
Sigma J Eng Nat Sci, Vol. 43, No. 6, pp. 1930−1942, December, 2025

Sigma Journal of Engineering and Natural Sciences
Web page info: https://sigma.yildiz.edu.tr

DOI: 10.14744/sigma.2025.1926

ABSTRACT

This study examines the challenges of reinfection in infectious disease modeling, emphasizing 
the risk that previously infected individuals may lose temporary immunity and become sus-
ceptible again. Accurate modeling of reinfection dynamics is vital for understanding disease 
spread and assessing intervention strategies. To address this, an adapted Susceptible, Infected, 
Treated, Recovered, Susceptible model is being developed. The adapted model differs from 
traditional models by incorporating distributed order differential equations, as opposed to 
standard ordinary or fractional models, which allows for a more flexible representation of 
disease dynamics. In addition, the adapted version also includes the possibility of reinfection. 
This improves the ability to interpret the situation of individuals who have re-infected. This 
approach improves both the interpretability and the computational efficiency of the model. 
The equilibrium points of the modified system are derived, and stability analyses are per-
formed. The nonstandard finite difference method is used to eliminate instabilities. Numerical 
simulations are performed to evaluate the performance of the model. The data here is taken 
from sources derived from real world scenarios. Comparisons are then made based on this 
data. The results show that the improved model fits experimental data and previous studies 
quite well, giving a faster and more accurate picture of how diseases change over time. The 
models showed that adding reinfection can significantly change the expected paths of out-
breaks and the effects of interventions. The novelty of this work lies in the incorporation of 
reinfection dynamics into a distributed order framework, hence augmenting the model’s prac-
tical applicability compared to previous conventional models. This advance provides faster 
and more accurate insights into the behaviour of infectious diseases and represents a signifi-
cant step forward in the field.
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INTRODUCTION

Mathematical modeling of infectious diseases has 
received significant attention in recent years. These models 

are necessary for figuring out how diseases spread, how 

well public health measures work, and when outbreaks may 

happen in the future. The convergence of infectious disease 
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epidemiology and mathematical modeling establishes a 
comprehensive framework for examining the dissemina-
tion and regulation of infectious illnesses.

Mathematical models are important tools in epidemiol-
ogy because they give us information that we can’t get from 
real-world data alone. For example, models can show how 
different ways of stopping disease spread, such vaccination 
or social separation, would work. They can also be used to 
figure out important epidemiological numbers, including 
the basic reproduction number [1].

The field of infectious disease modeling has evolved 
significantly. This evolution has been greatly affected by 
improvements in computer power and the availability of 
data. For example, agent-based models show how people 
in a population interact with each other, showing the dif-
ferences in behavior and contact patterns [2]. These mod-
els have been extremely useful in studying illnesses with 
complex transmission dynamics, such as influenza and 
HIV. Network-based models are likewise becoming more 
common. These make it evident how people are grouped 
together in space and time. This strategy helps us learn 
more about how diseases spread across various contact net-
works, such as schools, workplaces, and homes [3].

These models use real-world data about how people 
interact with each other to make disease transmission more 
realistic. Then, they help make focused treatments easier 
to plan. Recent research has shown how important math-
ematical models are for dealing with public health emer-
gencies. During the COVID-19 pandemic, for instance, 
models were used to anticipate how the virus would spread, 
help make policy decisions, and make sure that healthcare 
resources were used in the best way possible [4]. These 
models have enabled governments and health organiza-
tions to act quickly and effectively. Consequently, the epi-
demic’s impact has diminished.

Mathematical modeling of infectious illnesses is still a 
field that is always changing and growing. Novel problems 
are coming up, such as novel germs and the growing com-
plexity of global health systems. Consequently, the use of 
models in directing public health interventions is growing 
progressively essential. It is vital to continuously improving 
modeling methods in order to overcome these difficulties. 
Innovations are more likely to improve health outcomes 
around the world when they are coupled with work from 
other fields.

A major focus in this area is the development 
and refinement of epidemic models such as SIR 
(Susceptible-Infectious-Recovered), SEIR (Susceptible-
Exposed-Infectious-Recovered), and STIR (Susceptible-
Treated-Infectious-Recovered). Kermack and McKendrick 
[5] were the first to come up with the SIR model. Researchers 
that have worked on these models since then have looked 
into how different types of immunity, latency periods, and 
transient immunity affect the spread of disease. Differential 
equations and other mathematical methods have been used 
to explain how quickly each portion of the model changes. 

This gives us useful knowledge about how public health 
measures might work and how infectious illnesses usually 
act in communities. This continuous research is essential 
for formulating more effective strategies to manage and 
prevent the dissemination of infectious illnesses [6].

Çilli et al. employed SI and SIS models to forecast the 
dissemination of epidemic diseases, including TB, malaria, 
HIV/AIDS, CCHF, and measles across various nations. 
Their research demonstrates that these models accurately 
predict the exact number of infected individuals, showing 
notable precision and responsiveness to real data trends [7]. 
Uçar et al. focus on obtaining numerical approximate solu-
tions for the nonlinear modified Burgers’ equation (MBE) 
using modified cubic B-spline differential quadrature 
methods. The results show that this approach is an effective 
numerical scheme for solving the MBE, supported by a sta-
bility analysis [8]. 

Karakoç et al. present a finite element scheme for 
numerically solving the Gilson-Pickering equation using 
septic B-spline functions. They perform a Von-Neumann 
stability analysis and demonstrate the reliability of their 
method by examining the behaviour of single solitons, with 
the results illustrated by tables and graphs showing the 
effectiveness of the method [9]. Özgür and Demir explain 
a mathematical framework to investigate the stability of a 
neural field model involving two neuron populations with 
small delays. The primary aim of this analysis is to provide 
a unifying framework that illustrates the effects of small 
delays in the context of the Routh-Hurwitz criterion [10].

Elsonbaty et al. present a discrete fractional SITRS 
(Susceptible, Infectious, Treated, Recovered, Susceptible) 
model to simulate the COVID-19 pandemic. This study 
includes the potential for reinfection due to the loss of tem-
porary immunity. They also talked about the wrong idea 
that the infection rates are the same for people who are nor-
mally susceptible and those who are more likely to get sick. 
Because of what they did, they were able to fit their models 
to the experimental data [11].

In this study, the SITRS model is investigated using 
distributed order differential equations. This adjustment 
makes it possible to better show how the disease changes 
over time by showing how the rates of infection and recov-
ery fluctuate. The model may take into consideration how 
complicated and diverse the development of a disease is 
by using distributed order differential equations. So, it is a 
more realistic and flexible way to model how infectious dis-
eases like COVID-19 spread and how to stop them.

There is a substantial amount of literature in this field. 
Some of the studies conducted in this area can be sum-
marised as follows. Ayoub et al. found that the test-nega-
tive design was highly effective in predicting the protective 
efficacy of prior COVID-19 infection against reinfection, 
as shown by %97.0 and %85.5 protection estimates against 
Alpha and Beta variants, respectively, in Qatar. The method 
remains robust to potential misclassification and changing 
infection levels in the population [12]. 
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Shah and colleagues developed a three-compartment 
model to examine the reinfection of viral infections, includ-
ing COVID-19. The model includes a hybrid fractal-frac-
tional equation system that includes key theoretical aspects 
such as stability analysis and sensitivity of the basic repro-
duction number. Lagrange interpolation polynomials were 
used to run numerical simulations that tested the model by 
comparing real data to simulated data [13]. 

Schuh et al. propose a mathematical model that encap-
sulates both the acute and chronic dynamics of post-acute 
SARS-CoV-2 infection. The model also looks at reinfection 
situations using attributes that are distinct to each variety. 
This gives us information that can be used in both clinical 
and public health settings [14]. Salman and Mohd employed 
a reaction-diffusion system to simulate the transmission 
dynamics of COVID-19, incorporating both SEIRS-type 
kinetics and the spatial distribution of individuals. The 
research assessed the effects of reinfection, spatial dissemi-
nation, and control strategies utilizing optimal control the-
ory and numerical simulations. Thus, the effectiveness of 
vaccination and treatment in preventing future outbreaks 
was highlighted. [15].

The literature review shows that the reinfection situa-
tion is important in infectious diseases. However, it is note-
worthy that the studies focus on a single equation type in 
the light of these studies. This type of equation is usually an 
ordinary or fractional differential equation. In other words, 
expressing the solutions in a single style is quite important 
even in the numerical analysis section, but it also reveals 
the necessity of using ordinary and fractional type equa-
tion systems in some models. For this reason, this study 
was planned considering the deficiency in this section of 
the literature. By adapting the equation system used to 
distributed order differential equations, comments can be 
made about both ordinary and fractional order differen-
tial equations. This is because distributed order differential 
equations involve the analysis of other types of equations 
due to the function they contain.

Although the first contact of infectious diseases is 
important, reinfection is more important. This is because 
if the immune system encounters the disease twice, it can 
have a vital effect. It is therefore essential to be able to inter-
pret the reinfection situation quickly and accurately in dif-
ferent situations or conditions and to develop the ability to 
act accordingly. The aim of our study is to link the dynam-
ics to a single equation system and to determine numerical 
simulations under different equation systems or conditions 
by changing several functions.

In similar studies or models addressing reinfection 
dynamics, it is observed that different equation systems 
are developed for each unique effect of the disease, which 
can lead to delays in interpreting results. These delays can 
result in wasted time and, ultimately, deaths due to the lack 
of available resources. The first barrier that distributed 
order differential equations aim to overcome is precisely 
this issue. By employing a density function, the equations 

are designed to adapt to various external influences without 
needing to change the system itself. In the current model, 
which incorporates reinfected individuals, this approach 
has been tested for the first time, and the comparison of 
results has demonstrated its suitability.

Distributed order differential equations were intro-
duced and developed by Caputo [16]. They include a 
system of differential equations that integrates Caputo, 
Riemann-Liouville, and Grünwald-Letnikov fractional 
derivatives. The most important feature is the density 
function it contains. This function allows the system to 
be transformed into either an ordinary or a fractional dif-
ferential equation. This ability allows a better understand-
ing of different systems of equations and the behaviour of 
the system under different external influences. Numerous 
studies have applied distributed order differential equa-
tions to diverse areas, including the modeling of dielectric 
induction and diffusion [17], numerical solutions [18,19], 
reaction diffusion equations [20], and the SVIR model 
analysis [21,22]. 

The numerical analysis in this study is performed using 
the Nonstandard Finite Difference (NSFD) method. This 
approach helps get rid of instabilities by letting you choose 
the denominator function. Introduced by Mickens, the 
NSFD method has been shown to be applicable to various 
differential equation systems [23,24], with further details 
available in relevant literature [25-30].

Computational advances have made it possible to 
achieve faster results while minimizing errors. This model’s 
modern method is better at getting rid of instability than 
other methods, which makes it easier to spot associated 
developments. As a result, the temporal gaps that could 
cause problems in systems have been cut down, making 
forecasts more reliable and accurate. 

This work is new since it uses distributed order differ-
ential equations to create a new version of the SITRS model. 
This advancement facilitates a more thorough and precise 
representation of disease dynamics, including the complex-
ities of re-infection and the variability of immunity. 

This study significantly impacts infectious disease mod-
eling by the application of modern mathematical method-
ologies. The better model makes it easier to forecast how 
diseases will spread. It also makes public health programs 
work better. It also highlights its relevance and specificity 
in advancing our understanding of infectious diseases. The 
results address gaps in current research. That is, it high-
lights the importance of developing epidemiological mod-
els to improve public health outcomes.

There are five sections to this study. The second section 
provides the necessary background for the reformulation 
and discretization of the system. The third section presents 
the discretization of the adapted distributed order system. 
The fourth section carries out a numerical investigation 
using equilibrium points under different conditions. The 
fifth section presents the results and discussion.
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DEFINITIONS AND FUNDAMENTALS

Caputo’s development of distributed order differen-
tial equations represents a significant advance in the field 
of fractional calculus [16]. This method builds on classi-
cal fractional differential equations by letting differential 
equations be spread out over an interval. Distributed order 
differential equations are mathematical equations that use 
several fractional derivatives instead of whole values. This 
makes it easier to model complicated systems, including 
how infectious illnesses spread. These explanations are 
meant to help people understand the ideas better and how 
they apply to actual life. In this situation, it also has a den-
sity function. A density function is a math tool that shows 
how a certain amount is spread out throughout a popu-
lation or area. In infectious disease models, it shows how 
people with different traits (such immunity or susceptibil-
ity) are distributed out over the community, which helps us 
understand how diseases spread in more detail. This flex-
ibility makes it possible to simulate complicated systems 
more accurately, because distinct processes may change at 
different speeds. 

One advantage of Caputo’s distributed order differential 
equations is that they can handle real-world circumstances 
better. Applications span a wide range of fields, including 
physics, engineering, and biology. These equations pro-
vide a more detailed understanding of processes related to 
memory and hereditary influences.

Definition 2.1: The Caputo derivative of order α for a 
function f(t) is defined as:

	 	 (1)

where, n ϵ ℕ+, n - 1 < α ≤ n , Г  is the Gamma function and 
f(n) is the n - th derivative of f(t) [31]. The Caputo deriv-
ative, denoted as Dαf(t), is commonly used in fractional 
calculus to describe processes that involve memory or 
non-local behavior. 

Definition 2.2: The Riemann-Liouville fractional 
derivative of order α for a function f(t) is defined as:

	 	 (2)

where, n ϵ ℕ+, n - 1 < α ≤ n , Г is the Gamma function 
[31]. The Riemann-Liouville derivative, denoted as Dαf(t), 
is a conventional technique in fractional calculus, mostly 
utilized to model systems with memory; nonetheless, it 
encounters difficulties in handling beginning conditions 
due to its requirement for non-integer initial values.

Definition 2.3: The Grünwald-Letnikov fractional 
derivative is defined as:

	 	 (3)

where h is a small step size and  is the generalized bino-
mial coefficient [31]. The Grünwald-Letnikov derivative, 

denoted as Dαf(t), provides a discrete approximation of 
fractional derivatives, making it useful for numerical 
implementations and simulations of systems with frac-
tional dynamics.

Definition 2.4: The Distributed order derivative of a 
function f(t) can be expressed as:

	 	 (4)

where k(α) is a density function that defines the distri-
bution of the orders, Dαf(t) is a fractional derivative of order 
α. The distributed order derivative, Dk(α)(f(t), k(α), α), intro-
duces a more generalized concept. Instead of applying a 
single fractional order, it incorporates a range of fractional 
derivatives, weighted by a function k(α), and integrates 
over all possible orders. This allows the model to capture a 
broader spectrum of dynamic behaviors without needing to 
adjust the system for different conditions. Dαf(t) fractional 
derivative it can be chosen as Caputo, Riemann-Liouville or 
Grünwald-Letnikov fractional derivative [16,32].

In distributed order differential equations, the Caputo 
derivative is better, especially for situations with beginning 
conditions. It makes it easier to understand how to deal with 
these situationsCaputo employs integer order derivatives to 
characterize initial conditions, distinguishing it from the 
Riemann-Liouville derivative. These are more familiar and 
make more sense in a physical way. This makes it easier to 
add real-world beginning data to the model. Caputo’s tech-
nique makes sure that beginning conditions fit together 
naturally in dispersed order systems with more than one 
fractional order. This avoids complications in interpre-
tation. As a result, it is more suitable for applications like 
infectious disease dynamics, where initial states are critical 
for accurate simulations.

The NSFD method represents a significant innova-
tion in the numerical analysis for differential equations 
[23]. This method was developed to overcome the stability 
problems found in traditional finite difference approaches. 
The approach uses carefully chosen denominator functions 
to make the numbers more stable. The main advantage of 
the NSFD method is its ability to increase the stability and 
accuracy in numerical solutions of differential equations. 
This benefit is especially helpful when working with difficult 
issues or equations that oscillate quickly. It can be used in 
many fields of science and engineering, including as fluid 
dynamics, reaction-diffusion systems, and epidemiological 
modeling. It makes it easier to solve complex dynamic sys-
tems. People often utilize numerical approaches like Runge-
Kutta, Adams, and Theta to study how populations interact 
with each other. But the magnitude of the time step has a 
big effect on how accurate and stable they are. In contrast, 
the NSFD method guarantees positive discrete solutions for 
positive initial conditions. On the other hand, the structured 
NSFD scheme may introduce a slight delay in travelling wave 
propagation when large step sizes are used [33,34].



Sigma J Eng Nat Sci, Vol. 43, No. 6, pp. 1930−1942, December, 20251934

Definition 2.5: The general form of a nonstandard finite 
difference scheme for a differential equation  
can be written as:

	 	 (5)

where yn is the approximation of y(t) at the discrete time step 
tn and h is the time step size. φ(h) is designed to fit the behav-
ior of a continuous system. It is usually a function chosen to 
ensure that certain properties are preserved. In the literature 
it is referred to as the denominator function [23]. 

THE DISCRETIZATION OF ADAPTED ENDEMIC 
MODEL

In this section, we present a new SITRS model that 
includes two groups of susceptible individuals S1(t) and 
S2(t), an infected individual l(t), a treatment individual 
T(t), and a recovered individual R(t). The improved model 
builds on the traditional SITR model by allowing for the 
possibility that recovered individuals may lose temporary 
immunity and become re-susceptible to the virus. In addi-
tion, the original model assumes that infection rates are the 
same for both the general susceptible population and for 
elderly or seriously ill individuals. This model does not have 
this limitation [11]. In addition, the system is transformed 
into a distributed order model with different arrangement. 
The updated SITRS model is presented below:

	 	

(6)

In this definition, the Dαf(t) derivative is chosen as a 
Caputo type fractional derivative. The reason for this selec-
tion is to choose the most suitable fractional derivative that 
can be used with the initial data we have.

The parameters in this system are given in Table 1, where 
G is the natural growth rate of susceptible individuals; b is 
the infection rate of contact between susceptible and infected 
individuals; l is the rate of loss of immunity of recovered indi-
viduals; d is the mortality rate; c is the rate of dry cough, cold 
and fever of infected individuals; γ is the cure rate of infected 

individuals; τ is the recovery rate of treated individuals; and w 
is the treatment control parameter of treated individuals. The 
constants listed in Table 1, are derived from empirical studies 
where these parameters have been measured and analyzed in 
real world settings. These values have been chosen from exist-
ing literature that explicitly deals with these variables to make 
sure that the comparisons are correct and useful. By basing 
these constants on real-world data, we make the model stron-
ger and more believable, which makes it more like how diseases 
really work. If the defined discretization is applied to the system 
of equations, the discrete state of the system becomes as follows:

	 	

(7)

where v, j = 1,2,3,4,5,  and 
denominator functions are chosen as:

	 	

(8)

 

By expanding the terms on the left and rearranging the 
system of equations,

	 	

(9)

Table 1. Description of the constants for the distributed order model

Symbol Description Symbol Description
G Natural grow rate c Dry cough, cold and fever rate
b Infection rate γ Treatment rate
l Loss of temporary immunity rate w Treatment control parameter
d Death rate τ Recovering rate
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Hence

	 	

(10)

The last expressions can be simplified as follows

	 	

(11)

with  and finally 

	 	

(12)

Thus, the final state of the discretized system is found 
as Equation 12.

NUMERICAL INVESTIGATION OF DISCRETIZED 
SYSTEM

In this section, equilibrium point analysis and numer-
ical simulations have been performed. Constant values are 
important for analysis and simulations. The values have 
been chosen as shown in Table 2 and evaluations are made 
accordingly [11]. 

Equilibrium point analysis is very important for this 
model since it helps us understand how the system will 
behave throughout time. We can find out if these points are 
stable by finding and studying equilibrium points. This tells 
us if the disease will stay the same, get worse, or die out in 
a certain group of people. This method allows researchers 
and public health officials to predict what might happen if 
an infectious disease emerges and identify the best ways to 
stop it. For example, an unstable balance point indicates 
that a small change, such as an increase in infection rates, 
could cause infections to return. A stable point means the 
disease is likely to remain under control.

The equilibrium points chosen for this model are meant to 
show how things work in the actual world, especially during 
epidemics of infectious diseases like COVID-19. One of the 
equilibrium points, for instance, would be when the popula-
tion reaches herd immunity, which is important for figuring 
out what has to happen to stop the virus from spreading. 

The identified equilibrium points can also help identify 
constraints for intervention strategies. If the study indicates 
that a particular region has a low incidence of infection, this 
information can help public health officials establish regu-
lations to maintain low transmission levels. By comparing 
equilibrium points with existing data from COVID-19 out-
breaks, such as hospitalization rates and infection trends, 
we can improve our understanding of the mechanisms of 
the disease. This interpretation strengthens the theoretical 
framework of the model and highlights its practical impor-
tance in addressing public health challenges.

Firstly, finding the equilibrium point is a crucial require-
ment in discretized systems. This requires the solution of 
Equation 13.

Table 2. Initial conditions and the constants’ values for equilibrium point analysis

Initial Conditions Values Parameter Conditions 1 Values Parameter Conditions 2 Values 
S1(0) 0.65 G 0.3 G 0.3
S2(0) 0.15 b 0.35 b 0.3
I(0) 0.75 l 0.3 l 0.3
T(0) 0.35 d 0.25 d 0.2
R(0) 0.1 c 0.01 c 0.01

γ 0.2 γ 0.03
w 0.1 w 0.1
τ 0.1 τ 0.15
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(13)

If the system expressed by Equation 13 is solved using 
the Maple software package, the equilibrium points can 
be determined. However, due to the lengthy calculations 
required for the second equilibrium point, it is expressed 
later using parameters.

	 	
(14)

	 	 (15)

Another requirement for the analysis of equilibrium 
points is the Jacobian matrix. Therefore, the Jacobian matrix 
corresponding to the discretized Equation 12 is determined 
as follows:

In order to perform a stability analysis using the 
Jacobian matrix and eigenvalues, it is necessary to use some 
criteria. The following definition is given.

Definition 4.1: According to the Matignon criterion, 
let J denote the Jacobian matrix obtained by the classical 
method, and let λ represent the set of eigenvalues of this 
Jacobian matrix. The equilibrium point is considered to be 
locally asymptotically stable if the following condition is 
satisfied [35]:

The choice of the Matignon criterion for stability anal-
ysis is particularly suitable for this model due to the inclu-
sion of density functions in distributed order differential 
equations, which exhibit fractional-order behavior. This 
criterion effectively addresses the complexities associated 
with fractional derivatives, enhancing the understanding of 
stability.

The Matignon criterion is crucial for determining the 
stability of fractional differential equations. This makes it 
easier to see how stable solutions are over time, even while 
fractional derivatives don’t behave like they should. On the 
other hand, the Matignon criterion can handle the prob-
lems that come up in fractional systems, where memory 
effects are quite important.

This method is very important for making sure that 
systems with distributed order behavior work correctly. 
By looking at stability areas, it helps researchers uncover 
important things that determine how well a system works. 
Employing the Matignon criterion, researchers can ascer-
tain the long-term outcomes and the stability of various 
equilibrium points. This ultimately leads to enhanced strat-
egies for disease management and treatment.

Analysis of stability for the first initial condition
According to the first initial conditions, the equilibrium 

points E1 and E2 are as follows:

E1 = (0.2383316093, 0.2383316093, 0, 0, 0), 
E2 = (3.821405429, 3.821405429, -6.053820498, 

-1.091269786, 0.3887500955),

where k(α) = Г(2 - α). Substituting the first equilibrium 
point into the Jacobian matrix yields the following charac-
teristic equation:

P(λ) = (0.008008005674 + λ)2 (0.0009463035997 + 
0.1465278380 λ + 0.2360336746 λ2 + λ3)

After solving the characteristic equations, it is evident 
that

λ1 = -0.008008005674, λ2 = -0.008008005674, 
λ3 = -0.006463069302, λ4 = -0.008570149079 + 

0.3825488356i, λ5 = -0.008570149079 - 0.3825488356i.

If the Matignon criterion is checked with the eigenval-
ues, the result is |arg(λg)| = π > απ/2, for g = 1,2,3,  with the 
order satisfying 0 < α < 2 On the other hand, |arg(λ4)| = 
|arg(λ5)| = 0.32158245π > απ/2 is satisfying α < 0.64316490. 
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Our conclusion is the equilibrium point is E1 locally 
asymptotically stable if the order satisfies the condition 
0 < α < 0.64316490. Equilibrium point E1 represents the 
disease-free equilibrium, which is significant because it 
indicates a state where the disease does not persist in the 
population. It is important to understand how stable is E1, 
since it can help us figure out if therapies are working to 
stop the spread of the disease. If the eigenvalues meet the 
stability criterion for E1, it means that the disease can be 
gotten rid of in some situations. So, looking at this equilib-
rium point not only shows how important it is to the model, 
but it also shows how useful it is for public health initiatives 
that want to manage disease.

Similarly, by substituting the second equilibrium point 
into the Jacobian matrix gives the characteristic equation:

P(λ)=λ5 + 0.1680779743 λ4 + 37.44603747 λ3 
+ 1.926168284 λ2 - 0.2164013283 λ - 0.002077367950 

After solving the characteristic equations, it can be seen 
that

λ1 = -0.05830984123 + 6.119020776i, 
λ2 = -0.05830984123 - 6.119020776i, 

λ3 = -0.009004270986, λ4 = -0.1025395746, 
λ5 = 0.06008555375.

If the Matignon criterion is checked on the basis of the 
eigenvalues obtained |arg(λ3)| = |arg(λ4)| = π > απ/2,   with 
the order satisfying 0 < α < 2, and |arg(λ1)| = |arg(λ2)| = 
0.3204179 π > απ/2 is satisfying α < 6408358. On the other 
hand, since it is |arg(λ5)| = 0 < απ/2, it was seen that the 
second eigenvalue does not satisfy Matignon criterion. So, 
our conclusion is that E2 is not locally asymptotically stable 
under these conditions. 

Stability analysis for the second condition
The equilibrium point E2 according to the second con-

dition is

E2 = (2.292233390, 2.292233390, -3.756823905, 
-0.1015815158, -0.3738128142)

The characteristic equation is obtained by substitut-
ing the second equilibrium point under the second set of 
conditions:

P(λ) = λ5 + 0.003221828833 λ4 + 0.00005278835547 λ3 

+ 0.8488407333 10-7 λ2 + 0.4624925316 10-10 λ 
+ 0.8237844801 10-14  

After solution of characteristic equations, it is seen that

λ1 = -0.0007656339572 + 0.006977097614i, 
λ2 = -0.0007656339572 - 0.006977097614i, 

λ3 = -0.0004046569892, λ4 = -0.0006299162648, 
λ5 = -0.0006559876645.

Using the eigenvalues obtained to check the Matignon 
criterion, |arg(λ3)| = |arg(λ4)| = |arg(λ5)| = π > απ/2,   with 
the order satisfying 0 < α < 2. On the other hand, |arg(λ1)| = 
|arg(λ2)| = 0.3291035 π > απ/2  is satisfying α < 0.6582070. 
E2 is locally asymptotically stable if the order satisfies the 
condition 0 < α < 0.6582070.

An examination of the numerical simulations after the 
equilibrium point analysis has the following results. 

Figure 1 shows that with the density function chosen 
according to condition 1, the results are quite consistent 
with the literature. At the same time, it has been observed 
that there is an approach to the equilibrium point with this 
shape. When examining the literature studies in this area, 
it has been shown through simulation that the equilibrium 
point of the ordinary order differential equation can be 
reached by selecting the equilibrium point [11,36]. 

Figure 2 examines the behaviour of susceptible and 
treated individuals in time-varying situations. As can be 
seen here, the dynamic analysis of the system can be inter-
preted quickly by changing the density function. In other 
words, the aim of the study is achieved. It can sometimes 
take a long time to understand the effects of external influ-
ences on infectious diseases. Writing the density function 
based on these external effects can minimize this effect. 
Looking more closely at Figure 2, the rate of increase of sus-
ceptible and treated individuals can be expressed as a func-
tion of time and external effects. In this way it has been seen 
that the density function can be more effective in determin-
ing the dynamics by choosing the threshold value of α. 

Figure 3 shows that the system works under chang-
ing conditions and analysis can be made according to the 
equilibrium points. Here it is shown that changing external 
effects can be slower in reaching the equilibrium point. It is 
not necessary to set up another system of equations for this, 
it is shown that only the change in the equilibrium point is 
sufficient.

Figure 4 shows the effect of changing the density func-
tion for sensitive individuals. It has been found that the 
analysis is faster if the external effects are defined within the 
density function. As can be seen in the figure, it has been 
observed that the variability increases with the change. In 
other words, it has been shown that when the re-infection 
rate increases, the effect of the disease can be observed 
again with this system of equations. 

In Figure 5, the variability between infected, treated and 
recovered individuals is obtained by selecting the density 
function. By changing the density function, for example, 
the number of individuals recovering over time can be 
determined. However, this system of equations can also 
be used to determine the acceleration or deceleration of 
the increase in newly infected individuals, as shown in the 
other simulation in the figure. The same dynamics can be 
determined for infected and treated individuals. The simu-
lations in this section were carried out using the MATLAB 
package programme.
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Figure 2. Estimation of Susceptible and Treatment individuals in infectious diseases using the proposed distributed SITRS 
model (Conditions 1 for k1(α) = Г(α - 0.7), k2(α) = Г(α + 0.7) and k3(α) = Г(2α + 0.3)).

Figure 1. Time series of population variables in the SITRS model with conditions 1 for k(α) = Г(α - 0.5).
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As stated in our paper, the ability to interpret the 
behavior of the system largely depends on the variation 
in the density function. From the figures, it is clear that 
changes in the infection rare and recovery rates are appro-
priately reflected in our model equations. Moreover, the 
use of distributed-order modeling is precisely intended 

to account for such variations. In other words, changes 
in these factors can be accommodated through adjust-
ments to the density function, which is dependent on the 
conditions. This approach allows us to select the den-
sity function based on these rates and avoid unnecessary 
time loss. 

Figure 4. Prediction of behavior of susceptible individuals with varying density function [Conditions 2 for w1(α) = Г(α - 
0.2) and  w2(α) = Г(α - 0.8)] .

Figure 3. Time series of population variables in the SITRS model with conditions 2 for k(α) = Г(α - 0.1).
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For comparison with clinical data, the study by 
Elsonbaty et. al. [11] was considered. Data from this study 
and from COVID-NET were compared with our findings 
[37]. The data in question were collected in 14 US states and 
represent a population of approximately 32 million people 
living in these states. Firstly, the comparisons showed that 
the rate of increase of infection in the given area was sim-
ilar to Figure 1. Therefore, the modified SITRS model was 
found to be an appropriate model. Again, when the same 
data were examined, it was found that the graph shown in 
Figure 4 best predicted the first or second wave phase of 
the disease. Finally, it was found that the rate of increase of 
infected individuals in Figure 5, expressed under the wave, 
was again consistent with the COVID-NET data [11,37]. 

CONCLUSION

 In this study, the mathematical Susceptible, Infected, 
Treated, Recovered, Susceptible model, which is crucial for 
determining the dynamics of endemic models, was exam-
ined. The modified version of the model is described using 
distributed order differential equations. This approach 
allows for greater flexibility in the interpretation of dif-
ferent types of equation systems through the use of den-
sity functions. Equilibrium points, which are critical for 
the analysis of the disease, have been examined. Stability 
analyses of the equilibrium points were carried out and 
the results were found to be consistent with the data. This 
shows that distributed order equations are suitable for 
such systems. The results are compared with sources using 

real world data. The results are highly consistent, indicat-
ing the potential for more rapid and effective monitoring 
of infectious disease dynamics. Future work will focus on 
improving density functions and analyzing their impact 
across multiple scenarios, including changing population 
dynamics and intervention strategies. This article fills a 
research gap by examining the use of distributed order dif-
ferential equations in public health models. It demonstrates 
the importance of having rapid methods for preventing and 
managing diseases. Our goal is to use these equations more 
frequently to facilitate modeling of infectious diseases and 
other basic science domains. This will enable us to create 
frameworks that are more robust and versatile.
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