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ABSTRACT

In this work, we investigate and numerically approximate an initial-boundary value problem 
governed by Sobolev type differential equation exhibiting an initial layer. The problem is ap-
proached through a finite difference framework specifically designed to remain unaffected 
by the presence of a small perturbation parameter, ensuring robustness and stability. A novel 
hybrid numerical strategy is constructed by employing a non-polynomial trigonometric cubic 
B-spline (TCBS) collocation technique for the spatial discretization on a uniform partition,
while time advancement is carried out through an implicit Euler procedure defined over a
Shishkin mesh to effectively capture sharp solution gradients. The developed scheme guar-
antees parameter-uniform convergence, and its theoretical stability and error properties are
rigorously analyzed. A set of numerical simulations is performed to validate the effectiveness
of the method, demonstrating its high accuracy, consistency, and suitability for handling sin-
gularly perturbed pseudo-parabolic problems with initial layer.
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INTRODUCTION

This section focuses on a class of singularly per-
turbed pseudo-parabolic equations defined in the domain 

 where  and, .

(1)

where

Here ε denotes small perturbation parameter, while 
coefficient function, source term, and initial conditions are 
assumed to be smooth functions that fulfill specific regular-
ity requirements, which will be detailed later.

Sobolev equations represent a distinctive category 
of partial differential equations (PDEs) in which the 
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highest-order spatial derivative is coupled with time deriv-
ative, leading to a hybrid mathematical structure that 
blends features of parabolic and hyperbolic equations. Such 
equations model a wide range of physical phenomena, 
thermodynamics [1], appearing in mathematical physics 
and fluid Dynamics [1-3], shear in second order fluids [4], 
astro-physics [5, 6], filtration theory [7], and propagation 
of long waves of small amplitude [8]. Some existence and 
uniqueness results of equation (1) can be found in [6,9-11]. 
In 1950 Sergi Sobolev started researching pseudo-para-
bolic equations. A significant part of the recent advances 
in Sobolev-type problems has been driven by the shift 
from classical parabolic equations to pseudo-parabolic for-
mulations. Building upon these advancements, research-
ers in [11, 12] utilized advanced higher-order difference 
schemes to investigate delay pseudo-parabolic equations. 
A three-layer finite difference scheme was proposed for 
pseudo-parabolic equations incorporating a time-delay 
within the second-order derivative term [13]. Furthermore, 
higher-order discretization techniques were developed for 
one-dimensional delay pseudo-parabolic problems [14]. In 
addition, Zhang [15] introduced linearized compact finite 
difference methods to address nonlinear Sobolev-type 
equations involving delay terms.

 The aforementioned investigations primarily address 
the regular (non-singular) settings. In contrast, Eq. (1) is 
characterized by the inclusion of mixed derivatives involv-
ing both temporal and spatial variables in its highest-order 
terms, an intrinsic and defining attribute of Sobolev (pseu-
do-parabolic) equations. Despite their significance in mod-
eling diverse physical processes, the literature addressing 
problems of this type remains relatively scarce, with only a 
limited number of studies available [2-5,16-19], with pres-
ence of ε which makes it singularly perturbed in nature. In 
[5], the author examined Sobolev problems with one spatial 
dimension using a finite difference method (FDM) to han-
dle boundary layers efficiently. In a related development, 
[17] introduced a parameter-uniform approach for initial 
boundary value problems (IBVPs) utilizing a standard 
S-mesh in the time direction. It is widely recognized that 
classical discretization techniques fail to maintain accuracy 
when the perturbation parameter takes on small values. 
Hence, it becomes essential to design robust and efficient 
numerical methods for such problems, ensuring that the 
accuracy of the evaluated solution remains uniform and 
does not deteriorate as.

 The numerical estimate of singularly perturbed prob-
lems (SPPs) is inherently intricate, primarily due to the 
emergence of sharply localized boundary-layer phenom-
ena within their exact solutions. The presence of small 
perturbation parameters causes rapid variations in narrow 
regions, giving rise to boundary or interior layers. As a 
result, conventional numerical methods often fail to capture 
these sharp gradients accurately and typically do not con-
verge uniformly when the perturbation parameter becomes 
sufficiently small. To overcome these difficulties, specially 

designed parameter-robust schemes and layer-adapted 
meshes, such as Shishkin or Bakhvalov meshes, are widely 
employed to ensure stability and uniform convergence 
across all ranges of the perturbation parameter [20-23].

 Several researchers [2-5, 16-19] have developed numer-
ical techniques for addressing singularly perturbed Sobolev 
problems (SPSPs), both with and without time delays. 
Nonetheless, these studies have predominantly centered 
on approaches grounded in interpolating quadrature rules 
involving specific weight and basis functions. Insofar as the 
existing literature reveals, no further investigations have 
extended beyond this framework. In this study, we propose 
a novel computational framework that utilizes TCBS col-
location technique for spatial discretization on a uniform 
mesh, in combination with an implicit Euler scheme func-
tional on S-mesh for the temporal derivative.

 B-spline functions have evolved into powerful and ver-
satile analytical instruments for the numerical resolution 
of PDEs [19, 21-22]. Among these, TCBS collocation tech-
nique has garnered considerable scholarly interest, being 
effectively employed for the accurate numerical treatment 
of various classes of PDEs [24-26]. Unlike conventional 
FDM, spline-based approaches possess the inherent capa-
bility to approximate the solution with high precision at 
any location within the computational domain, thereby sig-
nificantly enhancing spatial accuracy. Furthermore, when 
compared with classical polynomial B-spline formulations, 
the TCBS method has demonstrated superior performance, 
delivering more precise numerical approximations for both 
linear and nonlinear IBVPs. This enhanced accuracy arises 
from the trigonometric structure of the basis functions, 
which allows for better representation of oscillatory and 
boundary-layer behaviors often present in SPPs [25-26].

 In this work, we develop a numerical method tailored 
for SPSPs characterized by the presence of initial layers. The 
key objectives are to evaluate the computational efficiency 
of the proposed approach, validate its accuracy, and ana-
lyze how perturbation parameters influence the formation 
and behavior of boundary-layer structures in the solutions. 
The original problem is first transformed into a more trac-
table formulation, after which the temporal derivative is 
discretized using the implicit Euler method on S-mesh. 
The resulting system of ordinary differential equations is 
subsequently solved through a TCBS collocation technique 
applied on a uniform spatial mesh.

PRELIMINARY FRAMEWORK AND ANALYTICAL 
SOLUTION

Eq. (1) is subsequently transformed into the following 
equivalent representation:
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(2)

where  and a(x,t) is a continuous 

functions and . Eq. (2) is renowned by the 

presence of a mixed temporal-spatial derivative in which a 
small perturbation parameter ε appears in both the highest 
order term and the temporal derivative component, thereby 
delineating the specific class of SPSPs addressed in this 
study. The functions (a, d, c, ℵ)(x,t)  and φ(x) are sufficiently 
smooth and satisfy the required regularity conditions, such 
that a(x,t) ≥ α > 0. At this stage, Eq. (2) is reformulated in an 
operator representation, expressed as follows:

 	 	 (3)

The operator presented in Eq. (3) adheres to the subse-
quent principle of maximum.

Lemma 1. Let , 
 satisfies  in . Then 

. 

Proof. Let  such that 

 and assume that . 

Now, from assumption, we have  for 

. As it attains minimum at , we have 

 and  at . Now, we have 

which is a contradiction as . Hence, 
 [19]. Lemma 2 immediately guar-

antees the uniqueness of the solution to the problem.
Remark 2.1. (Friedrichs inequality)-For a domain 

G with a Lipschitz boundary, there exist constants c1, c2 
dependent on G but independent of a functions in D, such 
that:

	 	
(4)

holds ∀w ∈ D. For N = 1, if D ∈ C1(0, l), the Friedrichs 
inequality is expressed as follows 

If a function in D satisfy additional conditions, such 
that w(0) = 0 or w(l) = 0, special cases of the previously 
derived estimates are obtained. Specifically, if D1 ⊆ D  with 
w(0) = 0 = w(l), the estimates takes the form:

	 	
(5)

By selecting one of the estimates for c1, we derive the 
following inequality:

	 	
(6)

which is valid for for all w ∈ D1, that is for all w ∈ D which 
satisfies the above condition. 

Remark 2.2. At the critical points (0,0) and (l,0), the 
functions φ(x) and ℵ(x,t) gratify the subsequent compati-
bility requirements:

	 	 (7) 

and 

 	 	

(8)

Lemma 2. Let  and 

	 	
(9)

Accordingly, the solution of Eq. (1) satisfies the ensuing 
estimations as established in [13, 16-17].
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(10)

Proof. Multiply both sides of Eq. (1) by w(x,t). In this 
case, we obtain

	 	 (11)

Expanding Eq. (11) through the inner product yields:

We now employ the technique of energy-based inequal-
ities, achieved by performing a scalar multiplication with 
w(x,t) wherein

 

 

Upon inserting this expression into Eq. (1) and per-
forming subsequent algebraic manipulations, we obtain:

 

where ℜ(t) = 2‖w‖0‖ℵ‖0. Now, we have two cases:

1.	 If , then 

	 	 (12)

where .

2.	 Given , and  employing the embedding 
inequality in Eq. (6) leads to the following result:

 

choosing � from equality  and con-
sidering Eq. (9), we obtain

By inserting these expressions into the preceding equa-
tion, we arrive at:

	 	
(13)

Hence, combining the results of Eqs. (12) and (13) 
yields:

 	

	 (14)

Furthermore, for ℜ(t) expression, by using 
 inequality, we obtain

 

where c0 = 2c0 is a constant. Now, substituting this values in 
place of ℜ(t), we have

Since  is a constant and omitting from the 

expression, we get
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	 	 (15)

From Eq. (15) and Gronwalls’s inequality, the integrat-

ing factor is , where p(x) depends on x. After 
some manipulation, we obtain:

 

Thus, from the above, we get

 

Next, by embedding inequality and Poincare inequality, 

, we get

which proves Eq. (10) for z = k = 0. Again multiply Eq. (1) 

by , we obtain 

Analogous to the earlier scenarios, following appropri-
ate algebraic manipulations and reorganization, we obtain:

	 	
(16)

Given that  and by using the bounded-

ness of . The estimate Eq. (16), in turn 

 gives Eq. (10) for k = 0, z = 1. Once more, 

by utilizing the given identity, , 

we obtain

 

which leads to Eq. (10) for k = 1, z = 0,1 by using just proved 

estimates for . 

In conclusion, expressing Eq. (1) in the following form 
yields:

with 

  

The estimates Eq. (10) then follows immediately for k 
= 0,1, z = 2.

Lemma 3. Assume  and 

assumptions of Lemma 2 are valid. Then the estimate:

	 	
(17)

holds where  and c0 is given by Eq. (14).
Proof. The argument is presented in [16-17, 19]. 

NUMERICAL METHOD IMPLEMENTATION

Mesh Generation and Discretization
The domain Q is partitioned using mesh points Λ = ΛN 

× ΛM, where ΛN = {xi = ih:i = 1(1)N - 1, h = l/N} and ΛM = 
{0 = t1 < t2 < ⋯ < tM = T, τj = tj - tj-1}. The temporal mesh 
ΛM is chosen as a piecewise-uniform grid. A fitted piece-
wise-uniform S-mesh is introduced on [0,T]  to resolve the 
initial layer at t = 0. The interval is split into [0,σ] and [σ,T], 
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each divided into M/2 equal parts, with the transition point 
σ defined as in .

	 	 (18)

where α0 is constant,  and c0 is given in Eq. (14). 
Since σ ≪ T, the mesh is refined over [0,σ] and coarser 

over [σ,T]. Let τ1 and τ2 denote the step sizes these respec-

tive subintervals. Now,   

  , so we get

 	 	
(19)

It is assumed that ; otherwise N grows 
exponentially relative to ε.

Semi-Discretization in Time
The time domain is discretized on an S-mesh with step 

size τj, while x is kept continuous, yielding the following 
ODE system. 

 	 	

(20)

At the (j + 1)th time step, Eq. (20) takes the form:

 	 	

(21)

where, .

Lemma 3.1. (Semi-Discrete Version of Maximum 
Principle.) Let  be sufficiently smooth on . If 

 and  then 
.

Proof. Let  is such that . 

We know that . Using extrema val-

ues,  and . Then we have

given that  which is a contradiction to 
. Therefore, . 

Thus,  satisfies the semi-discretized form of the maxi-
mum principle. 

 Time Semi-Discretization: Error Analysis
Let wj+1(x) reprent the semi-discrete approximation 

of the exact solution w(x,tj+1) of Eq. (4) at time level τj. 
Then, applying the implict Euler method, the semi-discrete 
scheme for Eq. (2.1) can be expressed as:

	 	

(22)

where 

 

and .

Definition 3.1. [6, 12, 25, 27, 28] A FDM is stable for 
‖.‖, if there exists positive constants L1 and  L2, indepen-
dent from τj, such that when τj  approaches τ1 and τ2, we 
have

Here, w0 represents the initial condition, while ℵ denotes 
the source term.

Lemma 3.2. [22, 27, 28] Let the function
. Then we have

Lemma (3.2) ensures that Eq. (22) admits unique solu-
tion  at time level τj. Moreover, by Lemma (3.2), this 
solution  remains uniformly bounded with respect 
to ε. Define , as the local 
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error of Eq. (22) at tj+1, where  solves the corre-

sponding auxiliary BVP:

	 	

(23)

Lemma 3.3. (Local Truncation Error(LTE)): The local 
error  obeys the following bound:

 	 	 (24)

Proof. Depending on the magnitude of σ, there arise 
two conditions:

1.	 If  and  then we have

 

Evaluating at tj+1 with  and apply-
ing Taylor expansion to Eqs. (19) and (22), we get

 	 	
(25)

2.	 If  and . 

Now 

Considering the estimate at  and 
applying Taylor series expansion to Eqs. (22) and (19), we 
get:

	 	
(26)

Applying Lemma (3.2) to  yields estimates for 
both regions. The total LTE is expressed as the sum of the 
finer-and coarse-mesh contributions, i.e.,

 	 	

(27)

Lemma 3.4. (Global Error). The global error  is 

bounded at tj as follows:

	 	
(28)

Proof. Let . By applying 
Eq. (27) togher with Lemma (3.3), we obtain the global 
error at (j+1)th time step.

 

Spatial Semi-Discretization
The TCBS method is employed to approximate the 

solution of Eq. (21) and its spatial derivatives using linear 
spline expansions.

 Cubic Trigonometric B-Spline Techniques
The domain Λ divided into N equal intervals, the 

approximate solution at (j+1)th is expressed as:

	 	
(29)

where δi(t) are determined to approximate W(x,t) to exact 
solution We(x,t) at (xi, tj), and CTBi(x) represent the TCBS 
basis functions , which is given as[29-30] 

	

(30)

where,  
 

    
and 

 Consider the iterative relation provided in Eq. 

(31). 
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(31)

This iterative formula defines TCBS, beginning with 
first order case. Table 1 display CTBi(x) and its derivative 
values at the mesh points. 

Table 1 lists the entries as:

 

The approximation  over sub-interval 
 is given as:

	 	
(32)

 

Owing to the local support of B-splines, only CTBi-1(x), 
CTBi(x) and CTBi+1(x) are non-zero on the given interval. 
Using Eqs. (30) and (32), the nodal values and derivatives 
of  are expressed through the time parameters  as 
follows:

	 	

(33)

The approximate solution at the mesh boundaries is 
obtained from Eq. (32) combined with the boundary con-
ditions in (2.1) as follows:

	 	
(34)

Once δi is computed and CTBi(x) with its derivatives are 
substituted into Eq. (21), we obtain N + 1 equations with N 
+ 3 unknowns.

 	 	

(35)

where, the coefficients take the following form

 	 	

(36)

Treatement of boundary conditions
To eliminate δ-1 and δN+1 from Eq. (35), we apply 

boundary conditions given in Eq. (34). Now, for i = 0, Eq. 
(35) is reduced to

 	 	

(37)

Eq. (35) simplified to the form for i = N

 	 	

(38)

Now, Eqs. (35)- (38) lead to (N + 3) × (N + 3)  sys-
tem with (N + 3) unkowns δ-1, δ0, ..., δN, δN+1. Excluding 
the unkowns δ-1 and δN+1 from Eq. (37) and Eq. (38) for 
i = 0 and i = N , then Eq. (35) becomes (N + 1) × (N + 1). 

Table 1. The values of CTBi(x), CTBi'(x) and CTBi''(x) at the nodal points obtained using Eq. (30)

xi-2 xi-1 xi xi+1 xi+2

CTBi(x) 0 μ1 μ2 μ1 0
CTBi'(x) 0 μ3 0 μ4 0
CTBi''(x) 0 μ5 μ6 μ5 0
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equations with (N + 1) unknowns δ0, ..., δN-1, δN in matrix 
form as

	 	 (39)

The elements of the tridiagonal matrices A = ωij and 
B = ψij are defined as follows:

The entries of the given matrix are

 

The vectors δj+1 and F are defined as:

 and .

Rearranging Eq. (39) gives

	 	 (40)

The initial vector  is determined by solving 
the corresponding interpolation for Eq. (35).

	 	

(41)

where . Eq. (41), formulated for the 

initial conditions, consists of N + 1 equations and N + 3 
unknowns. To solve the system, δ0

-1 and δ0
N+1 must be elim-

inated. After simplications, we obtain:

	 	

(42)

Now, Eq. (42) gives (N + 1) × (N + 1) system of equa-
tions. This system is easily solved for  using matrix inver-
sion algorithm and provides the initial values for Eq. (39). 

Stability Analysis 
This section applies Von-Neumann stability analysis [8] 

to examine the scheme’s stability. At knots with ℵ(x,t) = 0, 
substituting W(x,t) and its derivatives into Eq. (35) yields 
the following difference equation in δi:

 	 	 (43)

where  are given in Eq. (36). 
Substituting trial solution 

	 	 (44)

where η is the wave number, l is the time level, ζl the Fourier 
coefficient, h the spatial step,  the imaginary unit, 
and η the node index, into Eq. (43) gives:

 	 	
(45)

Dividing Eq. (45) by , where  and rearranging 
to obtain

	 	
(46)

where Π is intensification factor. The error plenty should 
not intensify, so it is |Π| ≤ 1. Eq. (46) is reformulated by 
using Euler relation ,

	 	
(47)

From, Eq. (47), we obtain

	 	
(48)
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By applying basic arithmetic manipulations to the com-
plex numbers, Eq. (48) can be expressed in the following 
form:

	 	
(49)

where

 

Since Π is a complex number, stability condition |Π| ≤ 
1 yields the relation

	 	
(50)

By inserting  into Eq. (50) and since 
 the equation needs verification only at 

extreme values. Setting , gives:

	 	
(51)

The inequality in Eq. (51) can be expressed equivalently 
as:

	 	
(52)

Substitution of these values of parameters 
 yields the relation 

	 	
(53)

where  and . 
The inequalities in Eq. (53) hold universally, guaranteeing 
a non-vanishing denominator. Since the eigenvalue mod-
ulus does not exceed unity, the scheme with ℵ(x,t) = 0 is 
unconditionally stable, as shown in Eq. (4.12). This stability 
extends to the general case ℵ(x,t) by Duhamel’s principle 
[25], which asserts that stability for Pk,hV = ℵ follows from 
stability for Pk,hV = 0. Consequently, no constraints are 
imposed on the spatial grid or temporal step size, though 
their selection should enhance the scheme’s accuracy [8].

Analysis of Convergence
Lemma 5.1. [8, 30] The TCBS: CTB-1,...,CTBN+1  given 

in Eq. (32) gratify the inequality:

	 	
(50)

Proof. As , at x = xi, right 

side of Eq. (50)

 

Thus, for all , we have

 

Lemma 5.2. The approximation CTB(x) from Eq. (32) 
is uniformly bounded, that is .

Proof. For the proof, we refer the reader to [8, 26, 29].

Let  be the exact solution of BVPs Eq. (35)-(38), 

and also  be the TCBS approximation 

to the exact solution. Due to the round of errors[24, 29], let 

 is the computed CTBS approxima-

tion to , where . To estimate , we 

must estimate the errors  and 

respectively. Following Eq. (40) for , we obtain

	 	 (51)

where . Eqs. (40) and (51) together 
lead to:

	 	
(52)

Prior to continuing, the subsequent theorem is required:
Theorem 5.3. Suppose that  and 

 be partition of [0,l]. If R(x) be the unique 
TCBS approximation for  at the knots  
then

Proof. Refer to [8, 25, 29] and the references cited 
therein.

Referring to Eq. (21) and Theorem 5.3, we obtain the 
bound on  as follows:
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where  and . 
Then using Theorem 5.3, 

 	 	
(53)

Substituting Eq. (53) into Eq. (52) yields

 	 (54) 

Based on the given properties, TCBS basis functions 
vanish outside the interval [xi-2, xi+2] while within this 
range, CTBi(x) assumes non-zero values at the mesh points. 
Likewise, their first and second derivatives exhibit similar 
behavior at these points. Consequently, the resulting matrix 
||A|| takes the form of a tridiagonal band matrix charac-
terized by dominant principal diagonal elements and non-
zero off-diagonal entries. Therefore, A-1 remains bounded, 
and the matrix A is non-singular. Hence, we get:

	 	 (55)

From , and Lemma 
(50), we get

	 	 (56)

Theorem 5.4. Let w ̅(x) be the exact solution of Eqs. 
(35)-(38) and let W(x) be the TCBS collocation approxi-
mation, then

Proof. From Theorem 5.3, Eq. (56) and triangle inequal-
ities, we have

 	 	

(57)

The convergent theorem below follows directly from 
Lemma (3.3-3.4) and Theorem 5.4.

Theorem 5.5. Let w ̅ (x) denote the exact solution to Eq. 
(1) and W(x,t) its numerical approximation. Then, it fol-
lows that:

 	 	
(58)

 

RESULTS AND DISCUSSION 

A representative numerical example is provided to 
illustrate the accuracy and performance of the proposed 
method. The absolute errors are computed using the dou-
ble-mesh approach, and the maximum pointwise error cor-
responding to each value of ε is obtained through:

	 	
(59)

where  is numerical solution at N, M mesh 

points whereas  denote the numerical solu-

tion at 2N, 2M mesh points. 
Example 6.1. Let us analyze the following illustrative 

problem from [16]:

  

We can write Example (6.1) as, 
.

The parameter α0 = 1.999 in Eq. (29) is chosen based 
on the boundedness of the solution, Lemma 2.2, and 
Definition 3.1.

The results are displayed through Tables and Figures. 
Tables (2), (3), and (4) list the computed maximum 
pointwise errors. Analysis of these tables demonstrates that 
the proposed method attains ε− uniform convergence, with 
the maximum pointwise error consistently decreasing as 
the mesh sizes (N, M) increase for each value of ε.
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 Figure 1 shows the numerical solution profile for N = 
M = 128 and ε = 10-2  highlighting the presence of an initial 
layer near t = 0. Figure 2 illustrates the solution for N = M = 
128 and ε = 10-8,  clearly demonstrating that as ε → 0, the solu-
tion develops steep gradients, with the surface plot becoming 
increasingly dense around the boundary layer region.

where the boundary layer forms. This dense clustering of 
the solution profile reflects the strong influence of the per-
turbation parameter and highlights the effectiveness of the 
numerical scheme in capturing the layer behaviour. Figure 
3 displays the numerical solution profile obtained with N 
= M = 256, ε = 10-8 using mesh plot. The figure reveals the 

Table 2. Maximum pointwise errors at discrete points with N = M for various ε.

ϵ N = M = 8 N = M = 16 N = M = 32 N = M = 64 N = M =12 N = M = 256

10-2 4.679e − 04 1.183e − 04 3.460e − 05 8.025e − 06 1.825 − 06 6.488 − 07
10-4 4.658e − 04 1.186e − 04 3.586e − 05 7.718e − 06 1.840 − 06 7.559 − 07
10-6 4.658e − 04 1.186e − 04 3.587e − 05 7.715e − 06 1.840 − 06 7.577 − 07
10-8 4.658e − 04 1.186e − 04 3.587e − 05 7.715e − 06 1.840 − 06 7.578 − 07
10-10 4.658e − 04 1.186e − 04 3.587e − 05 7.715e − 06 1.840 − 06 7.578 − 07
        ⁞ ⁞ ⁞ ⁞ ⁞ ⁞
10-20 4.658e − 04 1.186e − 04 3.587e − 05 7.715e − 06 1.840 − 06 7.578 − 07
10-22 4.658e − 04 1.186e − 04 3.587e − 05 7.715e − 06 1.840 − 06 7.578 − 07
Eε

N,M 4.679e − 04 1.186e − 04 3.587e − 05 8.025e − 06 1.840 − 06 7.578 − 07

Table 3. Pointwise maximum errors for different values of ε, N and M.

ϵ
↓

N = 16
M = 8

N = 32
M = 16

N = 64
M = 32

N = 128
M = 64

N = 256
M = 128

10-2 1.184e − 04 3.519e − 05 7.867e − 06 1.832e − 06 6.488e − 07
10-4 1.186e − 04 3.586e − 05 7.716e − 06 1.840e − 06 7.559e − 07
10-6 1.186e − 04 3.587e − 05 7.715e − 06 1.840e − 06 7.577e − 07
10-8 1.186e − 04 3.587e − 05 7.715e − 06 1.840e − 06 7.578e − 07
10-10 1.186e − 04 3.587e − 05 7.715e − 06 1.840e − 06 7.578e − 07

⁞ ⁞ ⁞ ⁞ ⁞
10-20 1.186e − 04 3.587e − 05 7.715e − 06 1.840e − 06 7.578e − 07
10-22 1.186e − 04 3.587e − 05 7.715e − 06 1.840e − 06 7.578e − 07
Eε

N,M 1.186e − 04 3.587e − 05 7.867e − 06 1.840e − 06 7.578e − 07

Table 4. Calculated Eε
N,M for a range of ε values and varying N and M.

ϵ
↓

M = 10
N = 16

M = 20
N = 32

M = 40
N = 64

M = 80
N = 128

M = 160
N = 256

10-2 3.014e − 04 7.647e − 05 1.875e − 05 5.154e − 06 1.345e − 07
10-4 3.031e − 04 7.742e − 05 1.894e − 05 5.607e − 06 1.216e − 07
10-6 3.031e − 04 7.743e − 05 1.895e − 05 5.615e − 06 1.215e − 07
10-8 3.031e − 04 7.743e − 05 1.895e − 05 5.615e − 06 1.215e − 07
10-10 3.031e − 04 7.743e − 05 1.895e − 05 5.615e − 06 1.215e − 07

⁞ ⁞ ⁞ ⁞ ⁞
10-20 3.031e − 04 7.743e − 05 1.895e − 05 5.615e − 06 1.215e − 07
10-22 3.031e − 04 7.743e − 05 1.895e − 05 5.615e − 06 1.215e − 07
Eε

N,M 3.031e − 04 7.743e − 05 1.895e − 05 5.615e − 06 1345e − 07
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Figure 1. Mesh plot of the numerical solution profiles for N = M = 128, ε = 10-2.

Figure 2. Surface plot illustrating the numerical solution for N = M = 128, ε = 10-8.

Figure 3. Numerical solution profiles corresponding to N = M = 256, ε = 10-8.
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presence of a pronounced intitial layer concentrated near 
t = 0, demonstrating the steep variation of the solution in 
the nearly region. In Figure 3, the log-log plot appears as 
a straight line, demonstrating the relationship between the 
numerical solution and the spatial variable. This linearity 
on the logarithmic scale indicates that although the error 
remains constant, the solution exhibits a power-law depen-
dence on the spatial variable. 

CONCLUSION

This study examines a numerical scheme designed for 
a class of SPSPs of one-dimensional IBVPs involving an 
initial jump. To obtain solutions that remain stable regard-
less of the perturbation parameter, a specialized difference 
scheme is introduced. The spatial derivatives are approxi-
mated using a uniform mesh combined with a TCBS based 
non-polynomial basis, while the temporal derivatives are 
treated with an Implicit Euler method on a Shishkin mesh. 
This combined approach effectively addresses the difficul-
ties caused by the small perturbation parameter, particu-
larly the formation of initial boundary layers. Compared to 
other cubic splines, the TCBS approach yields more accu-
rate results. It encourages us to select this approach for the 
issue under consideration. From the analysis, it is demon-
strated that the current scheme is convergent, independent 
of the perturbation parameter and mesh parameters. We 
look at a model example, and the computed results show 
that the proposed numerical method produces more accu-
rate solutions for different values of ε, N and M. Our goal 
is to expand the current approach to include higher order 
SPSPs in upcoming work. 
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