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INTRODUCTION

This section focuses on a class of singularly per-
turbed pseudo-parabolic equations defined in the domain
QU [0,T], where 2 = (0,1)and, Q = 2 % (0, T].
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ABSTRACT

In this work, we investigate and numerically approximate an initial-boundary value problem
governed by Sobolev type differential equation exhibiting an initial layer. The problem is ap-
proached through a finite difference framework specifically designed to remain unaffected
by the presence of a small perturbation parameter, ensuring robustness and stability. A novel
hybrid numerical strategy is constructed by employing a non-polynomial trigonometric cubic
B-spline (TCBS) collocation technique for the spatial discretization on a uniform partition,
while time advancement is carried out through an implicit Euler procedure defined over a
Shishkin mesh to effectively capture sharp solution gradients. The developed scheme guar-
antees parameter-uniform convergence, and its theoretical stability and error properties are
rigorously analyzed. A set of numerical simulations is performed to validate the effectiveness
of the method, demonstrating its high accuracy, consistency, and suitability for handling sin-
gularly perturbed pseudo-parabolic problems with initial layer.

Cite this article as: Cheru SL, Duressa GE, Mekonnen TB. Trigonometric based B-spline method
forsingularlyperturbedsobolevproblemswithinitiallayers.SigmaJ] EngNatSci2025;43(6):1967—1981.
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Here ¢ denotes small perturbation parameter, while
X coefficient function, source term, and initial conditions are

J +c(x,l) w=\ (x,t), (x,t)EQ, (1) assumed to be smooth functions that fulfill specific regular-
w(x,0)=g0(x),xEQ,
w(0,6)=w(Lt)=0.r€(0,T],

ity requirements, which will be detailed later.
Sobolev equations represent a distinctive category
of partial differential equations (PDEs) in which the
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highest-order spatial derivative is coupled with time deriv-
ative, leading to a hybrid mathematical structure that
blends features of parabolic and hyperbolic equations. Such
equations model a wide range of physical phenomena,
thermodynamics [1], appearing in mathematical physics
and fluid Dynamics [1-3], shear in second order fluids [4],
astro-physics [5, 6], filtration theory [7], and propagation
of long waves of small amplitude [8]. Some existence and
uniqueness results of equation (1) can be found in [6,9-11].
In 1950 Sergi Sobolev started researching pseudo-para-
bolic equations. A significant part of the recent advances
in Sobolev-type problems has been driven by the shift
from classical parabolic equations to pseudo-parabolic for-
mulations. Building upon these advancements, research-
ers in [11, 12] utilized advanced higher-order difference
schemes to investigate delay pseudo-parabolic equations.
A three-layer finite difference scheme was proposed for
pseudo-parabolic equations incorporating a time-delay
within the second-order derivative term [13]. Furthermore,
higher-order discretization techniques were developed for
one-dimensional delay pseudo-parabolic problems [14]. In
addition, Zhang [15] introduced linearized compact finite
difference methods to address nonlinear Sobolev-type
equations involving delay terms.

The aforementioned investigations primarily address
the regular (non-singular) settings. In contrast, Eq. (1) is
characterized by the inclusion of mixed derivatives involv-
ing both temporal and spatial variables in its highest-order
terms, an intrinsic and defining attribute of Sobolev (pseu-
do-parabolic) equations. Despite their significance in mod-
eling diverse physical processes, the literature addressing
problems of this type remains relatively scarce, with only a
limited number of studies available [2-5,16-19], with pres-
ence of ¢ which makes it singularly perturbed in nature. In
[5], the author examined Sobolev problems with one spatial
dimension using a finite difference method (FDM) to han-
dle boundary layers efficiently. In a related development,
[17] introduced a parameter-uniform approach for initial
boundary value problems (IBVPs) utilizing a standard
S-mesh in the time direction. It is widely recognized that
classical discretization techniques fail to maintain accuracy
when the perturbation parameter takes on small values.
Hence, it becomes essential to design robust and efficient
numerical methods for such problems, ensuring that the
accuracy of the evaluated solution remains uniform and
does not deteriorate as.

The numerical estimate of singularly perturbed prob-
lems (SPPs) is inherently intricate, primarily due to the
emergence of sharply localized boundary-layer phenom-
ena within their exact solutions. The presence of small
perturbation parameters causes rapid variations in narrow
regions, giving rise to boundary or interior layers. As a
result, conventional numerical methods often fail to capture
these sharp gradients accurately and typically do not con-
verge uniformly when the perturbation parameter becomes
sufficiently small. To overcome these difficulties, specially

designed parameter-robust schemes and layer-adapted
meshes, such as Shishkin or Bakhvalov meshes, are widely
employed to ensure stability and uniform convergence
across all ranges of the perturbation parameter [20-23].

Several researchers [2-5, 16-19] have developed numer-
ical techniques for addressing singularly perturbed Sobolev
problems (SPSPs), both with and without time delays.
Nonetheless, these studies have predominantly centered
on approaches grounded in interpolating quadrature rules
involving specific weight and basis functions. Insofar as the
existing literature reveals, no further investigations have
extended beyond this framework. In this study, we propose
a novel computational framework that utilizes TCBS col-
location technique for spatial discretization on a uniform
mesh, in combination with an implicit Euler scheme func-
tional on S-mesh for the temporal derivative.

B-spline functions have evolved into powerful and ver-
satile analytical instruments for the numerical resolution
of PDEs [19, 21-22]. Among these, TCBS collocation tech-
nique has garnered considerable scholarly interest, being
effectively employed for the accurate numerical treatment
of various classes of PDEs [24-26]. Unlike conventional
FDM, spline-based approaches possess the inherent capa-
bility to approximate the solution with high precision at
any location within the computational domain, thereby sig-
nificantly enhancing spatial accuracy. Furthermore, when
compared with classical polynomial B-spline formulations,
the TCBS method has demonstrated superior performance,
delivering more precise numerical approximations for both
linear and nonlinear IBVPs. This enhanced accuracy arises
from the trigonometric structure of the basis functions,
which allows for better representation of oscillatory and
boundary-layer behaviors often present in SPPs [25-26].

In this work, we develop a numerical method tailored
for SPSPs characterized by the presence of initial layers. The
key objectives are to evaluate the computational efficiency
of the proposed approach, validate its accuracy, and ana-
lyze how perturbation parameters influence the formation
and behavior of boundary-layer structures in the solutions.
The original problem is first transformed into a more trac-
table formulation, after which the temporal derivative is
discretized using the implicit Euler method on S-mesh.
The resulting system of ordinary differential equations is
subsequently solved through a TCBS collocation technique
applied on a uniform spatial mesh.

PRELIMINARY FRAMEWORK AND ANALYTICAL
SOLUTION

Eq. (1) is subsequently transformed into the following
equivalent representation:
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+c(x,t)w= N(x,t),(x,t)EQ,

w(x,O):g/)(x),xEQ,

w(0,t)=w(Lt)=0,

(2)

da (x, t) ] )
where d(x,t) = b(x,t) R and a(x,t) is a continuous
functions and aa((;c,t) cC? (Q) Eq. (2) is renowned by the
X

presence of a mixed temporal-spatial derivative in which a

small perturbation parameter ¢ appears in both the highest
order term and the temporal derivative component, thereby
delineating the specific class of SPSPs addressed in this
study. The functions (g, d, ¢, X)(x,t) and ¢(x) are sufficiently
smooth and satisfy the required regularity conditions, such
that a(x,t) > a > 0. At this stage, Eq. (2) is reformulated in an
operator representation, expressed as follows:

va(nn) 2

3 2w ow
d il .
at  otox’ ox +d(xi) ax re(xw ()

The operator presented in Eq. (3) adheres to the subse-

quent principle of maximum.
Lemma 1. Let
(D(x,t)=0 satisfies

CI)(x,t)ZO,V(x,t)EQ

o(x.r)eC’(0)NC*(Q),
in Q,®(x,t)=00nQ. Then

Proof. Let (v*,é-‘* )E@
@(V*,é‘* ) = min(xjt)eéé(x,t) and assume that @(v*,é‘* )< 0.

Now, from assumption, we have (v*,f*)#é for

such that

(v*,§*)EQ- As it attains minimum at (v*,é‘* ), we have
P =0, =P, =0and P _=0at (v*,é-‘* ) Now, we have

f@(x,t) =, (v*,é‘*)—fd)m (v*,é‘*)—a(v*,f*)q)“ (v*,§*)

a(v*,f*)CDH (v*,f*)+c(v*,§*)<1)(v*,§*),

<0, since a(v*,g*) =a>0,

A

which is a contradiction as ffD(X,t ) =0. Hence,
CI>(x,t) = O,V(x,t)Eé [19]. Lemma 2 immediately guar-
antees the uniqueness of the solution to the problem.

Remark 2.1. (Friedrichs inequality)-For a domain
G with a Lipschitz boundary, there exist constants ¢, c,
dependent on G but independent of a functions in D, such
that:

2 . ow 2
!w dxsqg!(%)dx+czlw ()ds, (4)

holds Vw € D. For N = 1, if D € C'(0, I), the Friedrichs
inequality is expressed as follows

i

fwzdx < clf(w')2 (x)dx +c,w*(0),

1 1

[whr=c, f(w')2 (x)dx + c,w (1),
0 0
1

}wzdx < clf(w‘)2 (x)dx +c, [wz 0)+w’ (l)].

If a function in D satisfy additional conditions, such
that w(0) = 0 or w(l) = 0, special cases of the previously
derived estimates are obtained. Specifically, if D, € D with
w(0) = 0 = w(l), the estimates takes the form:

/

i
fwzdx < clf(w')2 (x)dx, wED.,. (5)
0 0

By selecting one of the estimates for c,, we derive the
following inequality:

! [-0)! 2
{wzdxscl ( p= ) I (w') (x)dx, (6)

0

which is valid for for all w € Dy, that is for all w € D which
satisfies the above condition.

Remark 2.2. At the critical points (0,0) and (1,0), the
functions ¢(x) and X(x,t) gratify the subsequent compati-
bility requirements:

@(0)=g(l)=0 7)
and

—i(a(O, O)M) +b(0, O)M +c@(0) = R(0,0),
ox dx dx

8
_i(aa,mw)+b<l,o>m+c¢@=xa,m. ®
ox dx dx

da ob —
Lemma 2. Letfa,f,c,NEC2 (Q)and
Jx ox

a+x”I’E, >0, where &, =min c—la—b )
) 2 ox

Accordingly, the solution of Eq. (1) satisfies the ensuing
estimations as established in [13, 16-17].
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YR k=0,1; z=0,1,2. (10)

“, (x,HEQ,

Proof. Multiply both sides of Eq. (1) by w(x,t). In this
case, we obtain

(ﬁw,w)o (11)

= (X, W)o‘

Expanding Eq. (11) through the inner product yields:

9w ( ow ) (a( 6w) )
—E——,W| +|E—,W| | —|a—|,W

atdx , ot ), lax\ ot .
+ ba—w,w +(cw,w) =(N,w).

ox 0 0 0

We now employ the technique of energy-based inequal-
ities, achieved by performing a scalar multiplication with
w(x,t) wherein

= (W, w)o. Here

1
(w,v) =fwvdx,

_ MW =_gf ;
, arax’ )

I
( ) .{SEde_zf( ) 28t Wzdx
! .

((awx ). ’W)o ={(awx ), wdx = [awxw]i) - a{wfdx =-a

£ 0

_edfowf
2 ot

ox

26‘

aw

ax

s

0

since a(x,t)za >0,

fbw wdx = fb( w’) dx

2

10b!

- (wb), —f—fw dx

bww

2 ox
1

2 2
(cw,w)o =fcw dx=cHw0
0

(%)<, I,

, since cEC? (5),

Upon inserting this expression into Eq. (1) and per-
forming subsequent algebraic manipulations, we obtain:

8w 1 9b

Zm( i R
d ([|ow[’ awl" o
em(ax+m@]s-mxax T
0
2
< 20| —2( _l"i’)uw\\
ox |,
aw
<-2a P ) -2, HwHi
a2, o + 100
ox ||, oo '

where R(t) = 2||w||o|IR]|,- Now, we have two cases:

where X(f) =

. fa =g, then

&x'(t) = =20 (1) + R(0), (12)

2
+ [l

0x

0

2. Given a = £, and 0 < < 1, employing the embedding

inequality in Eq. (6) leads to the following result:

’ 2 owl’ owl’ 2
o R ) L e L ey
0 0
2 2
za(1-9) w +(a0”—2+§0)|
ax ||,

2
b4
choosing 9 from equality & (1 - 19) = aﬂlT and con-
sidering Eq. (9), we obtain
1= a's,
l+7°72°

1 +a’',
1+2°17
By inserting these expressions into the preceding equa-

tion, we arrive at:
ar’l” + ¢,

13
1+ (13)

)((t)+§)‘i(t)-

sx'(t)s -

Hence, combining the results of Eqgs. (12) and (13)

yields:

ex'(t) = —2c (1) + R(0),
a if as({, for casel,

where ¢, = 272 (14)
‘ m—;fo if a > ¢, for case2.
1+
Furthermore, for R(f) expression, by using

‘(W,V)‘ =u HWH2 + @va inequality, we obtain

1
2wl 1N, = 260 + 5 IR, = 2[pel, I
0

2
=¢[wl, +

where ¢, = 2¢, is a constant. Now, substituting this values in

place of R(?), we have

1
6‘){'([) = -2¢c,x(t) +c, HWH(Z) + c—HNHi s -—c x(t)+ c(;l HNH(Z)
0

2
Since —c, o is a constant and omitting from the
X
expression, we get

0
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gx'(t)s—co;((t)+cglHNH; (15)

From Eq. (15) and Gronwalls’s inequality, the integrat-

ing factor is /.F' = ef
some manipulation, we obtain:

d}((l) %’t < %”t
r e s—g)((l)e

d a ¢ 2
=[x s

integrating both sides with respect to ¢
“, -1t 0y
= x(t)er =& fHN(r)Hze Tzt (o),
£
5 _af
(1)0(1_6 e )
Thus, from the above, we get
zl
ox ||,

et
since max(l e ¢ J=1.

", where p(x) depends on x. After

-1 ‘0
+ %HNHE e?t, multiply by LF

0
£ 4+ cO max

O=7s=t

=>)((t)=}fo

where y, = H¢H]2

_at

+HWH =xe ¢ +cO max

O=7=t

2

05

R(7)

Next, by embedding inequality and Poincare inequality,
aw
ox

2 2
ow

N (is
x|, o

, we get
0

!
4

(o) = o)

r>Ho)’

which proves Eq. (10) for z = k = 0. Again multiply Eq. (1)
2
by —VZV, we obtain
0x

ow a°w ’w 9*w a( ow\) d’w
el—,—5| —¢ s | | —|a—
Jt  ox 0 dtox”  ox 0 x| ox ) ox? 0
2 2 2 2
+(baw,av2v) +(CW,81;V) =(x,a ‘:}) :(eu’avzv)
ox ox 0 ox 0 ox 0 0x 0
82
=(x,vf) .
ox 0

Analogous to the earlier scenarios, following appropri-

2 / g
""‘ﬂw,g < Zxoe ¢ 4 Zc(;z max

<£( Y,

ot
vle £ +c, "' max
2

O<7=<t

ate algebraic manipulations and reorganization, we obtain:

(16)

Given that (p"ELz(Q) and by using the bounded-

ness of HWH and |— ow . The estimate Eq. (16), in turn

ox ||,
aw ’w| . —0. 7=
2| <c|—|| givesEq.(10)fork=0,z=1.Oncemore,
0xX ||, g ax” |,
@w 'w
by utilizing the given identity, | /w, N,— |,
Y BleE Y( o’ ar) ( axzét)o
we obtain
*w ’ *w ’ C
2k < |l + IINII
dtox” || otax’ ox 0 ox’

which leads to Eq. (10) for k = 1, z= 0,1 by using just proved

2
z

estimates for |——

2l (z=0.1,2).

In conclusion, expressing Eq. (1) in the following form
yields:

3 2
9w
& +a(x,t)—=I'(x,1),
2 ¢ ( )axz ( )
with
d da d 0
(x,t)=£—w——a—w+b—w+cw—x, and‘l“(x,t)‘sc,
Jt  dx ox ox

The estimates Eq. (10) then follows immediately for k
=0,1,z=2.

da 9*a b dc OR
Lemma 3. Assume ﬁ 70 — i fEC(Q) and
ot otox ot ot ot

assumptions of Lemma 2 are valid. Then the estimate:

al+z
otox”

ot
< c{1 +—e ¢ } t€[0,7],z=0,1,2. (17
£
holds where @, = ¢, /2 and ¢, is given by Eq. (14).

Proof. The argument is presented in [16-17, 19].

NUMERICAL METHOD IMPLEMENTATION

Mesh Generation and Discretization

The domain Q is partitioned using mesh points A = Ay
x Ay, where Ay ={x; =ih:i=1(1)N-1,h=I/N}and A, =
{0=t, <ty<- <ty =T, 1=t~ t;,}. The temporal mesh
A,y is chosen as a piecewise-uniform grid. A fitted piece-
wise-uniform S-mesh is introduced on [0,T] to resolve the
initial layer at t = 0. The interval is split into [0,0] and [0, T],
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each divided into M/2 equal parts, with the transition point

o defined asin .

o =min {g, aglsln(M)},

(18)

where a is constant, ¢, = ¢, /2 and ¢, is given in Eq. (14).
Since 0 < T, the mesh is refined over [0,0] and coarser
over [0,T]. Let 7, and 7, denote the step sizes these respec-
tive subintervals. Now, 7, = 20M7", T, = 2(T—U)M‘l,
7,<TM ", TM ™" <7, <2TM ™", 7, +7, = 2TM ', s0 we get

— T, if j=0)M/2,

Av =t = ]1. . j. () / 19)
7 o+(j-M)2)z,, if j=M/2()M.

It is assumed that o = ;"¢ In(M); otherwise N grows

exponentially relative to e.

Semi-Discretization in Time
The time domain is discretized on an S-mesh with step
size 7, while x is kept continuous, yielding the following

ODE system.

Jj+l

~(e+7,a™ () (w, (1)) +d7 () (w,(x))
+(£ +‘;fcf*l(x))w~/*'(x)

+&(w, (1) =W (0) = g(x.1,,,), (20)
w(x,0) = w’(x) = ¢(x), x€§,
w(0)=w"(1)=0,0= j <M, t€(0,T],

At the (j + 1)th time step, Eq. (20) takes the form:

0w () = (e 47,0 () (W (0) " +d () (w, ()"

Herr, e )W () = g,
w(x,0) = w'(x) = ¢(x), xEQ,
w0 =w(1)=0,0s j<M,t€(0,T],

1)

where, g(x,7,,,) = —¢ (W, (x)) +ew (x) + 7,8 (x).

Lemma 3.1. (Semi-Discrete Version of Maximum
Principle.) Let ®/*'(x) be sufficiently smooth on A. If
®(0)=0, ®*'(1)=0 and /Y®’'"'(x)=0,xEA, then
@’ (x) =0, VxEA.

Proof. Let 0'* is such that & (o) = I\rgg D ,.,(0)<0.

We know that U*QE{O, 1} = 0'*6(0, 1). Using extrema val-
e, (o%)

d 2

ues, — D | (O*) =0and = (. Then we have
dx ’ x

(1D (0%) =~ (e +7,a" (o) (@) (0%)
+d" (o) (®@,) " (0%)
+ (5 +7,c"" o”‘))d)"+1 (o%),
< (5 +17_].cj”(o”‘))d>j+1 (o*),

<0, as (£+rjcj”(x)) >0,

given that Ef(bj”(o*)<0 which is a contradiction to
M@ (0*) 2 0, VxEQ. Therefore, /*' (x) = 0,VxEQ.
Thus, £¥ satisfies the semi-discretized form of the maxi-
mum principle.

Time Semi-Discretization: Error Analysis

Let w*'(x) reprent the semi-discrete approximation
of the exact solution w(x,tj+1) of Eq. (4) at time level T;.
Then, applying the implict Euler method, the semi-discrete

scheme for Eq. (2.1) can be expressed as:
Y’ (x) =@ (x)> XE§s

Y (x) =8(x%.0,)
Y(0)=0=Y""(1),05 j < MtEWO.T],

(22)

where

XY (x) = —(E+Tja/+1 (x))(wxx (x))j”

+d” (x)(w,(x)"
+ (€+1/"/.cj+l (x))wj” (x)

and g(x,t;,,) =—¢ (W, () +enw (%) +7,R7" (x).

Definition 3.1. [6, 12, 25, 27, 28] A FDM is stable for
[I-]I, if there exists positive constants L1 and L2, indepen-

dent from T,

» such that when 7; approaches 7, and 7,, we
have

[wl= 1 ]+ Lol

Here, w° represents the initial condition, while X denotes
the source term.

Lemma 3.2. [22, 27, 28] Let the function
YECO(K)HCZ(A).Thenwehave
Y] ¥l + e ()]

Lemma (3.2) ensures that Eq. (22) admits unique solu-
tion Y/*' () at time level 7; Moreover, by Lemma (3.2), this
solution Y’*' (x) remains uniformly bounded with respect
to e. Define /"' (x) =Y<x,tj+l)—?(x,tj+l ),, as the local
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error of Eq. (22) at #;,,, where ?(x, tj+]) solves the corre-
sponding auxiliary BVP:

fﬁl?jn (x) = g(x,tj+l ),

I+l i+l (23)
Y (0)=0=Y"(1), 0<,j<M.

Lemma 3.3. (Local Truncation Error(LTE)): The local

error /"' (x) obeys the following bound:

Ej”(x)HSC(At)Z, where At =M™ ln(M)~ (24)

Proof. Depending on the magnitude of o, there arise
two conditions:

1. Ifj = 0(1)%, t;=jrand 7 =2ﬁa,then we have
T, =1,-t,, = jr,-(j-1)1,=
20;"eIn(M)
M
< KM In(M),K =2a;'e

=1 =

Evaluating at #;,, with 7, = Ar = KM “'In(M) and apply-
ing Taylor expansion to Eqs. (19) and (22), we get
MEM (@) =K, (M (M), K, = K, xEQ,

E“‘(O): =E/*'(1), ]‘=0(1)M/2. (25)

2(1-o0
2. Ifj=%+l,...,M, t =U+(j—A24)Tzandrz =M'

Now
7=t~ =0+(j-M[2)7,~(o+((j-1)-M/2)z,),
=o+(j-M/2)t, -0~ jT,+7,+ M/27,,
-1
_z, =21—a0 eln(M)
M
<K,M™', since 2a;'e In(M ) <2M .

E}

Considering the estimate at 7, =Ar, =K,M " and
applying Taylor series expansion to Eqs. (22) and (19), we
get:

M (x)= K (M), K, = K2, xEQ,

E/+l(0)=0=aj+l(l)’j=(M/2)+1(1)M. (26)

Applying Lemma (3.2) to &/*! (x) yields estimates for
both regions. The total LTE is expressed as the sum of the
finer-and coarse-mesh contributions, i.e.,

2 (x)| = K (M (M) ) + K (M)

. @)

—C(M @), C=K +K (M)

Lemma 3.4. (Global Error). The global error Zj(x) is

bounded at t;as follows:

sup <K.(At), At=M"In(M).

(j+1)At<T

(28)

Proof. Let HZ‘/ (x)H =Y(x, tj+1)—?(x,t‘ 11)- By applying
Eq. (27) togher with Lemma (3.3), we obtain the global

error at (j+1)th time step.

L -[Se

<[zl +[E].. +.-+

2
>

. J<T/At, A=K (M In(M))

J

—
=)
—

>
3

<Cj(At)', using Eq.(3.10)

<C, (M In(M))(M ™ In(M)),

<CT (M In(M)), as j(M ™ In(M))<T,
<C, (M (M), C,=CfT.

Spatial Semi-Discretization

The TCBS method is employed to approximate the
solution of Eq. (21) and its spatial derivatives using linear
spline expansions.

Cubic Trigonometric B-Spline Techniques
The domain A divided into N equal intervals, the

approximate solution at (j+1)th is expressed as:

S0, (1)CTB,(x).

=

W(x,t)= (29)

where §,(t) are determined to approximate W(x,t) to exact
solution W,(x,t) at (x, tj), and CTB(x) represent the TCBS
basis functions , which is given as[29-30]

s’ (5).
sin(gﬂ)[sin(§)Sin(§2)+sin(§3)sin(§4)]
+sin2(§4)sin(§5),
sin(§5)[sin(§4)sin(§3)+sin(§i)sin(§6)]
+sin(§l )sinz (53),

if [x‘,z,x,,l]

if [x,_l,xl ],

CTB,(x) = (30)

|~

if [x[,x,”]
Sinz(gs)! if [Xmsxuz]

0, otherwise,

where, 19=sin(§)sin(2§)sin(3§), §=g, §l=x—x,~_z

2 b
X~ X X =X X=X Xigg =X

g = 5 g = 5 g = > §5=72 and
XX, . o . P

&= L. Consider the iterative relation provided in Eq.

(31).



1974

Sigma J Eng Nat Sci, Vol. 43, No. 6, pp. 1967-1981, December, 2025

Table 1. The values of CTB,(x), CTB,(x) and CTB;"(x) at the nodal points obtained using Eq. (30)

Xi2 Xi1 Xi Xit1 Xiv2
CTB(x) 0 th 2 t 0
CTB;/ (x) 0 Us 0 Uy 0
CTB;"(x) 0 Hs He Us 0
sin The approximate solution at the mesh boundaries is
. . 1 obtained from Eq. (32) combined with the boundary con-
CT. B X=X, CTB; ditions in (2.1) as follows:
) W(xo’ 1+1) WO + 0" + /" =0,
: xi+ —-X + + + (34)
sin| 5= ey W () = 047+ 1,00+ 607 =0,
- CTB™ (x),
X X
sin ( i 5 il Once §;is computed and CTB,(x) with its derivatives are
substituted into Eq. (21), we obtain N + 1 equations with N
k=2 + 3 unknowns.

This iterative formula defines TCBS, beginning with
first order case. Table 1 display CTB,(x) and its derivative
values at the mesh points.

Table 1 lists the entries as:

2

= sind (£)ese(28 )ese(3¢), s =1ty

u, = ——csc(3§), U, = wsc( é‘)

(1+3cos( ))csc( )

—3cot2(3é‘)
s = 16(2005(§)+cos)(3§)

He = 2+4cos(2é‘)’

h
where £ =—
£ 2

The approximation W/at (xi,lj) over sub-interval

[x X; ]1s given as:

i+1

N+1
W/ = E 8/"'CTB, (x).

i=-1

(32)

Owing to the local support of B-splines, only CTB,_,(x),
CTB(x) and CTB,,,(x) are non-zero on the given interval.
Using Egs. (30) and (32), the nodal values and derivatives
of W/ are expressed through the time parameters /"' as

follows:

j+l1

W/ = w6 + w67 + 1677
(W );-Hl = ﬂséi/jl + y45’+1

x i+l

(33)
J+l _ 5(/’+1 (sj+l 5/4—1
(W), = 150/ + 150/ + 1,6/5".

i+l

KNMW—V 5/+l+rr§/+l+r+§/+l

i+l
—E 6/ +ES +E'6) +F, (35)

fori=0,1,...,N,

where, the coefficients take the following form

]+1
L],

=g —us) -7, usa + 7 al”
e(u, - ug) -7, +T p0,0),

rh=e( - us) -7 sl T ud] T, (36)

Ef =e(m-m), Ef =& (- 1),

E = -us), F=7 /"

i

c
7;.

Treatement of boundary conditions

To eliminate 6, and Jy,, from Eq. (35), we apply
boundary conditions given in Eq. (34). Now, for i = 0, Eq.
(35) is reduced to

I —ro_& §({+l+(r0+—1;) )51“1 E -E;, =2 o ol
H “ (37)
+(Ey - E;)o) + F,.
Eq. (35) simplified to the form for i = N
(re=ri)oin Jr(rV —r Zz )5!” (E5-E3)oi
1
(38)

| Ey-E 2 |o)
Y
+F,.

Now, Egs. (35)- (38) lead to (N + 3) x (N + 3) sys-
tem with (N + 3) unkowns & ;, &, ..., On» Oy,1- Excluding
the unkowns J_, and §y,, from Eq. (37) and Eq. (38) for
i=0andi= N, then Eq. (35) becomes (N + 1) x (N + 1).
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equations with (N + 1) unknowns Jy, ..., 0y.;, 6y in matrix

form as

A8 =BS/ +F, i=1,2,..,N-1. (39)

The elements of the tridiagonal matrices A = w;; and

i
B = y;;are defined as follows:

(p, P, 0 O ... O 0 0 ]
o0 0 0
Ao 0 n r?" r 0 ,

0 0 - ryy 1y Tya

0 0 -« 0 p P |
ps ps 0 0 ... O 0
E E E 0 - 0 0 0
g0 BB E 0 0
O 0 O o0 E,, E, E,
0 0 0 ©0 0 p p

The vectors &' and F are defined as:

& =(8%1,00, 80,08 ) and F=r, (RJ7 N/ RN
Rearranging Eq. (39) gives
AX =H, where X =6"", and H=BS/ +F.  (40)

The initial vector ((5_] s Oy ) is determined by solving
the corresponding interpolation for Eq. (35).

0 0
ax 0 0

W (x)=¢"( i=0(1)N,

o) ) o

(41)

where W E (5 CT. B ) Eq. (41), formulated for the

i=-1
initial conditions, consists of N + 1 equations and N + 3
unknowns. To solve the system, §°; and 6%;,; must be elim-
inated. After simplications, we obtain:

u, (S(? + - Al 510 =¢(0)_ﬂ¢'(0)’
Uy 3
WO+ 1,6 + 14, 5,

i+l

(/‘1 - M;u4 )51(\)/-1 + U, ‘51(\)/ = w(xN)_ﬁlp'(xN)'
3

—p(x), i=IN-1,  (42)

3

Now, Eq. (42) gives (N + 1) x (N + 1) system of equa-
tions. This system is easily solved for d; using matrix inver-
sion algorithm and provides the initial values for Eq. (39).

Stability Analysis

This section applies Von-Neumann stability analysis [8]

to examine the scheme’s stability. At knots with R(x,t) = 0,

substituting W(x,t) and its derivatives into Eq. (35) yields
the following difference equation in J;:

18 w8 w8 = ETS! + ESS! + ES),

i+l i+l

(43)
where 77, 1, ;" and E; ,E; ,E are given in Eq. (36).
Substituting trial solution

=™, (44)

where 7 is the wave number, [ is the time level, {! the Fourier
coefficient, h the spatial step, i = V—1 the imaginary unit,
and 7 the node index, into Eq. (43) gives:

r—é‘l-ﬂei(n—l)uh + FC§I+]ei(n)r]h + }’Z.+ é‘1+1ei(’1+1)’l/1 _

" | (45)
+EC§1 innh +El.+é‘lel("+1)']h.

Evi—é‘[ei(n 1

Dividing Eq. (45) by ", where ¢ = nh and rearranging
to obtain

& - E +E e +E'e”

é—l ’/;c + r;—efup + r+eup

(46)

where IT is intensification factor. The error plenty should
not intensify, so it is |II| < 1. Eq. (46) is reformulated by
using Euler relation % = COS((p) +i sin((p),

Ef+ (El.’ +E’ )cos(w) + i(Ef +E- )sin(¢)

InI=— - (47)
n+ (”i_ +7;" )COS(‘P) + i(”; +7 )sm(zp)
From, Eq. (47), we obtain
X, +1iY,
S — (48)

X, +iY,
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By applying basic arithmetic manipulations to the com-
plex numbers, Eq. (48) can be expressed in the following
form:

_ XX +ED
X +Y;

_H-Y;Xz _Xle

X22+Y22 > (49)

where
Xl = Eic + (Eii + E; )COS((p), Yl = (Ei+ + E; )sin((p),

X, =rf+(r 40 Jeos(g) Yy =(r7 417 Jsin(p).

Since IT is a complex number, stability condition |II| <
1 yields the relation

2 2
XX, +YY, Y.X,- XY,
L R e e I = I B CY
X, +Y X, +Y

XY, (i=1,2) into Eq. (50) and since
@ =nh,0=@=m, the equation needs verification only at

By inserting

extreme values. Setting ¢ = 7, gives:

E -E+E"Y
| =t (51)
r=r +}’;

1

The inequality in Eq. (51) can be expressed equivalently

as:
E —-E +E’
-ls———"=1 (52)
o En
Substitution of these wvalues of parameters
ro, v, rtand E; L E;, E; yields the relation
20—, )+ (g -2
Sls— (”“ﬁl Lt ‘%)_ <1=|0)<l  (53)
.:.1(2,u1 _/“‘2)"":2(:“6 —2#5)+.:3
where E =¢+7,¢/", B, =e+7,a/" and E; =2u7,d/".

The inequalities in Eq. (53) hold universally, guaranteeing
a non-vanishing denominator. Since the eigenvalue mod-
ulus does not exceed unity, the scheme with X(x,t) = 0 is
unconditionally stable, as shown in Eq. (4.12). This stability
extends to the general case X(x,t) by Duhamel’s principle
[25], which asserts that stability for Py ,V = X follows from
stability for P, ,V = 0. Consequently, no constraints are
imposed on the spatial grid or temporal step size, though
their selection should enhance the scheme’s accuracy [8].

Analysis of Convergence
Lemma 5.1. [8, 30] The TCBS: CTB,,,..,CTBy,, given
in Eq. (32) gratify the inequality:
N+l

ZI‘CTB,,(x

)‘56,0sxsl- (50)

Proof. As

E CTB, ( E \CTB

, at x = x;, right

side of Eq. (50)

E \CTB

i=

)| =|CTB_, (x)|+|CTB (x)

+|CTB, (x)|+|CTB,, (x).

=‘ﬂ2‘+‘/‘1‘+‘/‘1‘+‘”2‘56'

Thus, for all xE[O, 1], we have

E \CTB

=

HCTB HCTB \

x)‘ <0.

Lemma 5.2. The approximation CTB(x) from Eq. (32)
is uniformly bounded, that is ‘C iy B(x)‘ <C,VxeQ.
Proof. For the proof, we refer the reader to [8, 26, 29].

+|cTB,,,(

Let w(x), be the exact solution of BVPs Eq. (35)-(38),

N+1

and also W (x) = E 0.C TB ) be the TCBS approximation

to the exact solutlon Due to the round of errors[24, 29], let
N+1

W(x) = 2 0.CT. B, x) is the computed CTBS approxima-
1=—1
— - — — \T
tion to w(x), where 0; = (50,(51,...,(51\/) . To estimate , we
must estimate the errors ||w(x) — W (x)|| and ||W (x) — W (x)||

respectively. Following Eq. (40) for W (x), we obtain

AX =H. (51)

= = — — \T
where X = (50,51,...,5N ) . Egs. (40) and (51) together
lead to:
A(§-§)=H—E. (52)
Prior to continuing, the subsequent theorem is required:
Theorem 5.3. Suppose that F(x)EC4 [0,1] and
{0 =Xgses Xy = 1} be partition of [0,/]. If R(x) be the unique
TCBS approximation for I'(x) at the knots x,,...,
then

Xy_1sXn»

|R(x)-T(x)| < O,

HR‘k)(x) _r® (x)H <O(h?), k=12,

HR(k)(x) _r® (x)H <O(h), k=3

Proof. Refer to [8, 25, 29] and the references cited
therein.

Referring to Eq. (21) and Theorem 5.3, we obtain the
bound on HH - HH as follows:
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‘H _E‘ = a]u; _ﬁ]u} - }/luj - (;) _ﬂ] (l;) - }’1;/ > H;V(x)(xf’tﬁl)_W(xf’tf*fl) = C(M_l 1n(M)+N_2)’ (58)
o i ’ B 0<i<sN,0<j=<M.
<an| ;= () [ +[ ~(u) |+, =0

where ¢, =—(£+rjal.j”), B,=d’" and 7, =(,9+‘rjc,.’+1 )
Then using Theorem 5.3,

[t - H<lailo(#*)+lalo(#*)+rlo(r).
<©h*, where © =|a|+|B|+|1,|O(h).

Substituting Eq. (53) into Eq. (52) yields

A()?—?)=H—ﬁ:>HY—? <[z -H| <07 (54)

Based on the given properties, TCBS basis functions
vanish outside the interval [x;,, x;,,] while within this
range, CTB,(x) assumes non-zero values at the mesh points.
Likewise, their first and second derivatives exhibit similar
behavior at these points. Consequently, the resulting matrix
||A|| takes the form of a tridiagonal band matrix charac-
terized by dominant principal diagonal elements and non-
zero off-diagonal entries. Therefore, A" remains bounded,
and the matrix A is non-singular. Hence, we get:

H} —?H <@,i°, where ©, = ®HA_1H~ (55)

o N+l _
From W(x)—W=2(5l.—§,-)CTB,.(x), and Lemma

(50), we get =1

[ (x)-w (x)| < ©n*, where © = 60, (56)

Theorem 5.4. Let w(x) be the exact solution of Egs.
(35)-(38) and let W(x) be the TCBS collocation approxi-
mation, then

HW(x) - W(x)H = O(h2 )

Proof. From Theorem 5.3, Eq. (56) and triangle inequal-
ities, we have

Hsz(x) - W(x)H = HW(X) —W(x) + W(x) -W(x)

>

= HW(x) - W(x)H + HW(x) - W(x) » (57)

<0(n’)+6(n*)<o(n’).

The convergent theorem below follows directly from
Lemma (3.3-3.4) and Theorem 5.4.

Theorem 5.5. Let w(x) denote the exact solution to Eq.
(1) and W(x,t) its numerical approximation. Then, it fol-
lows that:

RESULTS AND DISCUSSION

A representative numerical example is provided to
illustrate the accuracy and performance of the proposed
method. The absolute errors are computed using the dou-
ble-mesh approach, and the maximum pointwise error cor-
responding to each value of ¢ is obtained through:

EX = max [P (3, ) = (o ),

0<i,j<N.M

(59)

where W (xl.,tj) is numerical solution at N, M mesh
points whereas """ (le. ol ) denote the numerical solu-

tion at 2N, 2M mesh points.
Example 6.1. Let us analyze the following illustrative
problem from [16]:

3
: 1
¢ (’WZHLW_i e L2 4| +(xs_,z)<Lw+
Jdtox ot ox 2 0x 0x

(e" +x2)u =e” sin(mc(l —x)),
w(x,O) = sin(/zx), xeﬁx,
w(0,) = w(l,2) = 0, E€(0,1].

We write Example (6.1) as,

d(x,1) =b(x,t)—(;—a (¥ —x-r’)
X

can

ow *w o 1, 0’w
——¢ S—|e +-x"+4 >
ot Jd1ox 2 0x
+(x3—x—t2)%}+(e"+x2)w

=e” sin(mc(l—x)),
w(x,O) =sin(ﬂx), xeﬁx,
w(0,2) =w(l,¢) =0, tE(0,1].

The parameter o, = 1.999 in Eq. (29) is chosen based
on the boundedness of the solution, Lemma 2.2, and
Definition 3.1.

The results are displayed through Tables and Figures.
Tables (2), (3), and (4) list the computed maximum
pointwise errors. Analysis of these tables demonstrates that
the proposed method attains ¢~ uniform convergence, with
the maximum pointwise error consistently decreasing as
the mesh sizes (N, M) increase for each value of e.
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Table 2. Maximum pointwise errors at discrete points with N = M for various e.

€ N=M=8 N=M=16 N=M=32 N=M=64 N=M=12 N=M =256
102 4.679%¢ - 04 1.183e - 04 3.460e — 05 8.025e - 06 1.825 - 06 6.488 — 07
10+ 4.658e - 04 1.186e - 04 3.586e - 05 7.718e — 06 1.840 - 06 7.559 - 07
10°¢ 4.658¢ — 04 1.186e — 04 3.587e¢ - 05 7.715e — 06 1.840 - 06 7.577 - 07
10® 4.658e — 04 1.186e - 04 3.587¢ - 05 7.715e — 06 1.840 - 06 7.578 — 07
10 4.658¢ — 04 1.186e — 04 3.587e¢ - 05 7.715e — 06 1.840 - 06 7.578 = 07
102 4.658¢e - 04 1.186e - 04 3.587e - 05 7.715e - 06 1.840 - 06 7.578 - 07
10% 4.658¢e - 04 1.186e - 04 3.587e - 05 7.715e - 06 1.840 - 06 7.578 - 07
ENM 4.679¢ - 04 1.186e - 04 3.587e¢ - 05 8.025¢ - 06 1.840 - 06 7.578 - 07

Table 3. Pointwise maximum errors for different values of ¢, N and M.

€ N=16 N=32 N=64 N=128 N =256

l M=8 M=16 M=32 M=64 M=128

10 1.184e - 04 3.519¢ - 05 7.867¢ — 06 1.832e - 06 6.488e — 07
10 1.186e — 04 3.586e — 05 7.716e — 06 1.840e - 06 7.559e - 07
10°¢ 1.186e — 04 3.587e - 05 7.715e — 06 1.840e - 06 7.577e - 07
10°® 1.186e — 04 3.587e - 05 7.715e - 06 1.840e - 06 7.578e - 07
10 1.186e — 04 3.587e - 05 7.715e — 06 1.840e - 06 7.578e - 07
102 1.186e — 04 3.587e - 05 7.715e — 06 1.840e - 06 7.578e - 07
10 1.186e — 04 3.587e - 05 7.715e — 06 1.840e - 06 7.578e - 07
ENM 1.186e — 04 3.587e - 05 7.867e — 06 1.840e - 06 7.578e - 07

Table 4. Calculated E, ¥ for a range of ¢ values and varying N and M.

€ M=10 M=20 M=40 M =80 M =160

l N=16 N=32 N=64 N=128 N =256

10 3.014e - 04 7.647¢ — 05 1.875e - 05 5.154e - 06 1.345e - 07
10+ 3.031e - 04 7.742e - 05 1.894e - 05 5.607e — 06 1.216e - 07
10°¢ 3.031e - 04 7.743e — 05 1.895e — 05 5.615e — 06 1.215e - 07
10°® 3.031e - 04 7.743e — 05 1.895e - 05 5.615e - 06 1.215e - 07
10" 3.031e - 04 7.743e - 05 1.895¢ - 05 5.615e — 06 1.215e - 07
102 3.031e - 04 7.743e — 05 1.895e - 05 5.615e - 06 1.215e - 07
10 3.031e — 04 7.743e — 05 1.895e - 05 5.615¢ — 06 1.215e - 07
ENM 3.031e - 04 7.743e - 05 1.895e - 05 5.615e - 06 1345¢ — 07

Figure 1 shows the numerical solution profile for N = where the boundary layer forms. This dense clustering of

M =128 and £ = 10 highlighting the presence of an initial  the solution profile reflects the strong influence of the per-
layer near t = 0. Figure 2 illustrates the solution for N=M = turbation parameter and highlights the effectiveness of the
128 and e = 10, clearly demonstrating that as € > 0, the solu- numerical scheme in capturing the layer behaviour. Figure
tion develops steep gradients, with the surface plot becoming 3 displays the numerical solution profile obtained with N
increasingly dense around the boundary layer region. = M = 256, ¢ = 10°® using mesh plot. The figure reveals the
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Figure 1. Mesh plot of the numerical solution profiles for N= M =128, ¢ = 102
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Figure 2. Surface plot illustrating the numerical solution for N = M = 128, e = 10°%.
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Figure 3. Numerical solution profiles corresponding to N = M = 256, ¢ = 10,
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Uniform Convergence in loglog plot
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Maximum errvor in Log scale

10 10

N

Figure 4. Log-log representation of the maximum point-wise error corresponding to Table 2.

presence of a pronounced intitial layer concentrated near
t = 0, demonstrating the steep variation of the solution in
the nearly region. In Figure 3, the log-log plot appears as
a straight line, demonstrating the relationship between the
numerical solution and the spatial variable. This linearity
on the logarithmic scale indicates that although the error
remains constant, the solution exhibits a power-law depen-
dence on the spatial variable.

CONCLUSION

This study examines a numerical scheme designed for
a class of SPSPs of one-dimensional IBVPs involving an
initial jump. To obtain solutions that remain stable regard-
less of the perturbation parameter, a specialized difference
scheme is introduced. The spatial derivatives are approxi-
mated using a uniform mesh combined with a TCBS based
non-polynomial basis, while the temporal derivatives are
treated with an Implicit Euler method on a Shishkin mesh.
This combined approach effectively addresses the difficul-
ties caused by the small perturbation parameter, particu-
larly the formation of initial boundary layers. Compared to
other cubic splines, the TCBS approach yields more accu-
rate results. It encourages us to select this approach for the
issue under consideration. From the analysis, it is demon-
strated that the current scheme is convergent, independent
of the perturbation parameter and mesh parameters. We
look at a model example, and the computed results show
that the proposed numerical method produces more accu-
rate solutions for different values of ¢, N and M. Our goal
is to expand the current approach to include higher order
SPSPs in upcoming work.
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