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INTRODUCTION

Smart homes and IoT-enabled appliances are gaining

ABSTRACT

The exponential growth of electrical energy demand can be attributed to the increase in popu-
lation and urbanization. A strategic approach required to tackle this pressing issue involves the
integration of Internet of Things (IoT) technologies and intelligent devices within households,
a key initiative being undertaken by smart cities. India has implemented Time of Day (ToD)
tariffs for electricity consumption, particularly targeting industrial sectors. Nevertheless, a no-
table observation is the limited utilization of Time of Day (ToD) tariffs within the residential
electricity sector, signaling an area with potential for improvement. To enhance the efficiency
of the electricity market through responsive measures, it is crucial to expand the implementa-
tion of Time of Day (ToD) tariffs to include the residential sector as well, thereby promoting
a more effective and equitable system. The core focus of the research paper centers on the op-
timization of load scheduling in intelligent residences, with the objective of mitigating energy
expenses and diminishing peak power demand, while upholding user comfort and operation-
al efficiency at uncompromised levels. The research investigates the comparison of various
algorithms like Ant Colony Optimization Algorithm (ACO), Whale Optimization Algorithm
(WOA), Particle Swarm Optimization Algorithm (PSO), and Genetic Algorithm (GA) within
the framework of cost reduction using ToD tariffs, with GA emerging as the most effective in
achieving savings and decreasing peak-to-average ratio (PAR). This strategic approach not
only benefits residential consumers in terms of cost savings but also proves advantageous for
utility providers in managing resources effectively.

Cite this article as: Shirsat G, Mukherjee A, Sharma AK. Strategic load scheduling in smart
home: Leveraging IOT and optimization algorithms for energy cost reduction. Sigma J Eng
Nat Sci 2025;43(6):2140-2151.

smart homes, it is possible to design smart home systems
with advanced features for appliances control remotely [1].
Moreover, the smart homes are resulting with evolu-

immense importance due to their ability to revolutionize tjon of wearables and ambient devices for motion as well

daily living and energy efficiency. With the IoT within as health sensing and security, to build sustainable and
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smart living environment [2]. Appliance load monitoring
in smart homes is also an important factor for attaining
energy efficiency, and methods such as intrusive load mon-
itoring (ILM) and non-intrusive load monitoring (NILM)
have very good impact in controlling its power consump-
tion [3]. Integrating IoT functionalities into Home Energy
Management Systems (HEMS) can also increase energy
savings in that it can supply customers with feedback infor-
mation and support control over on of the main energy
consumers like white goods in a home, showing also the
growing relevance of smart home and IoT appliances in
contemporary residential environments [4].

Energy management is confronted with significant chal-
lenges arising from the uncertainties associated with load
consumption patterns and the sporadic nature of renewable
energy generation, which adversely affects the management
of active resources [5]. In order to mitigate these challenges,
the implementation of efficient load scheduling is impera-
tive, as it optimizes the utilization of renewable resources
such as solar energy and energy storage systems, all while
striving to minimize both costs and carbon emissions [6],
[7]. Moreover, load scheduling plays an essential role within
demand response initiatives, in which the deliberate redis-
tribution of loads during intervals of diminished pricing
can result in cost reductions for end-users, although it may
also lead to rebound peaks and user discontent [7]. The
application of sophisticated algorithms such as Enhanced
Differential Evolution (EDE) and Genetic Algorithm (GA)
facilitates the automation of responses to demand signals,
thereby optimizing load schedules to achieve reductions
in energy expenditures, carbon emissions, and peak-to-av-
erage ratios, whilst simultaneously enhancing user com-
fort [7]. Consequently, the efficacy of load scheduling is
paramount for achieving an equilibrium between supply
and demand, curtailing costs, and promoting sustainability
within energy management frameworks.

The phenomenon of elevated energy expenditures
and suboptimal energy utilization within smart homes is
attributed to the escalating energy requirements and the
deficiency of efficacious strategies for managing energy
consumption during peak hours. Urban environments
characterized as smart cities are profoundly dependent on
the provision of efficient energy services, with Time-of-Use
pricing emerging as an effective policy mechanism for rec-
onciling electricity consumption patterns and alleviating
strain on the electrical grid [8]. Scholars underscore the
significance of scheduling energy usage during off-peak
periods as a means to diminish energy costs, which neces-
sitates meticulous profiling of appliances and the imple-
mentation of real-time monitoring systems for effective
peak load management [9]. The proliferation of Internet
of Things (IoT)-enabled smart homes is associated with an
increase in energy consumption, thereby necessitating the
development of optimization strategies aimed at enhancing
both energy efficiency and user comfort [10] . Additionally,
the convergence of Artificial Intelligence (AI) with IoT

technologies promotes energy-efficient communication
within smart homes, with novel algorithms and frame-
works being devised to optimize Quality-of-Service during
video streaming, consequently decreasing energy usage
and enhancing performance metrics [11]. It is imperative
to address these complexities through the deployment of
cutting-edge technologies and optimization methodologies
to mitigate the effects of rising energy costs and to enhance
energy efficiency in smart residences.

The implementation of Time-of-Day (ToD) tariffs
for the purpose of energy conservation presents numer-
ous advantages, as substantiated by a variety of empirical
research studies. ToD tariffs serve to incentivize consumers
to realign their electricity consumption from peak demand
periods to off-peak intervals, thereby mitigating peak
load and fostering a more efficient utilization of energy
resources. This behavioral modification not only contrib-
utes to energy conservation but also facilitates peak load
shaving, which is essential for the preservation of grid sta-
bility and the diminishment of the necessity for costly grid
expansions [12]. Moreover, the utilization of ToD tariffs
has been empirically demonstrated to significantly lower
power consumption while concurrently preserving benefits
for both consumers and electricity providers, as evidenced
by the application of genetic algorithms in the optimization
of stepwise power tariffs [13]. In summary, the utilization
of Time-of-Day (ToD) tariffs signifies a holistic approach
designed to advance energy conservation, uphold grid reli-
ability, and enhance economic efficiency, thereby render-
ing it as an exceptionally favorable framework for modern
energy systems.

LITERATURE REVIEW

The practice of strategic load scheduling in smart homes
equipped with IoT technology is imperative for curtailing
energy costs and advancing energy management strate-
gies. Several algorithms, notably the Whale Optimization
Algorithm (WOA), Ant Colony Optimization Algorithm
(ACO), Particle Swarm Optimization Algorithm (PSO),
and Genetic Algorithm (GA), have been examined exten-
sively for this purpose. Ant Colony Optimization (ACO)
has been acknowledged as a proficient approach for
enhancing energy management in smart residential con-
texts. By emulating the foraging behavior exhibited by
ants, ACO algorithms are capable of efficiently scheduling
domestic appliances to reduce energy expenses and peak
demand [14]. ACO not only prioritizes cost reduction but
also improves user comfort by ensuring that the sched-
uling of appliances is congruent with consumer require-
ments, thereby enhancing overall satisfaction [15]. ACO,
renowned for its effectiveness in resolving combinatorial
problems, has been adeptly employed in home energy man-
agement systems (HEMS) to enhance appliance schedul-
ing while considering fluctuating pricing models and user
comfort [16].
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WOA, inspired by the social dynamics observed in ceta-
cean populations, has demonstrated significant effective-
ness in reducing energy expenditures and enhancing the
peak-to-average ratio (PAR) through the optimal schedul-
ing of domestic devices within sophisticated grid systems.
PSO, recognized as a widely utilized heuristic optimiza-
tion methodology, has found extensive application within
home energy management systems (HEMS) to harmonize
energy consumption and associated costs, capitalizing on
its rapid convergence towards optimal solutions. Genetic
Algorithms (GA), a prominent optimization methodol-
ogy, has been rigorously applied in numerous research
endeavors aimed at the creation of efficient Home Energy
Management Systems (HEMS), specifically focusing on
curtailing electricity expenditures and easing peak demand
via the judicious scheduling of household devices [17].
These algorithms are customarily associated with advanced
Internet of Things (IoT) technologies and real-time data
analytics to bolster their operational efficacy. The fusion
of GA with IoT-oriented controllers has revealed signifi-
cant economic advantages and enhanced user gratification
through the effective real-time optimization of load profiles
[18].

In a similar vein, Particle Swarm Optimization (PSO)
and Whale Optimization Algorithm (WOA) have been
employed in tandem with predictive modeling to antici-
pate energy consumption patterns and enhance scheduling
in accordance with user preferences and environmental
variables [19]. The efficacy of these algorithms is corrobo-
rated through both simulations and empirical data, thereby
demonstrating their capacity to facilitate significant reduc-
tions in energy costs while simultaneously ensuring user
satisfaction [20, 21]. In summary, the predominant cor-
pus of literature underscores the vital importance of these
optimization methodologies in the evolution of smart
home energy management, thus delineating the need for
sustained research and development to proficiently tackle
future challenges and uncertainties [22].

Problem Formulation

The regulation of energy within intelligent residential
settings has achieved increased prominence due to rising
energy costs and the necessity for sustainable approaches.
This study is focused on two primary objectives: the reduc-
tion of costs and the improvement of efficiency in energy
management. Through the utilization of time-of-day pric-
ing structures and diverse optimization algorithms, this
research endeavors to formulate strategies that mitigate
energy expenses and optimize efficiency, all while main-
taining the comfort of the inhabitants.
The primary objectives of this research are:
To establish strategies centered on cutting energy
expenditure in intelligent home systems.
To analyze the use of time-of-day tariffs to boost energy
efficiency in non-peak periods ultimately lowering elec-
tricity expenses.
To evaluate the efficacy of various optimization algo-
rithms specifically ACO, WOA, PSO, and GA in achiev-
ing these objectives.
This research assesses the application of diverse opti-
mization algorithms for effective load scheduling, cru-
cial for cost minimization and efficiency enhancement
in smart homes while developing viable load scheduling
methodologies.

SYSTEM MODEL

The utilization of metaheuristic algorithms within the
Smart Home Energy Control (SHEC) system optimizes
power consumption in smart devices by establishing effi-
cient usage schedules. This integration aims to achieve
cost reduction, decrease the Peak Average Ratio (PAR),
and enhance user comfort (UC) through effective energy
resource management. Through the proactive participation
in demand response initiatives and the adjustment to fluc-
tuating energy prices, the Smart Home Energy Controller
(SHEC) system not only mitigates consumer energy
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Figure 1. Workflow of Smart home energy management system.
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expenditures but also enhances the overall efficiency and
sustainability of Internet of Things (IoT)-integrated smart
residences. Figure 1 delineates the proposed sequential
workflow of the system, highlighting the procedural phases
involved in the optimization of energy management.

Study Focus and Objectives

This study concentrates on optimizing energy man-
agement in a smart home environment using a set of ten
commonly used appliances which are given in table 1. Each
appliance is denoted by
neN={1,23......... 10)
with energy management decisions made hourly across 24
time slots
s€S=1{0,1,2,3......... 23)

Energy Consumption and Cost Formulation
The total energy consumption of appliances within each
time slot is calculated as:
10

AECS = AEC,, 1)

n=1

where AECn represents the energy consumption of appli-
ance n.
The total energy consumption over 24 hours (AECT) is:

24

AEC, = AECS )

n=1
Energy cost is determined by:
24
C= Z 1(Erate X Prate) (3)
S=
where E rate is the energy cost per hour and Prate is the

power rating of connected appliances.

Optimization Objective

The objective function aims to minimize the total cost
and reduce user discomfort due to waiting times w; =b - a
before appliance operation.

Table 1. Smart home Appliances and its rating

It is formulated as:
24 10
min( Z[ Wy X Z(AECT X Epgre) + (0, X 0p)])  (4)
s=1 n=1

Here, wl and w2 are weighting are weighting factors
(either 0 or 1) balancing cost reduction and user comfort,
with wl+w2=1.

Role of Smart Home Energy Controller (SHEC)

In residential environments integrated with the Internet
of Things (IoT), the Smart Home Energy Controller (SHEC)
plays a crucial role by responding to real-time demand sig-
nals and optimizing energy consumption with remarkable
efficacy. It considers a multitude of factors, including price-
driven demand response strategies, characteristics of appli-
ances, operational timeframes, Time-of-Day (TOD) pricing
structures, and the energy resources available from the grid
to formulate optimal energy consumption schedules.

Pricing schemes

Many countries have implemented Time of Day (ToD)
tariffs for electricity consumption, particularly targeting
commercial and industrial sectors. In proposed ToD tariff
three zone are considered based on load curve plotted by
taking actual use of appliances from household consumer.
These are Peak (6 to10 hrs. &18 to 22 hrs.), Valley (4 to 6
hrs.,10 to 12 hrs. & 16 to 18 hrs.) & Flat Zone (0 to 4 hrs.,
12 to 16 hrs. & 22 to 23 hrs.). The primary goal of these
tariffs is to encourage consumers to adjust their electric-
ity usage to times of lower demand on the grid, ultimately
aiding in load balancing. The increase in demand for elec-
trical energy has grown significantly because of population
growth and urban development. To address this issue, smart
cities are utilizing Internet of Things (IoT) technology and
smart devices within households.

In India, Maharashtra MSEDCL applies energy rates
for consumer based on power consumption. The different
energy rates are applied for different consumers based on
Total energy Consumption (0-100,100-300,300-500,500

Sr. No Appliances Power Rating [Prate] (Watts) Total Usage hrs. [Li] Time Slots
1 Air Conditioner 1500 6 10-21
2 Computer 250 8 9-23
3 Electric kettle 1000 1 4-20
4 Coffee maker 1000 1 5-21
5 Water Dispenser 300 9 0-23
6 Oven 1000 2 4-21
7 Fan 500 5 0-23
8 Light 150 7 0-23
9 Washing Machine 1000 2 5-21
10 vV 100 6 0-23
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onwards). Proposed ToD Method in which Energy rates are
applied based on peak, Valley & flat zones of load curve.
In this study for Cost minimization of Smart Homes

Two Methods were adopted

Case I: Cost minimization by saving the KW power
consumption & using ToD tariff for power consumption

Case II: Cost minimization by only adopting ToD tariff
for power consumption.

METHODOLOGY

In this study, we use two main approaches to optimize
energy usage in smart homes: Single Interval Programming
(SIP) and Multi-Interval Programming (MIP).These strat-
egies are designated according to two distinct temporal
phases in dispatch planning and pricing, referred to as pre-
dispatch and real-time [23]. SIP comes into play when we
have set electricity prices ready to go for the whole day! The
single interval program runs once each day to figure out
the best schedule that fits user’s preferences. Multi inter-
val programming (MIP) works throughout each interval to
tind the ideal scheduling based on hourly real-time pricing
conditions.

In particular circumstances, Single Interval Programming
(SIP) is frequently preferred over Multi-Interval
Programming (MIP) due to its various notable advantages.
To begin with, SIP showcases computational clarity and
heightened efficiency, targeting the optimization of energy
usage during specific time intervals, which enables rapid
calculations and on-the-fly adaptability. This characteristic
renders SIP particularly suitable for prompt energy manage-
ment decisions and scenarios necessitating swift modifica-
tions. Secondly, SIP necessitates a reduced volume of data
in comparison to MIP, thereby rendering it advantageous in
situations where extensive data across multiple intervals is
either inaccessible or prohibitively expensive to obtain.

Numerous scholarly investigations have examined the
challenge of optimal scheduling of domestic appliances
via the utilization of diverse algorithms, including Genetic
Algorithms (GA), Particle Swarm Optimization (PSO),
Harmony Search Algorithm (HSA), Water Distribution
Optimization (WDO), and Hybrid Genetic Harmony
Search Algorithm (GHSA), among others [24-26].

In this paper a comparative performance of ACO,
WOA, PSO and GA is given.

Ant Colony Optimization (ACO)

This research introduces an Ant Colony Optimization
(ACO) strategy aimed at refining energy consumption
schedules for residences within the framework of Time-of-
Day (TOD) pricing. The Ant Colony Optimization (ACO)
algorithm initiates its process with a collection of artificial
ants, each of which constructs a potential energy consump-
tion timetable by incrementally selecting hours for each
appliance, informed by pheromone trails and heuristic
information. The pheromone matrix experiences real-time

updates based on the efficacy of the solutions generated,
thus reflecting the attractiveness of each hour for the acti-
vation of appliances. This approach achieves a harmonious
equilibrium between exploration (via stochastic selections
influenced by pheromone concentration) and exploitation
(by focusing on advantageous solutions identified through-
out the algorithm’s execution).

The technique incorporates various constraints within
the optimization framework. These constraints include
maintaining appliances within designated time frames
and adhering to maximum usage limits. Furthermore, the
objective function incorporates variable electricity pric-
ing across different temporal intervals (peak, off-peak,
and flat rates), aiming to discern schedules that minimize
total expenditures while possibly considering idle periods
for appliance usage. The optimization process is executed
through numerous generations of ant solutions, employing
mechanisms for pheromone evaporation and updates that
promote convergence toward an optimal or near-optimal
solution throughout successive iterations.

Whale Optimization Algorithm (WOA)

The Whale Optimization Algorithm (WOA) consti-
tutes an advanced metaheuristic optimization approach
that is predicated upon the social behaviors demonstrated
by humpback whales, particularly highlighting their bub-
ble-net feeding strategy. This algorithm is characterized by
its proficiency in global search capabilities and its necessity
for a limited quantity of control parameters, thus making it
efficacious across a diverse array of optimization problems
[27]. This investigation describes an optimization approach
directed at the scheduling of electrical loads within a
domestic setting, leveraging the WOA as a core methodol-
ogy. The algorithm systematically improves the schedules
via iterative processes, adeptly harmonizing the dual aims
of exploration and exploitation to identify the optimal solu-
tion. Throughout this process, constraints are rigorously
applied to guarantee that the schedules maintain their fea-
sibility. The findings presented in this study provide robust
support for the effectiveness and practicality of the afore-
mentioned approach, particularly in relation to its capac-
ity to facilitate substantial reductions in operational costs
while simultaneously improving overall energy efficiency
metrics, thereby further solidifying and amplifying the pri-
mary aim of demand-side management strategies as they
pertain to the optimization of intelligent residential systems
designed to enhance user experience and sustainability.

Particle Swarm Optimization (PSO)

The PSO algorithm is a technique for stochastic opti-
mization based on population dynamics, draws inspiration
from the collective behaviors observed in bird flocking and
fish schooling [28]. PSO consists of particles representing
potential solutions distributed randomly. Each particles
position and velocity are updated based on personal best and
global best. The algorithm starts with initializing particles’
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positions and velocities, followed by evaluating fitness func-
tion [29]. Particles adjust velocities and positions using a rule
incorporating personal best and global best [30].

The proposed PSO framework initializes a swarm of
particles, each representing a potential schedule. The evalu-
ation of each particle’s fitness is conducted according to the
objective function, which takes into account the TOD rates
and load constraints. The particles systematically revise
their positional coordinates through a process informed
by their individual prior experiences alongside the globally
optimal solution identified by the swarm, influenced by
cognitive and social factors. In order to ensure feasibility,
additional constraints such as peak power limits and spec-
ified operational timeframes are enforced upon the sched-
uling framework of each particle. The algorithm efficiently
converges towards an optimal or nearly optimal solution,
thereby showcasing its proficiency in balancing cost mini-
mization with adherence to constraints.

Genetic Algorithm (GA)

The Genetic Algorithm (GA) functions as an optimiza-
tionmethodology groundedin principles of natural selection
and genetic theory, wherein essential elements facilitate the
evolution of solutions to intricate challenges [31]. Entities
within a population are representative potential solutions

that are encoded in the form of chromosomes [32]. Parental
entities are selected according to fitness levels and undergo
crossover to generate novel offspring. The mutation mech-
anism enhances genetic diversity and expands the search
parameter space, thereby reducing the likelihood of conver-
gence to local optima. This repetitive sequence of selection,
crossover, and mutation defines a singular generation, with
the objective of advancing the quality of solutions through
subsequent generations [31,33].

To enhance the effectiveness of optimizing residential
electrical consumption while factoring in peak load man-
agement and time-of-use pricing, we have devised an inno-
vative genetic algorithm (GA). Our methodology tackles the
challenge by adaptively scheduling household appliances
in alignment with variable electricity tariffs and temporal
constraints. The algorithm is initialized utilizing pre-estab-
lished appliance schedules and imposes limitations such
as operational hours and maximum load thresholds. The
objective function is designed to balance the reduction of
electricity expenses with the comfort of consumers, wherein
weighting coefficients are finely tuned to correspond to
either overall consumption metrics or time-variable pricing
rates. Implementing iterative processes of selection, cross-
over, and mutation, the genetic algorithm steadily opti-
mizes schedules, consequently ensuring alignment with

Table 2. Comparison of Algorithms based on strength and weakness

Algorithm  Strength Weakness

ACO -Exhibits effectiveness in addressing combinatorial ~ -The incidence of premature convergence might ensue when
optimization challenges. pheromone trails reveal excessive potency.

-Demonstrates expertise in traversing extensive -The convergence speed is regularly recognized to be
search landscapes. diminished when engaging with elaborate problems.
-Displays an aptitude for modification within -The process of parameter optimization can introduce
shifting contextual paradigms. considerable intricacies.

WOA -Encourages rapid convergence without - There exists a relative scarcity of research and a lack of
compromising the critical exploratory facets. established methodologies in comparison to alternative
~Mimics authentic behavioral patterns evident in the approaches.
foraging methodologies of humpback whales. - The performance outcomes may fluctuate contingent upon

the specific parameter configurations employed.
- There may be difficulties encountered in highly multimodal
landscapes.

PSO -Rapid convergence, particularly in the context of -Challenges may arise when endeavoring to perform global
unimodal optimization challenges exploration within complex landscapes.

- Straightforward execution and comprehensible - The methodology is significantly sensitive to the

interpretation configuration of parameters, which may profoundly influence

- Effective in addressing dynamic optimization performance indicators.

scenarios - A proclivity for premature convergence may become
apparent in certain circumstances.

GA - Maintains diversity through genetic operations - Convergence may be comparatively slower than that

- Robust to different types of problems

observed in Particle Swarm Optimization (PSO).

- It necessitates meticulous calibration of population size,
mutation rates, and crossover rates.

-The degree of complexity related to implementation can vary
greatly based on the specific genetic representation chosen.
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peak power regulations and boosting overall efficiency in
energy consumption. The empirical observations affirm
the success of our methodology in diminishing electricity
costs and enhancing consumption dynamics across a range
of household environments.

A comparative examination of Ant Colony Optimization
(ACO), Whale Optimization Algorithm (WOA), Particle
Swarm Optimization (PSO), and Genetic Algorithm (GA)
delineating their respective advantages and limitations is
presented in Table 2 within the framework of optimiza-
tion challenges. By comprehensively understanding their
distinct attributes, one can more effectively evaluate their
appropriateness for particular applications, especially in
contexts where efficient energy management and load
scheduling are of paramount importance.

Genetic Algorithms (GA) excel in intricate optimiza-
tion tasks, especially with multimodal functions featuring
several optimal solutions. Their maintenance of genetic
diversity via crossover and mutation mitigates premature
convergence, facilitating exploration of varied solution

regions. Furthermore, GAs exhibit high adaptability,
rendering them suitable for problems characterized by
evolving environments or dynamic constraints, including
scheduling and resource allocation.

RESULTS AND ANALYSIS

The focus of this study is the reduction of electricity
expenses for residential consumers while ensuring user
comfort. Simultaneously, the aim is to decrease the PAR
ratio. In this study comparative results are obtained for both
cases fixed charges as per current scenario & after applying
the TOD tariff in Table 3 and Table 4. In this case, we have
two cost rates first Based on MSEDCL power consumption
(KW) slabs (i.e KW Slab) and second ToD tariff rates (i.e
ToD rates). The initial energy consumption & Energy cost
curve for a day is shown in Fig. 2.

In Proposed ToD Method in Energy rates are applied
based on peak, Valley & flat zones of load curve. Initial
Power consumption without appliances scheduling for KW
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Table 3. Comparative results for cost minimization by kw saving & ToD tariff saving
Algorithm Pricing Result KW Cost %KW  %Cost PAR % PAR
saving  Saving  saving Saving Redu. Redu.
ACO KW Slab Scheduled KW 20.72 3.13 13.12 0.19 6.73
Scheduled Cost 193.76 35.24 15.39
ToD Scheduled KW 20.78 3.07 12.87 0.17 6.02
Scheduled Cost 183.97 40.1 17.9
Total Saving 3.07 45.03 12.87 19.66 0.17 6.02
WOA KW Slab Scheduled KW 12.99 10.86 45.53 -1.6 -57.8
Scheduled Cost 106.84 122.2 53.34
ToD Scheduled KW 13.22 10.63 44.57 -1.6 -54.96
Scheduled Cost 108.9 115.2 51.4
Total Saving 10.63 120.1 44.57 52.45 -1.6 -54.96
PSO KW Slab Scheduled KW 15.07 8.78 36.81 -0.6 -19.5
Scheduled Cost 130.22 98.78 43.14
ToD Scheduled KW 14.91 8.94 37.48 -0.5 -18.09
Scheduled Cost 121.32 102.8 45.86
Total Saving 8.94 107.7 37.48 47.02 -0.5 -18.09
GA KW Slab Scheduled KW 21.25 2.6 10.9 0.28 9.92
Scheduled Cost 199.8 29.2 12.75
ToD Scheduled KW 21.36 2.49 10.44 0.28 9.92
Scheduled Cost 156.54 68.27 30.37
Total Saving 2.49 72.46 10.44 31.64 0.28 9.92

slab rate is 23.85 Kw (Unscheduled KW) and cost is 229
Rs (Unscheduled cost). Initial Power consumption without
appliances scheduling for ToD rate is 23.85 Kw (Unscheduled
KW) and cost is 224.07 Rs (Unscheduled cost). So cost saving
by ToD tariff is 05 Rs (2%) which is also observed in Fig. 3.
Initial PAR without scheduling is 2.82.

Computational Results for Case-I
The outcomes for case-1, where a flat rate tariff and Time
of Day (ToD) tariff pricing are implemented are shown in

Table 3. The table provides a comparative analysis of the
electricity cost associated with the efficient scheduling
of household appliances. This examination is conducted
through SIP techniques employing in ACO, WOA, PSO,
and GA algorithms. The load curve of Smart home before
& after scheduling the appliances for each algorithm in case
I is shown in Fig. 5, Fig. 6, Fig. 7 & Fig. 8. It is observed
that some loads are not active for same day therefore there
is saving in cost but due to this consumer comfort is dis-
turbed because of unviability of specific load at important
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Figure 5. Load curve Before and After Scheduling load by ACO a) Slab rate b) ToD rate.
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Figure 6. Load curve Before and After Scheduling load by WOA a) Slab rate b) ToD rate.
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Figure 7. Load curve Before and After Scheduling load by PSO a) Slab rate b) ToD rate.
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Table 4. Comparative results for cost minimization only by ToD tariff saving

Algorithm  Pricing Result KW Cost %KW % Cost PAR % PAR
saving  Saving saving  Saving Redu Redu.
ACO KW Slab Scheduled KW 23.85 0 0 0.05 1.77
Scheduled Cost 229 0 0.00
ToD Scheduled KW 23.85 0 0 0.04 1.42
Scheduled Cost 208.06 16.01 7.15
Total Saving 20.94 0 9.14 0.04 1.42
WOA KW Slab Scheduled KW 23.85 0 -0.39 -13.83
Scheduled Cost 229 0 0.00
ToD Scheduled KW 23.85 0 0 -0.46 -16.31
Scheduled Cost 193.48 30.59 13.65
Total Saving 35.52 15.51 -0.46 -16.31
PSO KW Slab Scheduled KW 23.85 -0.36 -12.77
Scheduled Cost 229 0 0.00
ToD Scheduled KW 23.85 0 0 -0.33 -11.70
Scheduled Cost 194.93 29.14 13.00
Total Saving 34.07 14.88 -0.33 -11.70
GA KW Slab Scheduled KW 23.85 0.14 4.96
Scheduled Cost 229 0 0.00
ToD Scheduled KW 23.85 0 0 0.13 4.61
Scheduled Cost 177.38 47.43 21.10
Total Saving 0 51.62 0 22.54 0.13 4.61

time. The percentage reduction in cost by optimal schedul-
ing in case I with the help of all four algorithms comparison
is shown in Fig. 9. (a) It is observed that ACO, WOA, PSO
& GA algorithms minimized the electricity cost by 19.66%,
52.45, 47.02% and 31.52% respectively. In the same fig.
PAR reduction is also shown for same as 6.03%, -54.96%,
-18.09% and 9.93% respectively. Which shows that the opti-
mal scheduling decreases cost but PAR reduction increases

Cost Minimization by KW & ToD (% )

60.00

40.00

20.00 I I

0.00 I - -

-20.00 l

-40.00

-60.00

8000 o WOA

Total GATotal PSO Total Total

W % Cost Saving.  19.66 31.64 47.02 52.45
™ % PAR Redu.. 6.03 9.93 -18.09 -54.96

M % Cost Saving. m % PAR Redu..

(a) Case

in some cases which is not good for the system. The best
results are obtained by GA in consideration with cost sav-
ing and PAR reduction i.e 31.64% & 9.93%.

Simulation Results for Case-II

The load curve of Smart home before & after scheduling
the appliances for each algorithm in case I is shown in Fig. 5,
Fig. 6, Fig. 7 & Fig. 8. After load scheduling under slab rate

Cost Minimization by ToD only ( % )
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Figure 8. Comparison of % cost saving & % PAR Reduction (a) case I (b) case II.
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and ToD rate peak of load curve is minimized hence peak
clipping is done. More amount of load is shifted in valley
and flat tariff zone of ToD as compare to cost minimization
by case L. In the case II cost minimization & PAR reduction
by optimal scheduling of appliances in smart home with the
help of ACO, WOA, PSO & GA algorithms is given in Table
4. The percentage reduction in cost by employing the algo-
rithms are ACO (9.14%), WOA (15.51%), PSO (14.88%)
& GA (22.54%). PAR reduction for the same are ACO
(1.42%), WOA (-16.31%), PSO (-11.70%) & GA (4.61%)
Which shows that cost saving is achieved in each case but
reduction in PAR is not in every case. Total cost saving by
scheduling the appliances by GA is 22.54% by shifting load
in low ToD Tariff rate & PAR reduction is 4.61% which is
greater than ACO, WOA & PSO.

If GA is employed for load scheduling under ToD tar-
iff rate, without changing consumer power consumption
(23.85 kW keeping Constant), cost saving in actual energy
bill (22.54%). Also, the PAR reduced by 4.61% which is
greater than KW slab rate this not happen in cost minimi-
zation by KW & ToD tariff.

CONCLUSION

In this study, the focus was on reducing electricity
expenses for residential consumers while maintaining user
comfort and decreasing the peak power demand to average
demand ratio. Comparative results were obtained for fixed
charges under the current scenario and after applying Time
of Day (ToD) tarift. Different algorithms were used to opti-
mize appliance scheduling and minimize costs. The results
shows that ToD tariff led to cost savings of 2% compared to
the current scenario.

The simulation results for case-I presented in this study
demonstrate the effectiveness of employing like Ant Colony
Optimization Algorithm (ACO), Whale Optimization
Algorithm (WOA), Particle Swarm Optimization Algorithm
(PSO), and Genetic Algorithm (GA) for optimal scheduling
of appliances in a smart home under flat rate and ToD tariff
pricing. The analysis of electricity pricing and adjustments
to the load curve, conducted both prior to and subsequent
to the implementation of scheduling, reveals significant
decreases in expenditures; however, it is important to note
that certain disruptions to consumer comfort may arise as a
result of load unavailability during pivotal periods. Among
the various algorithms scrutinized, the Genetic Algorithm
(GA) emerges as the most effective in achieving a balanced
interplay between cost reductions (31.64%) and reductions
in the Peak-to-Average Ratio (PAR) (9.93%).

In the context of case-II, the findings reveal that load
scheduling in accordance with Time-of-Day (ToD) tariff
pricing facilitates peak clipping and promotes enhanced
load distribution efficiency. The Genetic Algorithm
(GA) once again surfaces as the preeminent algorithm,
demonstrating noteworthy cost reductions (22.54%) and
PAR decreases (4.61%) in comparison to the Ant Colony

Optimization Algorithm (ACO), Whale Optimization
Algorithm (WOA), and Particle Swarm Optimization
Algorithm (PSO). In summary, the Genetic Algorithm
(GA) substantiates its status as a viable option for the opti-
mization of appliance scheduling within intelligent home
environments, delivering significant advantages in terms of
cost efficiency and reductions in PAR.

NOMENCLATURE

Coy Specific heat, kJ / kg °C

AECS Appliance Energy Consumption for slot, watt.
AEC, Nth Appliance Energy Consumption, watt.
AEC; Total Appliance Energy Consumption, watt.

C Energy Cost, Rupees

E... Energy Rate, Rupees
P Power rating, Watt
wr Waiting Time, Sec.
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