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epidemiology and mathematical modeling establishes a
comprehensive framework for examining the dissemina-
tion and regulation of infectious illnesses.

Mathematical models are important tools in epidemiol-
ogy because they give us information that we can’t get from
real-world data alone. For example, models can show how
different ways of stopping disease spread, such vaccination
or social separation, would work. They can also be used to
figure out important epidemiological numbers, including
the basic reproduction number [1].

The field of infectious disease modeling has evolved
significantly. This evolution has been greatly affected by
improvements in computer power and the availability of
data. For example, agent-based models show how people
in a population interact with each other, showing the dif-
ferences in behavior and contact patterns [2]. These mod-
els have been extremely useful in studying illnesses with
complex transmission dynamics, such as influenza and
HIV. Network-based models are likewise becoming more
common. These make it evident how people are grouped
together in space and time. This strategy helps us learn
more about how diseases spread across various contact net-
works, such as schools, workplaces, and homes [3].

These models use real-world data about how people
interact with each other to make disease transmission more
realistic. Then, they help make focused treatments easier
to plan. Recent research has shown how important math-
ematical models are for dealing with public health emer-
gencies. During the COVID-19 pandemic, for instance,
models were used to anticipate how the virus would spread,
help make policy decisions, and make sure that healthcare
resources were used in the best way possible [4]. These
models have enabled governments and health organiza-
tions to act quickly and effectively. Consequently, the epi-
demic’s impact has diminished.

Mathematical modeling of infectious illnesses is still a
field that is always changing and growing. Novel problems
are coming up, such as novel germs and the growing com-
plexity of global health systems. Consequently, the use of
models in directing public health interventions is growing
progressively essential. It is vital to continuously improving
modeling methods in order to overcome these difficulties.
Innovations are more likely to improve health outcomes
around the world when they are coupled with work from
other fields.

A major focus in this area is the development
and refinement of epidemic models such as SIR
(Susceptible-Infectious-Recovered), SEIR (Susceptible-
Exposed-Infectious-Recovered), and STIR (Susceptible-
Treated-Infectious-Recovered). Kermack and McKendrick
[5] were the first to come up with the SIR model. Researchers
that have worked on these models since then have looked
into how different types of immunity, latency periods, and
transient immunity affect the spread of disease. Differential
equations and other mathematical methods have been used
to explain how quickly each portion of the model changes.

This gives us useful knowledge about how public health
measures might work and how infectious illnesses usually
act in communities. This continuous research is essential
for formulating more effective strategies to manage and
prevent the dissemination of infectious illnesses [6].

Cilli et al. employed SI and SIS models to forecast the
dissemination of epidemic diseases, including TB, malaria,
HIV/AIDS, CCHE, and measles across various nations.
Their research demonstrates that these models accurately
predict the exact number of infected individuals, showing
notable precision and responsiveness to real data trends [7].
Ucar et al. focus on obtaining numerical approximate solu-
tions for the nonlinear modified Burgers’ equation (MBE)
using modified cubic B-spline differential quadrature
methods. The results show that this approach is an effective
numerical scheme for solving the MBE, supported by a sta-
bility analysis [8].

Karakog et al. present a finite element scheme for
numerically solving the Gilson-Pickering equation using
septic B-spline functions. They perform a Von-Neumann
stability analysis and demonstrate the reliability of their
method by examining the behaviour of single solitons, with
the results illustrated by tables and graphs showing the
effectiveness of the method [9]. Ozgiir and Demir explain
a mathematical framework to investigate the stability of a
neural field model involving two neuron populations with
small delays. The primary aim of this analysis is to provide
a unifying framework that illustrates the effects of small
delays in the context of the Routh-Hurwitz criterion [10].

Elsonbaty et al. present a discrete fractional SITRS
(Susceptible, Infectious, Treated, Recovered, Susceptible)
model to simulate the COVID-19 pandemic. This study
includes the potential for reinfection due to the loss of tem-
porary immunity. They also talked about the wrong idea
that the infection rates are the same for people who are nor-
mally susceptible and those who are more likely to get sick.
Because of what they did, they were able to fit their models
to the experimental data [11].

In this study, the SITRS model is investigated using
distributed order differential equations. This adjustment
makes it possible to better show how the disease changes
over time by showing how the rates of infection and recov-
ery fluctuate. The model may take into consideration how
complicated and diverse the development of a disease is
by using distributed order differential equations. So, it is a
more realistic and flexible way to model how infectious dis-
eases like COVID-19 spread and how to stop them.

There is a substantial amount of literature in this field.
Some of the studies conducted in this area can be sum-
marised as follows. Ayoub et al. found that the test-nega-
tive design was highly effective in predicting the protective
efficacy of prior COVID-19 infection against reinfection,
as shown by %97.0 and %85.5 protection estimates against
Alpha and Beta variants, respectively, in Qatar. The method
remains robust to potential misclassification and changing
infection levels in the population [12].
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Shah and colleagues developed a three-compartment
model to examine the reinfection of viral infections, includ-
ing COVID-19. The model includes a hybrid fractal-frac-
tional equation system that includes key theoretical aspects
such as stability analysis and sensitivity of the basic repro-
duction number. Lagrange interpolation polynomials were
used to run numerical simulations that tested the model by
comparing real data to simulated data [13].

Schuh et al. propose a mathematical model that encap-
sulates both the acute and chronic dynamics of post-acute
SARS-CoV-2 infection. The model also looks at reinfection
situations using attributes that are distinct to each variety.
This gives us information that can be used in both clinical
and public health settings [14]. Salman and Mohd employed
a reaction-diffusion system to simulate the transmission
dynamics of COVID-19, incorporating both SEIRS-type
kinetics and the spatial distribution of individuals. The
research assessed the effects of reinfection, spatial dissemi-
nation, and control strategies utilizing optimal control the-
ory and numerical simulations. Thus, the effectiveness of
vaccination and treatment in preventing future outbreaks
was highlighted. [15].

The literature review shows that the reinfection situa-
tion is important in infectious diseases. However, it is note-
worthy that the studies focus on a single equation type in
the light of these studies. This type of equation is usually an
ordinary or fractional differential equation. In other words,
expressing the solutions in a single style is quite important
even in the numerical analysis section, but it also reveals
the necessity of using ordinary and fractional type equa-
tion systems in some models. For this reason, this study
was planned considering the deficiency in this section of
the literature. By adapting the equation system used to
distributed order differential equations, comments can be
made about both ordinary and fractional order differen-
tial equations. This is because distributed order differential
equations involve the analysis of other types of equations
due to the function they contain.

Although the first contact of infectious diseases is
important, reinfection is more important. This is because
if the immune system encounters the disease twice, it can
have a vital effect. It is therefore essential to be able to inter-
pret the reinfection situation quickly and accurately in dif-
ferent situations or conditions and to develop the ability to
act accordingly. The aim of our study is to link the dynam-
ics to a single equation system and to determine numerical
simulations under different equation systems or conditions
by changing several functions.

In similar studies or models addressing reinfection
dynamics, it is observed that different equation systems
are developed for each unique effect of the disease, which
can lead to delays in interpreting results. These delays can
result in wasted time and, ultimately, deaths due to the lack
of available resources. The first barrier that distributed
order differential equations aim to overcome is precisely
this issue. By employing a density function, the equations

are designed to adapt to various external influences without
needing to change the system itself. In the current model,
which incorporates reinfected individuals, this approach
has been tested for the first time, and the comparison of
results has demonstrated its suitability.

Distributed order differential equations were intro-
duced and developed by Caputo [16]. They include a
system of differential equations that integrates Caputo,
Riemann-Liouville, and Griinwald-Letnikov fractional
derivatives. The most important feature is the density
function it contains. This function allows the system to
be transformed into either an ordinary or a fractional dif-
ferential equation. This ability allows a better understand-
ing of different systems of equations and the behaviour of
the system under different external influences. Numerous
studies have applied distributed order differential equa-
tions to diverse areas, including the modeling of dielectric
induction and diffusion [17], numerical solutions [18,19],
reaction diffusion equations [20], and the SVIR model
analysis [21,22].

The numerical analysis in this study is performed using
the Nonstandard Finite Difference (NSFD) method. This
approach helps get rid of instabilities by letting you choose
the denominator function. Introduced by Mickens, the
NSFD method has been shown to be applicable to various
differential equation systems [23,24], with further details
available in relevant literature [25-30].

Computational advances have made it possible to
achieve faster results while minimizing errors. This model’s
modern method is better at getting rid of instability than
other methods, which makes it easier to spot associated
developments. As a result, the temporal gaps that could
cause problems in systems have been cut down, making
forecasts more reliable and accurate.

This work is new since it uses distributed order differ-
ential equations to create a new version of the SITRS model.
This advancement facilitates a more thorough and precise
representation of disease dynamics, including the complex-
ities of re-infection and the variability of immunity.

This study significantly impacts infectious disease mod-
eling by the application of modern mathematical method-
ologies. The better model makes it easier to forecast how
diseases will spread. It also makes public health programs
work better. It also highlights its relevance and specificity
in advancing our understanding of infectious diseases. The
results address gaps in current research. That is, it high-
lights the importance of developing epidemiological mod-
els to improve public health outcomes.

There are five sections to this study. The second section
provides the necessary background for the reformulation
and discretization of the system. The third section presents
the discretization of the adapted distributed order system.
The fourth section carries out a numerical investigation
using equilibrium points under different conditions. The
fifth section presents the results and discussion.
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DEFINITIONS AND FUNDAMENTALS

Caputos development of distributed order differen-
tial equations represents a significant advance in the field
of fractional calculus [16]. This method builds on classi-
cal fractional differential equations by letting differential
equations be spread out over an interval. Distributed order
differential equations are mathematical equations that use
several fractional derivatives instead of whole values. This
makes it easier to model complicated systems, including
how infectious illnesses spread. These explanations are
meant to help people understand the ideas better and how
they apply to actual life. In this situation, it also has a den-
sity function. A density function is a math tool that shows
how a certain amount is spread out throughout a popu-
lation or area. In infectious disease models, it shows how
people with different traits (such immunity or susceptibil-
ity) are distributed out over the community, which helps us
understand how diseases spread in more detail. This flex-
ibility makes it possible to simulate complicated systems
more accurately, because distinct processes may change at
different speeds.

One advantage of Caputo’ distributed order differential
equations is that they can handle real-world circumstances
better. Applications span a wide range of fields, including
physics, engineering, and biology. These equations pro-
vide a more detailed understanding of processes related to
memory and hereditary influences.

Definition 2.1: The Caputo derivative of order « for a
function f(t) is defined as:

_ 1t e
Daf(t) - I'(n-a) fa (t-7)@—n+1 dT’ (1)

where,ne N, n-1<a<n,T isthe Gamma function and
f(n) is the n - th derivative of f(t) [31]. The Caputo deriv-
ative, denoted as D°f(t), is commonly used in fractional
calculus to describe processes that involve memory or
non-local behavior.

Definition 2.2: The Riemann-Liouville fractional
derivative of order « for a function f(t) is defined as:

Df(t) =

1 a" .t f(O
— dt 2)

[(n-a) dt"7a (t-t)@-n+1 ="’

where, n e N, n -1 <a <n, I is the Gamma function
[31]. The Riemann-Liouville derivative, denoted as D*f(t),
is a conventional technique in fractional calculus, mostly
utilized to model systems with memory; nonetheless, it
encounters difficulties in handling beginning conditions
due to its requirement for non-integer initial values.

Definition 2.3: The Griinwald-Letnikov fractional
derivative is defined as:

DY) = lim e B (D (f e — kb, (3)

where £ is a small step size and (Z) is the generalized bino-
mial coefficient [31]. The Griinwald-Letnikov derivative,

denoted as D°f(t), provides a discrete approximation of
fractional derivatives, making it useful for numerical
implementations and simulations of systems with frac-
tional dynamics.

Definition 2.4: The Distributed order derivative of a
function f{f) can be expressed as:

D:C(Ol)(f(t)’ k((Z), a) = fol k(a) Daf(t) da, (4)

where k(«) is a density function that defines the distri-
bution of the orders, D*f(¢) is a fractional derivative of order
a. The distributed order derivative, DX9(f(1), k(«), ), intro-
duces a more generalized concept. Instead of applying a
single fractional order, it incorporates a range of fractional
derivatives, weighted by a function k(«), and integrates
over all possible orders. This allows the model to capture a
broader spectrum of dynamic behaviors without needing to
adjust the system for different conditions. D*f(t) fractional
derivative it can be chosen as Caputo, Riemann-Liouville or
Griinwald-Letnikov fractional derivative [16,32].

In distributed order differential equations, the Caputo
derivative is better, especially for situations with beginning
conditions. It makes it easier to understand how to deal with
these situationsCaputo employs integer order derivatives to
characterize initial conditions, distinguishing it from the
Riemann-Liouville derivative. These are more familiar and
make more sense in a physical way. This makes it easier to
add real-world beginning data to the model. Caputo’s tech-
nique makes sure that beginning conditions fit together
naturally in dispersed order systems with more than one
fractional order. This avoids complications in interpre-
tation. As a result, it is more suitable for applications like
infectious disease dynamics, where initial states are critical
for accurate simulations.

The NSFD method represents a significant innova-
tion in the numerical analysis for differential equations
[23]. This method was developed to overcome the stability
problems found in traditional finite difference approaches.
The approach uses carefully chosen denominator functions
to make the numbers more stable. The main advantage of
the NSFD method is its ability to increase the stability and
accuracy in numerical solutions of differential equations.
This benefit is especially helpful when working with difficult
issues or equations that oscillate quickly. It can be used in
many fields of science and engineering, including as fluid
dynamics, reaction-diffusion systems, and epidemiological
modeling. It makes it easier to solve complex dynamic sys-
tems. People often utilize numerical approaches like Runge-
Kutta, Adams, and Theta to study how populations interact
with each other. But the magnitude of the time step has a
big effect on how accurate and stable they are. In contrast,
the NSFD method guarantees positive discrete solutions for
positive initial conditions. On the other hand, the structured
NSED scheme may introduce a slight delay in travelling wave
propagation when large step sizes are used [33,34].
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Definition 2.5: The general form of a nonstandard finite
difference scheme for a differential equation Z—}t] =f(y,t)

can be written as:

Yn+1=¥n _

o f(yn: n) (5)
where y, is the approximation of y(t) at the discrete time step
t, and h is the time step size. ¢(h) is designed to fit the behav-
ior of a continuous system. It is usually a function chosen to
ensure that certain properties are preserved. In the literature
it is referred to as the denominator function [23].

THE DISCRETIZATION OF ADAPTED ENDEMIC
MODEL

In this section, we present a new SITRS model that
includes two groups of susceptible individuals S,(¢) and
S,(t), an infected individual I(f), a treatment individual
T(t), and a recovered individual R(t). The improved model
builds on the traditional SITR model by allowing for the
possibility that recovered individuals may lose temporary
immunity and become re-susceptible to the virus. In addi-
tion, the original model assumes that infection rates are the
same for both the general susceptible population and for
elderly or seriously ill individuals. This model does not have
this limitation [11]. In addition, the system is transformed
into a distributed order model with different arrangement.
The updated SITRS model is presented below:

DE®S, = G — b I(1)S, (1) — dS, (t) + IR(D),

DS, = G — b I()S,(t) — dS,(t) + IR(D),

DF1 = (=t —d + c)I() + IO (S, (V) +S,()) = T®,  (6)

DEOT = yI(t) — wT(D),

DEWR = 11(t) — (d + 1) R(Y).

In this definition, the D*f(t) derivative is chosen as a
Caputo type fractional derivative. The reason for this selec-
tion is to choose the most suitable fractional derivative that
can be used with the initial data we have.

The parameters in this system are given in Table 1, where
G is the natural growth rate of susceptible individuals; b is
the infection rate of contact between susceptible and infected
individuals; [ is the rate of loss of immunity of recovered indi-
viduals; d is the mortality rate; ¢ is the rate of dry cough, cold
and fever of infected individuals; y is the cure rate of infected

individuals; 7 is the recovery rate of treated individuals; and w
is the treatment control parameter of treated individuals. The
constants listed in Table 1, are derived from empirical studies
where these parameters have been measured and analyzed in
real world settings. These values have been chosen from exist-
ing literature that explicitly deals with these variables to make
sure that the comparisons are correct and useful. By basing
these constants on real-world data, we make the model stron-
ger and more believable, which makes it more like how diseases
really work. If the defined discretization is applied to the system
of equations, the discrete state of the system becomes as follows:

n+1

k(a
Z (’)Z WSk, =G = b1,k — dSk + IR,

j=1
n+1

Z)Z

a
S21i =G =D,k —dSk, + IR,

k(a)n+1
Z 1D = (T d 4 Ol bl (S35 T, (7)

j=1 i=0

n+1

a;) a;
Z Z Tt = Yl = Wi,

j=1

n+1

k(a
Z (})Z aan+1 i=tl, —(d+DRyiq,

j=1

where v, j = 1,23,4,5, 0<a; <1, uy) =
denominator functions are chosen as:

(@y ()™, and

dh _ ,dh

— 1— e(r+d—c)h
— 2 (N=——7—,ps(D)=

T+d—c '’

1—e(d+Dh

(M=
8
@,(h) = —, (Ps(h)
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By expanding the terms on the left and rearranging the
system of equations,

A k( ) n+1
a; aj a
Z AI (u Snaa Z ¥ /S}L*'i—i) =G —b ,Sp41 — dSps1 + Ry,

i=1

n+1
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n+1
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G —b 1,52, —dS2,, +IR,,

n+1

u T +Zu Ta- l) Vi =Wy,

k(a) n+1
- <u Rn+1+2u Rpr l)—ﬂ — @+ DRy

Table 1. Description of the constants for the distributed order model

Symbol Description Symbol Description

G Natural grow rate c Dry cough, cold and fever rate
b Infection rate y Treatment rate

) Loss of temporary immunity rate w Treatment control parameter
d Death rate T Recovering rate
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The last expressions can be simpliﬁed as follows
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Thus, the final state of the discretized system is found
as Equation 12.

NUMERICAL INVESTIGATION OF DISCRETIZED
SYSTEM

In this section, equilibrium point analysis and numer-
ical simulations have been performed. Constant values are
important for analysis and simulations. The values have
been chosen as shown in Table 2 and evaluations are made
accordingly [11].

Equilibrium point analysis is very important for this
model since it helps us understand how the system will
behave throughout time. We can find out if these points are
stable by finding and studying equilibrium points. This tells
us if the disease will stay the same, get worse, or die out in
a certain group of people. This method allows researchers
and public health officials to predict what might happen if
an infectious disease emerges and identify the best ways to
stop it. For example, an unstable balance point indicates
that a small change, such as an increase in infection rates,
could cause infections to return. A stable point means the
disease is likely to remain under control.

The equilibrium points chosen for this model are meant to
show how things work in the actual world, especially during
epidemics of infectious diseases like COVID-19. One of the
equilibrium points, for instance, would be when the popula-
tion reaches herd immunity, which is important for figuring
out what has to happen to stop the virus from spreading.

The identified equilibrium points can also help identify
constraints for intervention strategies. If the study indicates
that a particular region has a low incidence of infection, this
information can help public health officials establish regu-
lations to maintain low transmission levels. By comparing
equilibrium points with existing data from COVID-19 out-
breaks, such as hospitalization rates and infection trends,
we can improve our understanding of the mechanisms of
the disease. This interpretation strengthens the theoretical
framework of the model and highlights its practical impor-
tance in addressing public health challenges.

Firstly, finding the equilibrium point is a crucial require-
ment in discretized systems. This requires the solution of
Equation 13.

Table 2. Initial conditions and the constants’ values for equilibrium point analysis

Initial Conditions Values Parameter Conditions 1 Values Parameter Conditions 2 Values
$,(0) 0.65 G 0.3 G 0.3
$,(0) 0.15 b 0.35 b 0.3
1(0) 0.75 1 0.3 1 0.3
T(0) 0.35 d 0.25 d 0.2
R(0) 0.1 ¢ 0.01 c 0.01

y 0.2 y 0.03

w 0.1 w 0.1

T 0.1 T 0.15
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If the system expressed by Equation 13 is solved using
the Maple software package, the equilibrium points can
be determined. However, due to the lengthy calculations
required for the second equilibrium point, it is expressed
later using parameters.

Eqg, =
@ a Kea ) n+1 a;’ ka
K1+d+§jj= P u; K2+d+2

Eq, = (€421, €G22, €423, €G24, €q25) (15)

Another requirement for the analysis of equilibrium
points is the Jacobian matrix. Therefore, the Jacobian matrix
corresponding to the discretized Equation 12 is determined
as follows:
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In order to perform a stability analysis using the
Jacobian matrix and eigenvalues, it is necessary to use some
criteria. The following definition is given.

Definition 4.1: According to the Matignon criterion,
let J denote the Jacobian matrix obtained by the classical
method, and let A represent the set of eigenvalues of this
Jacobian matrix. The equilibrium point is considered to be
locally asymptotically stable if the following condition is
satisfied [35]:

larg(20)| > =

The choice of the Matignon criterion for stability anal-
ysis is particularly suitable for this model due to the inclu-
sion of density functions in distributed order differential
equations, which exhibit fractional-order behavior. This
criterion effectively addresses the complexities associated
with fractional derivatives, enhancing the understanding of
stability.

The Matignon criterion is crucial for determining the
stability of fractional differential equations. This makes it
easier to see how stable solutions are over time, even while
fractional derivatives don’t behave like they should. On the
other hand, the Matignon criterion can handle the prob-
lems that come up in fractional systems, where memory
effects are quite important.

This method is very important for making sure that
systems with distributed order behavior work correctly.
By looking at stability areas, it helps researchers uncover
important things that determine how well a system works.
Employing the Matignon criterion, researchers can ascer-
tain the long-term outcomes and the stability of various
equilibrium points. This ultimately leads to enhanced strat-
egies for disease management and treatment.

Analysis of stability for the first initial condition
According to the first initial conditions, the equilibrium
points E; and E, are as follows:

E, =(0.2383316093, 0.2383316093, 0, 0, 0),
E, =(3.821405429, 3.821405429, -6.053820498,
-1.091269786, 0.3887500955),

where k() = I'(2 - «). Substituting the first equilibrium
point into the Jacobian matrix yields the following charac-
teristic equation:

P(1) = (0.008008005674 + A)* (0.0009463035997 +
0.1465278380 A + 0.2360336746 A> + 1)

After solving the characteristic equations, it is evident
that

A, =-0.008008005674, A, = -0.008008005674,
A5 =-0.006463069302, A, = -0.008570149079 +
0.38254883561, A5 = -0.008570149079 - 0.38254883564.

If the Matignon criterion is checked with the eigenval-
ues, the result is |arg(/\g)| =7 > an/2, for g = 1,2,3, with the
order satisfying 0 < a < 2 On the other hand, |arg(,)| =
larg(As)| = 0.321582457 > an/2 is satisfying o < 0.64316490.
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Our conclusion is the equilibrium point is E; locally
asymptotically stable if the order satisfies the condition
0 < a < 0.64316490. Equilibrium point E, represents the
disease-free equilibrium, which is significant because it
indicates a state where the disease does not persist in the
population. It is important to understand how stable is E,
since it can help us figure out if therapies are working to
stop the spread of the disease. If the eigenvalues meet the
stability criterion for E,, it means that the disease can be
gotten rid of in some situations. So, looking at this equilib-
rium point not only shows how important it is to the model,
but it also shows how useful it is for public health initiatives
that want to manage disease.

Similarly, by substituting the second equilibrium point
into the Jacobian matrix gives the characteristic equation:

P(1)=A> + 0.1680779743 A* + 37.44603747 A*
+1.926168284 A* - 0.2164013283 A - 0.002077367950

After solving the characteristic equations, it can be seen
that

A, =-0.05830984123 + 6.119020776i,
A, =-0.05830984123 - 6.1190207764i,
A5 =-0.009004270986, A, = -0.1025395746,
As = 0.06008555375.

If the Matignon criterion is checked on the basis of the
eigenvalues obtained |arg(1,)| = |arg(A,)| = 7 > an/2, with
the order satisfying 0 < « < 2, and |arg(),)| = |arg(A,)| =
0.3204179 7 > am/2 is satistying o < 6408358. On the other
hand, since it is |arg(As)| = 0 < an/2, it was seen that the
second eigenvalue does not satisfy Matignon criterion. So,
our conclusion is that E, is not locally asymptotically stable
under these conditions.

Stability analysis for the second condition
The equilibrium point E, according to the second con-
dition is

E, =(2.292233390, 2.292233390, -3.756823905,
-0.1015815158, -0.3738128142)

The characteristic equation is obtained by substitut-
ing the second equilibrium point under the second set of
conditions:

P(A) = >+ 0.003221828833 A*+ 0.00005278835547 A°
+0.8488407333 107 A%+ 0.4624925316 100 A
+0.8237844801 10

After solution of characteristic equations, it is seen that

A, =-0.0007656339572 + 0.006977097614i,
A, =-0.0007656339572 - 0.006977097614i,
A;=-0.0004046569892, A, = -0.0006299162648,
A5 =-0.0006559876645.

Using the eigenvalues obtained to check the Matignon
criterion, |arg(A;)| = |arg(A,)| = |arg(As)| = 7 > an/2, with
the order satisfying 0 < & < 2. On the other hand, |arg(},)| =
larg(A,)| = 0.3291035 7 > an/2 is satisfying « < 0.6582070.
E, is locally asymptotically stable if the order satisfies the
condition 0 < & < 0.6582070.

An examination of the numerical simulations after the
equilibrium point analysis has the following results.

Figure 1 shows that with the density function chosen
according to condition 1, the results are quite consistent
with the literature. At the same time, it has been observed
that there is an approach to the equilibrium point with this
shape. When examining the literature studies in this area,
it has been shown through simulation that the equilibrium
point of the ordinary order differential equation can be
reached by selecting the equilibrium point [11,36].

Figure 2 examines the behaviour of susceptible and
treated individuals in time-varying situations. As can be
seen here, the dynamic analysis of the system can be inter-
preted quickly by changing the density function. In other
words, the aim of the study is achieved. It can sometimes
take a long time to understand the effects of external influ-
ences on infectious diseases. Writing the density function
based on these external effects can minimize this effect.
Looking more closely at Figure 2, the rate of increase of sus-
ceptible and treated individuals can be expressed as a func-
tion of time and external effects. In this way it has been seen
that the density function can be more effective in determin-
ing the dynamics by choosing the threshold value of .

Figure 3 shows that the system works under chang-
ing conditions and analysis can be made according to the
equilibrium points. Here it is shown that changing external
effects can be slower in reaching the equilibrium point. It is
not necessary to set up another system of equations for this,
it is shown that only the change in the equilibrium point is
sufficient.

Figure 4 shows the effect of changing the density func-
tion for sensitive individuals. It has been found that the
analysis is faster if the external effects are defined within the
density function. As can be seen in the figure, it has been
observed that the variability increases with the change. In
other words, it has been shown that when the re-infection
rate increases, the effect of the disease can be observed
again with this system of equations.

In Figure 5, the variability between infected, treated and
recovered individuals is obtained by selecting the density
function. By changing the density function, for example,
the number of individuals recovering over time can be
determined. However, this system of equations can also
be used to determine the acceleration or deceleration of
the increase in newly infected individuals, as shown in the
other simulation in the figure. The same dynamics can be
determined for infected and treated individuals. The simu-
lations in this section were carried out using the MATLAB
package programme.
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Figure 2. Estimation of Susceptible and Treatment individuals in infectious diseases using the proposed distributed SITRS
model (Conditions 1 for k,(«) = I'(a - 0.7), k,(«) = I'(e + 0.7) and k;(a) = I'2a + 0.3)).
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Figure 4. Prediction of behavior of susceptible individuals with varying density function [Conditions 2 for w,(a) = I'(« -

0.2) and w,(a) =I'(a-0.8)] .

As stated in our paper, the ability to interpret the
behavior of the system largely depends on the variation
in the density function. From the figures, it is clear that
changes in the infection rare and recovery rates are appro-
priately reflected in our model equations. Moreover, the
use of distributed-order modeling is precisely intended

to account for such variations. In other words, changes
in these factors can be accommodated through adjust-
ments to the density function, which is dependent on the
conditions. This approach allows us to select the den-
sity function based on these rates and avoid unnecessary
time loss.
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Figure 5. Numerical analysis of Infected, Treatment and Recovered individuals with conditions 2 for k;(«) = I'(« - 0.5) and

ky(a) = I(ax).

For comparison with clinical data, the study by
Elsonbaty et. al. [11] was considered. Data from this study
and from COVID-NET were compared with our findings
[37]. The data in question were collected in 14 US states and
represent a population of approximately 32 million people
living in these states. Firstly, the comparisons showed that
the rate of increase of infection in the given area was sim-
ilar to Figure 1. Therefore, the modified SITRS model was
found to be an appropriate model. Again, when the same
data were examined, it was found that the graph shown in
Figure 4 best predicted the first or second wave phase of
the disease. Finally, it was found that the rate of increase of
infected individuals in Figure 5, expressed under the wave,
was again consistent with the COVID-NET data [11,37].

CONCLUSION

In this study, the mathematical Susceptible, Infected,
Treated, Recovered, Susceptible model, which is crucial for
determining the dynamics of endemic models, was exam-
ined. The modified version of the model is described using
distributed order differential equations. This approach
allows for greater flexibility in the interpretation of dif-
ferent types of equation systems through the use of den-
sity functions. Equilibrium points, which are critical for
the analysis of the disease, have been examined. Stability
analyses of the equilibrium points were carried out and
the results were found to be consistent with the data. This
shows that distributed order equations are suitable for
such systems. The results are compared with sources using

real world data. The results are highly consistent, indicat-
ing the potential for more rapid and effective monitoring
of infectious disease dynamics. Future work will focus on
improving density functions and analyzing their impact
across multiple scenarios, including changing population
dynamics and intervention strategies. This article fills a
research gap by examining the use of distributed order dif-
ferential equations in public health models. It demonstrates
the importance of having rapid methods for preventing and
managing diseases. Our goal is to use these equations more
frequently to facilitate modeling of infectious diseases and
other basic science domains. This will enable us to create
frameworks that are more robust and versatile.
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