2Yildiz Technical University, Faculty of Arts and Science, Department of Mathematics, Esenler-ISTANBUL
Abstract
The data of real life problems generally cannot be expressed strictly. An efficient way of handling this situation is expressing the data as intervals. Thus this paper focus on the Multi-objective Interval Transportation Problem (MITP) whose parameters i.e. cost coefficients of the objective functions, supply and demand quantities are expressed as intervals. This problem is transformed to a traditional Multi-objective Transportation Problem (MOTP) with crisp parameters. First, interval supply-demand quantities are converted into deterministic ones by means of the convex combination of left and right limits. By an order relation that represents the decision maker’s preferences between interval costs, each objective is turned into crisp form
within the right limit and centre of the costs. Finally, using Werners’ “fuzzy and” operator, a compensatory fuzzy approach to MITP is presented. And to our knowledge, combining compensatory ( and ) operator with MITP has not been published up to now. Our approach generates compromise solutions which are both compensatory and Pareto-optimal. Also a numerical example is given to illustrate the presented approach.
2
Gerçek hayat problemlerinin verileri genellikle kesin olarak ifade edilemez. Bu durumun ele alınmasının etkili bir yolu verileri aralık şeklinde ifade etmektir. Bu makale, amaç fonksiyonlarının maliyet katsayıları ve arztalep
miktarlarının aralık şeklinde ifade edildiği Çok Amaçlı Aralıklı Taşıma Problemi (MITP) üzerine odaklanmıştır. Bu problem, geleneksel çok amaçlı taşıma problemine dönüştürülmüştür. Öncelikle, aralık arztalep
miktarları, sağ ve sol limitlerinin konveks kombinezonları aracılığıyla determisitik hallerine çevirilmiştir. Aralık maliyetler arasında karar vericinin tercihlerini ifade eden bir sıralama bağıntısı aracılığıyla, her bir amaç, fiyatların sağ limitleri ve merkezleri ile kesin hale dönüştürülmüştür. Son olarak, Werners’in “fuzzy and” operatorü kullanılarak, MITP için dengeleyici bulanık bir yaklaşım sunulmuştur.
Bildiğimiz kadarıyla, dengeleyici ( and ) operatorü ile MITP’yi birleştiren bir çalışma şu ana kadar yayımlanmamıştır. Bizim yaklaşımımız hem dengeleyici hem de Pareto-optimal olan uzlaşık çözümler üretmektedir. Ayrıca, sunulan yaklaşımın gösterilmesi için sayısal bir örnek de verilmiştir.