDCl3 as the solvent was used 
for the NMR measurements. The molecular weights (Mn 
and Mw) of the polymers were determined using an Agilent 
1100 series gel permeation chromatograph equipped with 
an RI detector and calibrated to poly(methyl methacrylate) 

standards. Thermal data were obtained using a Perkin 
Elmer DSC-8000 instrument at a heating rate of 20 oC min-1 
in an N2 atmosphere and a Perkin Elmer SII 7300 model 
TGA/DTA device at a heating rate of 10 oC min-1 in an N2 
atmosphere.

Synthesis of NBBM-ST Copolymers
Conventional free radical polymerization method 

was applied for the synthesis of copolymers. The typical 
example for synthesizing copolymers here is as the fol-
lowing. The N-[2-(4-brombenzoyl)-benzofuran-3-yl]-2-
methacrylamide was placed in a polymerization tube with a 
commercial monomer styrene (St) at certain ratios by mole. 
The monomers were dissolved in the 1,4-Dioxane: tetra-
hydrofuran (3:2) solvent which is 3 times the total weight 
taken for polymerization. As initiator, AIBN in the ratio of 
1% by weight of the total amount of monomers was added. 
The tube was flushed with nitrogen gas for 10 minutes in 
order to remove the air from the polymerization tube and 
was then allowed to polymerize in an oil bath at a tempera-
ture of 70 oC. The polymerization reaction was stopped 
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Figure 1. Synthesis of P(NBBM-co-St) copolymers.
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after 12 hours. The mixture was precipitated dropwise in 
ethyl alcohol, filtered and dried under vacuum at 40 oC for 
24 hours. The solid product (polymer) was then dissolved 
in dichloromethane, precipitated again in ethyl alcohol and 
dried. This purification process was repeated 3 times. Using 
NBBM and St monomers, a series of copolymers composed 
of five different compositions by mole was also synthesized 
by this method. Figure 1 shows the scheme for copolymer 
synthesis.

RESULTS AND DISCUSSION

Characterization of Copolymers
The copolymerization of the NBBM monomer with sty-

rene has been carried out using the free radical polymeriza-
tion method. The percentage compositions of NBBM and St 
copolymers were experimentally calculated from 1H-NMR 
spectra and NBBM: St mole ratios are found as; Co-1: 
18/82, Co-2: 30/70, Co-3: 43/47, Co-4: 59/41, Co-5: 73/27, 
respectively. FT-IR and 1H-NMR measurements were used 
to identify the structures of the copolymers. Figure 2 shows 
the FT-IR spectra of the copolymers. The peaks related to 
amide carbonyl (NHC═O) at 1700 cm-1, ketone carbonyl 
(C═O) [43] at 1612 cm-1 and mono-substituted benzene 
derived from St monomer at 700 cm-1 have been clearly 
seen from the FT-IR spectra of copolymers. Additionally, 
the direct proportional variation of the relative intensity of 
the peak at 700 cm-1, depending on the molar ratio of the St 
monomer used in the copolymers, demonstrates clearly the 
effectuation of the synthesis of the copolymers at different 
monomer ratios.

In the 1H-NMR spectra of NBBM-St copolymers (Fig. 
3), the disappearance of the signals of monomeric vinylic 
protons at 5.68-6.17 ppm demonstrates clearly the comple-
tion of copolymerization reaction. In addition, the presence 

of aromatic protons of the styrene monomer with the other 
aromatic protons in the structure at 6.23-8.40 ppm, ali-
phatic protons at 0.43-2.61 ppm and NH proton at 10.58 
ppm in the spectrum supported the expected copolymer 
structures. Both FT-IR and 1H-NMR results were found to 
agree with the predicted chemical structure of the copoly-
mers [41, 43]. 

Determination of the Monomer Reactivity Ratios
The 1H-NMR spectra were used to calculate the per-

centage compositions of the NBBM-St copolymers. The 
NH protons at 10.58 ppm in the PNBBM units and the aro-
matic protons at 6.23-8.40 ppm in the NBBM-St units were 
taken as a basis for the calculation of composition percent-
ages (Table 1). 

Copolymer compositions were calculated from the fol-
lowing Equations.

(1)

If it is to simplify;

(2)

Where m1 and m2 are the mole fractions of NBBM and 
St, respectively in the copolymer. Since the total mole frac-
tion is always equal to 1, m2=1-m1 if m1+m2=1. The calcu-
lation method of the copolymer compositions for the Co-1 
polymer sample is as follows.

(3)

It is calculated as % m1 = 0.18 and % m2 = 1 - m1 = 0.82
For the other samples, compositions were determined 

by similar calculations using the peak heights obtained 

Figure 2. FT-IR spectra of P(NBBM-co-St) copolymers.
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Table 1. Monomer compositions in feed and in the copolymer

Sample Feed composition  (mole fraction) Copolymer composition
(mole fraction)

NBBM (M1) St (M2) Conversion (%) IAra INHb NBBM (m1) St (m2)
Co-1 0.20 0.80 11 31.47 1.00 0.18 0.82
Co-2 0.35 0.65 9 19.66 1.00 0.30 0.70
Co-3 0.50 0.50 13 14.60 1.00 0.43 0.57
Co-4 0.65 0.35 10 11.52 1.00 0.59 0.41
Co-5 0.80 0.20 15 9.83 1.00 0.73 0.27
 aIntegral values of aromatic CH protons
 bIntegral values of NH protons

Figure 3. 1H-NMR spectra of P(NBBM-co-St) copolymers.
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through the 1H-NMR spectra. The copolymer conversions 
were calculated gravimetrically [44].

The parameters r1 and r2, known as monomer reactiv-
ity ratios, represent the reactivity ratio of NBBM and St, 
respectively. Both the feed composition and the reactivity 
ratio of the monomers affect the composition of the copo-
lymers. Therefore, knowing these ratios is important for 
synthesizing copolymers with desired properties.

 To estimate the monomer reactivity ratios of the syn-
thesized copolymers were used the Kelen Tüdös (K-T) [45] 
and Fineman-Ross (F-R) [46] Equations 4-5. The Notations 
in the equations were described in Table 2.

	 	 (4) 

	 	 (5) 

Graphs of η versus ξ and G versus H were plotted for 
Kelen-Tüdös and Finemann-Ross methods, respectively 
(Fig. 4,5). From the straight line slope and intercept, mono-
mer reactivity ratios of NBBM and St were determined and 
presented in Table 2. 

When the calculated r1 and r2 values ​​are examined; the 
r1 value of NBBM is smaller than the r2 value of St mono-
mer, indicating that the NBMM monomer has a lower reac-
tivity than the St monomer and the polymer chain has a 
higher tendency to add St monomer. That is, there are more 
St monomers and fewer NBBM monomers in the copoly-
mer chain. The reason of this can probably be interpreted 
as that the NBBM monomer with large-volume groups 
have sterically difficulty in adding its own monomer and so 
tends to add the other monomer, styrene.

Gel Permeation Chromatography (GPC)
The GPC chromatograms of NBBM-St copolymers are 

monodispers (Fig. 6). The average molecular weights (Mn 
and Mw) and polydispersities (PI) of the copolymers, given 
in Table 3, were determined from the GPC measurements. 
It is known that PI value for natural polymers is 1, and this 
value is close to 1 for living and controlled polymers. The 
copolymers we synthesized were synthetic and their PI val-
ues ​​ranged from 1.51 to 1.26 in GPC measurements. 

Thermal Properties
The glass transition temperatures of the NBBM-St 

copolymers have been determined from the DSC curves 

Figure 4. Kelen-Tüdõs (K-T) plot for P(NBBM-co-St). Figure 5. Finemann-Ross (F-R) plot for P(NBBM-co-St).

Table 2. K-T and F-R parameters for P(NBBM-co-St)

Sample M1 M2 m1 m2 F=M1/M2 f=m1/m2 G= F(f-1)/f H= F2/f

Co-1 20 80 18 82 0.25 0.219 -0.888 0.284 -0.561 0.179
Co-2 35 65 30 70 0.539 0.428 -0.717 0.676 -0.363 0.342
Co-3 50 50 43 57 1 0.754 -0.325 1.325 -0.124 0.505
Co-4 65 35 59 41 1.858 1.439  0.566 2.396 0.153 0.648
Co-5 80 20 73 27 4 2.703 2.520 5.917 0.349 0.820
α=√Hmax.Hmin=0.817
M1; Mole fraction of NBBM in the feed
M2; Mole fraction of St in the feed
m1; Mole fraction of NBBM in the copolymer 
m2; Mole fraction of St in the copolymer
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(Fig. 7). The curves were recorded by heating the samples 
to 300 oC in a nitrogen atmosphere at a heating rate of 20 
oC/min. Table 4 shows the glass transition temperatures 
(Tg) for the NBBM-St copolymers. The Tg value of styrene 
homopolymer is 105 oC [47] and that of P(NBBM) is 211 
oC. The Tg values of the copolymers have been found in the 
range of the Tg values of the homopolymers. According to 
these results, an increase in Tg values from 144 oC to 184 oC 
was observed as the molar fraction of NBBM monomer in 
the copolymer increased. The cyclic benzofuran structure 

Table 3. Molecular weights and polydispersity index values 
of copolymers

Sample Mn Mw HI
Co-1 8 677 13 144 1.51
Co-2 8 396 12 594 1.49
Co-3 6 695 9 979 1.49
Co-4 6 695 9 618 1.47
Co-5 6 515 4 852 1.26

Figure 6. GPC curves of synthesized copolymers.

Figure 7. DSC curves of P(NBBM) and its copolymers.
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resulting from the NBBM units in the polymer chain gives 
rigidity to the polymer chain. This restricts the mobility 
and flexibility of the chain, leading to an increase in the Tg 
value [47]. 

The TGA curves of NBBM-St copolymers in a nitro-
gen atmosphere were recorded from room temperature 
up to 500 oC at a heating rate of 10 oC/min (Fig. 8). The 
mass losses of these curves at different temperatures are 
given in Table 5. When the TGA curves of the copolymers 
are examined, it was seen that the most heat-resistant 
polymer is polystyrene P(St), and the least heat-resistant 
polymer is the P(NBBM). The temperature at which 50% 
weight loss occurs in polymeric materials can be taken as 
a measure to determine the thermal stability of materi-
als [48]. While these temperatures were determined as 
423 oC for P(St) and 377 oC for P(NBBM), these values 
were found between their homopolymers for the copoly-
mers studied. The thermal stability of copolymers with St 
units in their structure was seen to be higher than that 
of P(NBBM). This is due to the fact that P(St) is more 

Table 4. Tg values of P(NBBM) and its copolymers

Sample NBMM / St (mol) Tg (oC)
P(St) 0 / 100 105
Co-1 18 / 82 144
Co-2 30 / 70 156
Co-3 43 / 57 162
Co-4 59 / 41 178
Co-5 73 / 27 184
P(NBBM) 100 / 0 211

Figure 8. TGA and DTG curves of P(NBBM) and its copolymers.

 Table 5. Decomposition temperatures of the copolymers at various compositions

Sample m1
a Tint. b (oC) Tmax c (oC) %10 d %30 d %50 d %70 d %90 d

PNBBM 1.00 279 347 318 347 377 453 -
PSt 1.00 323 423 378 406 419 428 440
Co-1 0.18 301 385 347 374 394 416 -
Co-2 0.30 305 391 340 367 392 420 -
Co-3 0.43 308 349 332 360 388 427 -
Co-4 0.59 310 357 337 364 393 434 -
Co-5 0.73 293 355 338 364 395 458 -
am1 Weight fraction of NBBM in the copolymer 
b: Initial decomposition temperature
cTemperature corresponding to maximal mass loss
dTemperatures at which the weight loss was respectively 10%, 30%, 50%, 70% and 90%
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thermally stable. The initial degradation temperatures 
(Tint.) of P(St), P(NBBM) homopolymers were 323 oC and 
279 oC, respectively, and Tint. values of P(NBBM-co-St) 
copolymer systems were observed in the range of these 
two values. The maximum degradation temperatures 
(Tmax ) of the polymer were obtained from derivative of 
mass loss (DTG) curves were given in Figure 8. Thermal 
decomposition of both homopolymers and copolymers 
were occurred in one step. Considering the data obtained 
from the TGA curves of the copolymers, St units in the 
copolymer systems studied compared to P(NBBM) caused 
an increase in Tmax. values.

Thermal Decomposition Kinetics
Thermogravimetric analysis (TGA) is based on mass 

loss measurement by heating the sample in an environment 
with inert gas flow at a constant heating rate. This method 
has an important role in elucidating the mechanism of 
physical and chemical events that occur during the degra-
dation of polymers under the influence of heat. The rate of 
an isothermal decomposition reaction in the solid state can 
be described by the following equation:

	 	
(6)

In equation 6; α is the degree of conversion, T is the 
absolute temperature in Kelvin (K), A is the preliminary 
exponential factor (min-1), E is the activation energy, (kj 
mol-1), R is the gas constant, (8.314 Jmol-1K-1 ) and f(α) is a 
function that depends on the reaction mechanism.

The solid state reaction mechanism in non-isothermal 
TG experiments was determined from equation 7, which 
was obtained by rearranging by integrating both sides. In 

this equation, g(α) is the integral function of the trans-
formation, αp is the degree of transformation at the peak 
temperature, and Tp depends on the peak temperature. The 
differential expression of g(a) for different solid state mech-
anisms is shown in Table 6 [49-51].

 	 	 (7)

In this study, thermal stability and activation energy 
measurements of decomposition have been performed 
at different heating rates (10, 15, 20 and 25 oC min-1) 
between room temperature and 500 oC under a nitrogen 
atmosphere. Kissinger [52], Flynn-Wall-Ozawa (FWO) 
[53, 54], Tang [55] methods were chosen, which are inte-
gral and isoconversional techniques that do not require 
any mechanism for activation energy calculation. In addi-
tion, calculations were made with the non-isoconversial 
method, the Van Krevelen method [56], and the type of 
degradation mechanism was determined. In the calcula-
tions carried out by these methods, the decomposition 
rate (α), temperature (T), and heating rate (β) do not 
change depending on the reaction model. The proposed 
reaction model remains the same throughout the reaction. 
The following are the final equations of the methods for 
calculating the activation energy:

​ 	 	
(8)

	 	  (9)

Table 6. Algebraic Expressions for g(α) for the most frequently used mechanisms of solid-state processes

Symbol g(α) Solid-state processes
Sigmoidal curves
A2 [-ln(1-α)]1/2 Nucleation and growth (Avrami eq. (1))
A3 [-ln(1-α)]1/3 Nucleation and growth (Avrami eq. (2))
A4 [-ln(1-α)]1/4 Nucleation and growth (Avrami eq. (3))
Deceleration curves
R1 α Phase boundary controlled reaction (One-dimensional movement)
R2 [1- (1-α) 1/2] Phase boundary controlled reaction (contraction area)
R3 [1- (1-α) 1/3] Phase boundary controlled reaction (contraction volume)
D1 α2 One-dimensional diffusion
D2 (1-α)ln(1-α)+α Two-dimensional diffusion
D3 [1- (1-α) 1/3]2 Three-dimensional diffusion (Jander equation)
D4 (1-2/3α)(1-α) 2/3 Three-dimensional diffusion (Ginstling-Brounshtein equation)
F1 -ln(1-α) Random nucleation with one nucleus on the individual particle
F2 1/(1-α) Random nucleation with two nuclei on the individual particle
F3 1/(1-α)2 Random nucleation with three nuclei on the individual particle
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(10)

	 	 (11)

 Where; R gas constant, A pre-exponential factor, g(α) 
differential conversion function, α degradation ratio (α=(-
wi-wt)/(wi-wf)), E activation energy.

To evaluate the thermal degradation kinetics of the 
studied copolymer systems, the copolymer containing 30% 
NBMM and 70% styrene (Co-2) was chosen as a reference 
copolymer. The activation energy for P(NBBM) and copo-
lymer (Co-2) was calculated from the slope of the ln(β/
T2max) versus 1000/Tmax plot according to the Kissinger 
method. The activation energy of P(NBBM) and Co-2 for 
this method were calculated as 146.66 and 158.52 kj mol-1, 
respectively (Fig. 8a,b). 

The activation energy was calculated from the 1000/T 
plot against log β at different % conversions using the 
Flynn-Wall-Ozawa method (Fig. 10a,b) and the results (Ea 
values) are given in Table 7. Using this method, the average 

activation energies for P(NBBM) and Co-2 were calculated 
as 150.7 and 160.89 kj mol-1, respectively.

With the Tang method, activation energies were calcu-
lated by using Equation 10 and drawing ln(β/T 1.894661) and 
1/T graphs (Fig. 11a,b) for different conversion percentages, 
and the results are given in Table 8. With this method, the 
average activation energy of P(NBBM) and Co-2 were cal-
culated as 142.33 and 151.326 kj mol-1, respectively. The 
activation energy values obtained by Tang are very close to 
those calculated by the other two methods. In many stud-
ies, the activation energy of polystyrene has been reported 
as approximately 200 kj mol-1 [57, 58]. Activation energy 
values are higher for copolymers than for homopolymers. 
In other words, the added styrene units increased the acti-
vation energy. There are studies in the literature confirming 
this result. 

These methods, which are in use by some authors for 
the control of models of the degradation mechanism, have 
also been used in our study [51, 59].

 Using the Van Krevelen Equation (11), the activation 
energy for each g(α) function listed in Table 8 was obtained 
from a constant heating rate in the range log[g(α)/T2] - logT.

Figure 9. Kissinger method applied to the experimental 
data at different heating rates (a:P(NBBM), b: P(NBBM-co-
St)).

Figure 10. Flynn–Wall–Ozawa method applied to the ex-
perimental data (3–60%),(a:P(NBBM), b: P(NBBM-co-St)).
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The activation energies and the correlation between 3% 
and 60% conversion at different heating rates (10, 15, 20 
and 25 oC/min) are shown in Tables 9 and 10. The activation 

energy values obtained are compatible with those computed 
by the Kissinger method. From these tables it can be seen 
that the P(NBBM) at an optimum heating rate of 10 oC/min 
occurs with the R3 mechanism (Ea: 143.29 kj mol-1 (phase 
boundary controlled reaction (contraction volume)). These 
values are close to the values obtained from FWO (150.7 kj 
mol-1) and Kissinger (146.66 kj mol-1) which are methods 
that do not depend on the mechanism. In addition to the 
calculation made for the Co-2 for termodegaraditon mech-
anism of copolymer, at an optimum heating rate of 10 oC/
minute takes place with the R3 mechanism (Ea: 151.46 kj 
mol-1). These values are close to the values obtained from 
FWO (160.89 kj mol-1) and Kissinger (158.52 kj mol-1) 
which are methods that do not depend on the mechanism. 
However, the strong correlation (0.976) is the correlation 
that corresponds to 10 oC/min for Co-2 at the preferred site 
with the value obtained by the Van Krevelen method.

CONCLUSION

Copolymer systems were successfully synthesized by 
free radical polymerization using N-[2-(4-brombenzoyl)-
benzofuran-3-yl]-2-methacrylamide and styrene mono-
mers in five different ratios. The structures of the 
copolymers were characterized by FT-IR and 1H-NMR 
spectroscopic methods and found to be in accordance with 
the expected structure. Experimentally, the percentage com-
positions of P(N-[2-(4-brombenzoyl)-benzofuran-3-yl]-2-
methacrylamide-co-Styrene) copolymers were calculated 
through 1H-NMR spectra. The glass transition temperatures 
of the copolymers were determined from DSC curves. The 
glass transition temperature of P(NBMM) is 211 oC, which is 
a high temperature. It was observed that the glass transition 

Table 7. Activation energy (Ea) values obtained with the Flynn– Wall–Ozawa method for P(NBBM) and P(NBBM-co-St)

P(NBBM) P(NBBM-co-St)

α (% ) E (kj mol-1) R2 E (kj mol-1) R2
3 86,374 0,9511 96,73339 0,9905
5 130,8707 0,9599 124,2943 0,9811
10 156,378 0,9857 150,5167 0,9858
15 155,9041 0,993 153,2686 0,9933
20 153,0691 0,9851 174,4194 0,9932
25 153,9337 0,9756 157,2261 0,9915
30 185,9177 0,9127 155,5799 0,9747
35 152,1462 0,97 166,2052 0,975
40 152,7781 0,9603 169,431 0,9663
45 149,6271 0,9406 178,2688 0,8887
50 158,5729 0,8941 210,1447 0,8924
55 171,4014 0,9202 196,1356 0,9138
60 152,2543 0,8303 159,3461 0,887
AVERAGE 150,7 160,89

Figure 11. Tang method applied to the experimental data 
(3–60%),( a:P(NBBM), b: P(NBBM-co-St)).
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temperature increased from 144 oC to 184 oC depending on 
the increase in the molar ratio of N-[2-(4-brombenzoyl)-
benzofuran-3-yl]-2-methacrylamide in the copolymer. 
This increase in the glass transition temperatures was due 
to the decrease in the free volume caused by the rather large 
benzofuran ring in the N-[2-(4-brombenzoyl)-benzofuran-
3-yl]-2-methacrylamide monomer. When the TGA curves 
were examined, it was determined that the thermal sta-
bilities of the copolymers of NBBM with St were higher 
than the thermal stability of P(NBBM). It is clear that the 

increase in the thermal stability of the copolymers is due to 
the styrene units in the polymer chain. Because polystyrene 
was found to have the highest thermal stability among the 
polymers studied. While the maximum degradation tem-
perature of Poly(N-[2-(4-brombenzoyl)-benzofuran-3-yl]-
2-methacrylamide) was 347 oC, the maximum degradation 
temperature of Polystyrene was 423 oC. A similar situation 
was seen in the maximum decomposition temperatures. It 
was determined that the maximum decomposition tem-
peratures increased in copolymers with St units compared 

Table 8. Activation energy (Ea) values obtained with the Tang method for P(NBBM) and P(NBBM-co-St)

P(NBBM) P(NBBM-co-St)

α (% ) Ea (kJ mol-1) R2 Ea (kJ mol-1) R2
3 97,141 0,9885 97,141 0,9885
5 121,3995926 0,9534 114,6583993 0,9534
10 146,6707654 0,9279 140,6435409 0,9279
15 146,106232 0,9389 143,250357 0,9389
20 143,1839413 0,9497 164,2543212 0,9497
25 143,9560238 0,9613 146,977938 0,9613
30 175,7857467 0,9677 145,2428279 0,9677
35 142,0133646 0,9748 155,7365081 0,9748
40 142,5280863 0,9804 158,8663478 0,9804
45 139,2405093 0,983 167,59171 0,983
50 147,9824754 0,9809 199,3218094 0,9809
55 160,5350422 0,9792 185,2001718 0,9792
60 141,1914704 0,9794 148,3643657 0,9794
AVERAGE 142,133 151,326

Table 9. Activation energy (Ea) values obtained for P(NBBM) with the Van Krevelen method for several solid-state pro-
cesses at heating rates of 10, 15, 20 and 25 oC min-1

Symbol 10 (oC min-1) 15 (oC min-1) 20 (oC min-1) 25 (oC min-1)

Ea (kJ mol-1)  R2 Ea (kJ mol-1)  R2 Ea (kJ mol-1)  R2 Ea (kJ mol-1)  R2
A2 75,57 0,9381 78,89 0,9442 78,87 0,9199 80,99 0,906
A3 50,41 0,9381 52,61 0,9442 52,58 0,9199 53,99 0,906
A4 37,81 0,9381 39,45 0,9441 39,43 0,9199 40,49 0,906
R1 128,62 0,9106 134,36 0,9183 133,68 0,8866 137,04 0,8704
R2 139,47 0,9251 145,61 0,932 145,22 0,904 149,00 0,8889
R3 143,29 0,9296 149,58 0,9363 149,28 0,9095 153,21 08948
D1 257,26 0,9106 268,71 0,9183 267,37 0,8866 274,1 0,8704
D2 271,14 0,92 283,13 0,9272 282,14 0,8979 289,39 0,8824
D3 286,58 0,9296 299,16 0,8948 298,58 0,96095 306,53 0,8948
D4 59,93 0,9623 62,21 0,9582 63,78 0,9822 66,08 0,9848
F1 151,24 0,9381 157,83 0,9442 157,75 0,9199 161,98 0,9606
F2 48,96 0,9588 50,80 0,9541 52,14 0,9801 54,08 0,9839
F3 97,93 0,9588 101,62 0,9541 104,29 0,94801 108,11 0,9839
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to P(NBBM). The reactivity values for the P(N-[2-(4-
brombenzoyl)-benzofuran-3-yl]-2-methacrylamide-co-
Styrene) system are calculated for Kelen-Tüdõs as; r1:0.62, 
r2: 1.09 and for Finemann-Ross as; r1:0.61, r2: 1.07. r2 value 
of styrene monomer being larger than r1 value of N-[2-(4-
brombenzoyl)-benzofuran-3-yl]-2-methacrylamide mono-
mer means that both monomers prefer styrene radicals. 
This indicates that there is a tendency towards random 
copolymerization where the styrene units in the copolymer 
are more [60, 61]. For the activation energy calculation, 
the well-known equivalent Kissinger, Flynn-Wall-Ozawa, 
Tang and Van Krevelen integral techniques were selected. 
In many studies, the activation energy of polystyrene has 
been reported to be approximately 200 kj mol-1 [57, 58]. 
The presence of styrene units in the copolymer structure 
synthesized in the study caused an increase in activation 
energy values compared to the homopolymer. This increase 
is an expected result when similar studies are examined in 
the literature. Calculation results for the analysis of the 
thermodegradation mechanism showed that the copoly-
mer follows the slowdown (R3) type solid state thermod-
egradation mechanism. The R3 mechanism calculated by 
Van Krevelen is compatible with the results obtained by 
Kissinger and Flynn-Wall-Ozawa methods at heating rates 
of 10 and 15 oC min-1. 
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